Ex/SC/MATH/PG/DSE/TH/06/B2/2022
M. Sc. Mathematics Examination, 2022
(2nd Year, 2nd Semester) Advanced Rings and Modules - II

PAPER - DSE - 06 (B2)
Time : Two hours
Full Marks : 40
Answer any two questions.
(Notations / Symbols have their usual meanings)
Let R be a ring with identify 1 .

1. i) Define Noetherian Module. Let M be a Noetherian left R-module and $f: M \rightarrow M$ be surjective R linear mapping. Show that f is an R-isomorphism.
ii) Does the above result hold if we replace surjective by injective? Justify.
iii) Let M_{1} and M_{2} be two Artinian submodules of a left R-module M. Show that $M_{1}+M_{2}$ is also Artinian module.
$(2+3)+2+3$
2. Let M be left R-module and $\operatorname{End}_{R}(M)$ be the endomorphism ring of M.
i) If M is simple then show that $\operatorname{End}_{R}(M)$ is a division ring.
ii) If M is semisimple then show that $\operatorname{End}_{R}(M)$ is a regular ring.
3. i) Show that a ring R is semisimple if and only if R is Noetherian and regular.
ii) Define group ring. Let G be a finite group. Show that the group ring $R G$ forms a free R-module. $5+(2+3)$
4. i) Define J - semisimple ring. Show that every regular ring is a J-semisimple ring. Is the converse true? Justify.
ii) Show that a simple ring is both primitive ring and prime ring. Let D be a division ring. Is $M_{n}(D)$ both primitive and prime? Justify. $\quad(1+2+2)+(4+1)$
5. i) Show that a ring R is isomorphic to a subdirect product of a family $\left\{R_{i}\right\}_{i \in I}$ of rings if and only if there exists a family of ideals $\left\{P_{i}\right\}_{i \in I}$ in R such that $\bigcap_{i \in I} P_{i}=\{0\}$ and $R / P_{i} \cong R_{i}$ for all $i \in I$. Hence conclude that the ring of integers is a subdirect product of fields.
ii) What do you mean by lifting idempotent modulo an ideal of a ring? If I is a nil ideal of R then show that every idempotent of R / I can be lifted to R.

$$
(5+2)+(1+2)
$$

6. i) Let V be a left vector space over a division ring D. What does it mean by dense subring of $E n d_{D}(V)$? Let
R be a left primitive ring and e be a non-zero idempotent in R. Show that $e R e$ is a left primitive ring.
ii) Show that a subdirectly irreducible integral domain is a field. Hence conclude that an integral domain cannot have exactly three ideals.
$(2+3)+(3+2)$
