Then show that $\{T_n\}$ is strongly operator convergent and the limit operator T is linear, bounded, selfadjoint and satisfies $T \le K$.

- 4. Let A, B be two bounded selfadjoint linear operators on a complex Hilbert space \mathbb{H} with AB = BA and $A^2 = B^2$. Then show that there exists an orthogonal projection E such that
 - i) E commutes with any operator that commutes with A B
 - ii) Ax = 0 implies Ex = x
 - iii) A = (2E I)B.
- 5. Let T be bounded linear selfadjoint operator on a complex Hilbert space \mathbb{H} . Then show that T has the spectral representation $T = \int_{m-0}^{M} \lambda dE_{\lambda}$,

where $\varepsilon = (E_{\lambda})$ is the spectral family associated with T, $m = \inf \{ \langle Tx, x \rangle : ||x|| = 1 \}$ and $M = \sup \{ \langle Tx, x \rangle : ||x|| = 1 \}$.

- 6. i) Let $T:D(T) \to H$ be a linear operator, where D(T) is dense in the complex Hilbert space \mathbb{H} . Then show that T is symmetric if and only if $T \subset T^*$.
 - ii) Show that every non-unital C^* -algebra U is contained in a unital C^* -algebra \tilde{U} as a maximal ideal of codimension one.

M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)

OPERATOR THEORY - II PAPER - DSE - 07 (B17)

Time: Two hours

Full Marks: 40

Answer any four questions.

All questions carry equal marks.

1. i) Let T be bounded linear selfadjoint operator on a complex Hilbert space \mathbb{H} . Then prove that

$$||T|| = \max\{|m|, |M|\},\$$

where
$$m = \inf \{\langle Tx, x \rangle : ||x|| = 1\}$$
 and

$$M = \sup \left\{ \langle Tx, x \rangle : ||x|| = 1 \right\}.$$

- ii) Let T be bounded linear selfadjoint operator on a complex Hilbert space \mathbb{H} . Then show that $m = \inf \{ \langle Tx, x \rangle : ||x|| = 1 \}$ lies in the spectrum of T.
- 2. Show that every positive selfadjoint bounded linear operator *T* defined on a Hilbert space has a unique positive square root.
- 3. Let $\{T_n\}$ be a sequence of bounded selfadjoint linear operator on a complex Hilbert space \mathbb{H} such that

$$T_1 \leq T_2 \leq \ldots \leq T_n \leq \ldots \leq K$$
,

where K is a selfadjoint bounded linear operator on H. Suppose that any T_n commutes with K and with every T_m .