4. Why is Rosenbrock method called the method of rotating coordinates?

Minimize $\left(x_{1}-2\right)^{4}+\left(x_{1}-2 x_{2}\right)^{2}$ by Rosenbrock method by taking initial point as ($0,3 \cdot 0$).
5. Using Steepest Descent method, minimize $f=x_{1}^{2}+x_{2}^{2}+2 g x_{1}+2 h x_{2}+c$ starting from the point $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$.
6. Write down the properties of penalty function.

Minimize $f\left(x_{1}, x_{2}\right)=\frac{1}{3}\left(x_{1}+1\right)^{3}+x_{2}$, subject to $x_{1} \geq 1$, $x_{2} \geq 0$, using exterior penalty function method with the calculus method of unconstrained minimization.

M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)

Optimization and Control Theory

Paper - Core-12
Time : Two hours
Full Marks : 40

Use a separate answer script for each Part.

Part - I ($\mathbf{2 4}$ Marks)

Attempt any three questions out of the following five:

$$
3 \times 8=24
$$

1. a) Define the rocket railroad car problem of control.
b) Define Pontryagin Maximum principle.
c) Introducing and using the maximum principle, find out the optimal control \& production of consumption of a basic model. $2+2+4=8$
2. a) Define the controllability matrix $G=G(M, N)$.
b) Prove that $\operatorname{rank}(G)=n$ if and only if $0 \in C^{0}$ Where rank of G is defined as the number of linearly independent rows/column of G. $2+6=8$
3. a) Obtain the state transition matrix of the following discrete-time system :

$$
\begin{gathered}
x(K+1)=G x(K)+H u(K) \\
y(K)=C x(K)
\end{gathered}
$$

Where, $G=\left(\begin{array}{cc}0 & 1 \\ -0 \cdot 16 & -1\end{array}\right), H=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}, C=\left(\begin{array}{ll}1 & 0\end{array}\right)$.
Also, obtain the state $x(K)$ and the output $y(K)$ when the input $u(K)=1$ for $K=0,1,2$. Assume that the initial state is given by

$$
x(0)=\left(x_{1}(0) \quad x_{2}(0)\right)^{T}=(1-1)^{T} .
$$

b) Determine the inverse of the matrix $(z I-G)$ where

$$
G=\left(\begin{array}{ccc}
0 \cdot 1 & 0 \cdot 1 & 0 \\
0 \cdot 3 & -0 \cdot 1 & -0 \cdot 2 \\
0 & 0 & -0 \cdot 3
\end{array}\right) . \quad 4+4=8
$$

4. a) Consider the continuous-time system given as
$G(s)=\frac{Y(s)}{U(s)}=\frac{1}{s+a}$.
Obtain the continuous-time state-space representation of the system. Also, find the discretetime state-space representation and the pulse transfer function for the system.
b) Compute $e^{A t}$ for the maxtrix $A=\left(\begin{array}{cc}0 & 1 \\ -4 & -5\end{array}\right)$ and also find the discretized version with delay in input for the system given as

$$
\begin{aligned}
& \dot{x}(t)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) x(t)+\binom{0}{1} u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)
\end{aligned}
$$

5. Consider the differential equation of the system $M \ddot{x}+F \dot{x}+K x=0$ with $x(0)=1$ and $\dot{x}(0)=1$. Find the condition for which the system will be asymtotically stable and hence, state the Lyapunov's first theorem from your analytical solution. [M, F and K as their usual notation]

8

Part - II ($\mathbf{1 6}$ Marks)

Answer any four questions.

All questions carry equal marks.

1. Define a unimodal function. Maximize the following unimodal function

$$
f(x)= \begin{cases}2 x / 3, & x \leq 3 \\ 5-x, & x>3\end{cases}
$$

in the interval $[1,4]$ by Fibonacci method using $n=4$.
2. What are the roles of exploratory and pattern moves in the Hooke and Jeeves method?
Compute up to second iteration to minimize

$$
f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}
$$

by Hooke and Jeeves pattern search method.
3. Use Nelder-Mead method to minimize $f(x, y)=x^{2}-4 x+y^{2}-y-x y$. Compute upto fourth iteration defining the initial simplex as $v_{1}=(0,0)$, $v_{2}=(1 \cdot 2,0)$ and $v_{3}=(0,0 \cdot 8)$.

