M. Sc. Chemistry Examination, 2022

(4th Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER - XIII-I

Time: Two hours Full Marks: 50

Use a separate answer script for each Unit.

UNIT: I-4131

(Answer All Questions)

- 1. Find out the splitting of ${}^{2}D$ state under $O_{\rm h}$ symmetry.
- 2. Evaluate the symmetries of IR and Raman vibrations of CH₄.
- 3. Construct the correlation diagram of d² system under O_h.
- 4. Show that in $[CoCl_4]^{2-}$; ${}^4A_2 \rightarrow {}^4T_2$ transition is electronically forbidden whereas ${}^4A_2 \rightarrow {}^4T_1$ transition is electronically allowed.

Partial Character table for O

О	Е	8C ₃	6C' ₂	6C ₄	$3C_2 = \left(C_4\right)^2$
A ₁	+1	+1	+1	+1	+1
A_2	+1	+1	-1	-1	+1
Е	+2	-1	0	0	+2
T ₁	+3	0	-1	+1	-1
T ₂	+3	0	+1	-1	-1

Character table for T_d point group

	E	8C ₃	3C ₂	6S ₄	6σ _d		
A ₁	1	1	1	1	1		2 2 2 x +y +z
A ₂	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T ₁	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

[Turn over

Character table for $D_{4h}\,$ point group

D _{4h}	E	2C ₄ (z)	C ₂	2C' ₂	2C"2	i	2S ₄	$\sigma_{_{h}}$	2σ _ν	2σ _d
A _{1g}	1	1	1	1	1	1	1	1	1	1
A _{2g}	1	1	1	-1	-1	1	1	1	-1	-1
B _{1g}	1	-1	1	1	-1	1	-1	1	1	-1
B _{2g}	1	-1	1	-1	1	1	-1	1	-1	1
Eg	2	0	-2	0	0	2	0	-2	0	0
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1
B _{1u}	1	-1	1	1	-1	-1	1	-1	-1	1
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1
Eu	2	0	-2	0	0	-2	0	2	0	0

Character table for C_{2v} point group

	E	C ₂ (z)	σ _γ (xz)	σ _γ (yz)	linear, rotations	quadratic
A_1	1	1	1	1	z	x^2, y^2, z^2
A ₂	1	1	-1	-1	Rz	хy
$\mathbf{B_1}$	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

O _h	D _{4h}	C _{2v}
A _{1g}	A _{1g}	A ₁
A _{2g}	B _{1g}	A ₂
E g	A _{1g} + B _{1g}	A ₁ + A ₂
T _{1g}	A _{2g} + E _g	A ₂ + B ₁ + B ₂
T _{2g}	B _{2g} + E _g	A ₁ + B ₁ + B ₂

UNIT: I-4132

- 5. Consider a tetrahedral complex compound, $[NiCl_4]^{2-}$:
 - a) Determine the LGOs of the terminal atoms using projection operator method.
 (Character Table may be consulted). Write Mulliken notation of the valence AOs of metal atom and draw a qualitative molecular orbital energy level diagram of a tetrahedral complex.

- b) Why is s-p mixing important in H₂O molecule? Justify your arguments in the light of group theory.
- c) Predict the geometry of CH₂ and NH₂ in their ground and first excited states with the aid of appropriate Walsh diagram.
- d) How do the relativistic effects cause the stabilization of valence s and p AOs, while destabilization of d and f orbitals in case of heavier transition elements.
- e) Explain the following phenomena (any two):

 3×2

- i) Aurophilicity
- ii) Gold can form stable auride ion.
- iii) The Au(III) complexes are more common unlike Ag(III) species.