INPUT: A positive odd integer N.
QUESTION: Is N a composite number? is in $R P$.
$5+5=10$
4. Consider a special case of the Polly Cracker with a graph $G=(V, E)$ as the public key, and a perfect code of G as its private key. Let $N[v]$ consist of v itself and all vertices adjacent to v. Let $B_{1} \cup B_{2}$ denote the basis of polynomials in the variables $\left\{t_{v}: v \in V\right\}$ where

$$
\begin{aligned}
& B_{1}=\left\{1-\sum_{u \in N[v]} t_{u}: v \in V\right\} \\
& B_{2}=\left\{t_{u} t_{u^{\prime}} \quad: u, u^{\prime} \in N[v], u \neq u^{\prime}, v \in V\right\}
\end{aligned}
$$

a) Construct a one-to-one correspondence between the private keys and points at which B vanishes.
b) Show that $t^{2}-t$ belongs to the Poly Cracker's ideal J for each variable t.

$$
5+5=10
$$

M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)

Introduction to Cryptography

Paper - DSE - 07 (B30)
Time : $1 \frac{1}{2}$ hours
Full Marks : 30
(Symbols have usual meanings, if not mentioned otherwise) Attempt $\mathbf{Q} .1$ and any $\boldsymbol{t w o}$ from the rest.

1. a) What do you mean by hash function in the cryptography?
b) Explain the uses of the one-way function for implementing passwords, signatuers, and cryptosystems.
c) If $P \in B P P$, then for any constant $\in>0$ give an algorithm whose answers have a probability greater $1-\epsilon$ of being correct.
$2+3+5=10$
2. Write the $D S A$ scheme and explain why.
a) Bob expects $g^{u_{1}} y^{u_{2}}$ to agree modulo q with r, and
b) if they agree, he should be satisfied that it really was Alice who sent the message. $\quad 4+(3+3)=10$
3. a) Describe Rabin's probabilistic primality test.
b) What do you mean by the complexity class $R P$? Using Rabin's probabilistic primality test, show that the following compositeness problem:
[Turn over
