M. Sc. Chemistry Examination, 2022 (4th Semester) #### **INORGANIC CHEMISTRY SPECIAL** #### PAPER - XIII-I Time: Two hours Full Marks: 50 #### Use a separate answer script for each Unit. ## **UNIT: I-4131** ## (Answer All Questions) - 1. Find out the splitting of ${}^{2}D$ state under $O_{\rm h}$ symmetry. - 2. Evaluate the symmetries of IR and Raman vibrations of CH₄. - 3. Construct the correlation diagram of d² system under O_h. - 4. Show that in $[CoCl_4]^{2-}$; ${}^4A_2 \rightarrow {}^4T_2$ transition is electronically forbidden whereas ${}^4A_2 \rightarrow {}^4T_1$ transition is electronically allowed. #### Partial Character table for O | О | Е | 8C ₃ | 6C' ₂ | 6C ₄ | $3C_2 = \left(C_4\right)^2$ | |----------------|----|-----------------|------------------|-----------------|-----------------------------| | A ₁ | +1 | +1 | +1 | +1 | +1 | | A_2 | +1 | +1 | -1 | -1 | +1 | | Е | +2 | -1 | 0 | 0 | +2 | | T ₁ | +3 | 0 | -1 | +1 | -1 | | T ₂ | +3 | 0 | +1 | -1 | -1 | #### Character table for T_d point group | | E | 8C ₃ | 3C ₂ | 6S ₄ | 6σ _d | | | |----------------|---|-----------------|-----------------|-----------------|-----------------|-------------------|---------------------------------| | A ₁ | 1 | 1 | 1 | 1 | 1 | | 2 2 2
x +y +z | | A ₂ | 1 | 1 | 1 | -1 | -1 | | | | E | 2 | -1 | 2 | 0 | 0 | | $(2z^2 - x^2 - y^2, x^2 - y^2)$ | | T ₁ | 3 | 0 | -1 | 1 | -1 | (R_x, R_y, R_z) | | | T ₂ | 3 | 0 | -1 | -1 | 1 | (x, y, z) | (xy, xz, yz) | [Turn over # Character table for $D_{4h}\,$ point group | D _{4h} | E | 2C ₄ (z) | C ₂ | 2C' ₂ | 2C"2 | i | 2S ₄ | $\sigma_{_{h}}$ | 2σ _ν | 2σ _d | |-----------------|---|---------------------|----------------|------------------|------|----|-----------------|-----------------|-----------------|-----------------| | A _{1g} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | A _{2g} | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | | B _{1g} | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | | B _{2g} | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | | Eg | 2 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | | A _{1u} | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | | A _{2u} | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | | B _{1u} | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | | B _{2u} | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | | Eu | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | # Character table for C_{2v} point group | | E | C ₂ (z) | σ _γ (xz) | σ _γ (yz) | linear,
rotations | quadratic | |----------------|---|--------------------|---------------------|---------------------|----------------------|-----------------| | A_1 | 1 | 1 | 1 | 1 | z | x^2, y^2, z^2 | | A ₂ | 1 | 1 | -1 | -1 | Rz | хy | | $\mathbf{B_1}$ | 1 | -1 | 1 | -1 | x, R _y | xz | | B ₂ | 1 | -1 | -1 | 1 | y, R _x | yz | | O _h | D _{4h} | C _{2v} | |-----------------|-----------------------------------|--| | A _{1g} | A _{1g} | A ₁ | | A _{2g} | B _{1g} | A ₂ | | E g | A _{1g} + B _{1g} | A ₁ + A ₂ | | T _{1g} | A _{2g} + E _g | A ₂ + B ₁ + B ₂ | | T _{2g} | B _{2g} + E _g | A ₁ + B ₁ + B ₂ | #### **UNIT: I-4132** - 5. Consider a tetrahedral complex compound, $[NiCl_4]^{2-}$: - a) Determine the LGOs of the terminal atoms using projection operator method. (Character Table may be consulted). Write Mulliken notation of the valence AOs of metal atom and draw a qualitative molecular orbital energy level diagram of a tetrahedral complex. - b) Why is s-p mixing important in H₂O molecule? Justify your arguments in the light of group theory. - c) Predict the geometry of CH₂ and NH₂ in their ground and first excited states with the aid of appropriate Walsh diagram. - d) How do the relativistic effects cause the stabilization of valence s and p AOs, while destabilization of d and f orbitals in case of heavier transition elements. - e) Explain the following phenomena (any two): 3×2 - i) Aurophilicity - ii) Gold can form stable auride ion. - iii) The Au(III) complexes are more common unlike Ag(III) species.