for every O-minimal left ideal L of S there exists a O-minimal right ideal R such that

- i) LR = S
- ii) RL is a O-group
- iii) the identity element e of RL is a primitive idempotent.
- 4. Let S be a semigroup. Prove that the following are equivalent
 - i) There exists a unary operation $S \to S$, $x \mapsto x^{-1}$ such that $x x^{-1}x = x$, $(x^{-1})^{-1} = x$, $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}$ for all $x, y \in S$.
 - ii) Every element of S has a unique inverse. 5+5
- 5. Prove that every completely regular semigroup is a semilattice of completely simple semigroups. Hence prove that every band is a semilattice of rectangular bands.

 7+3
- 6. Let S be an inverse semigroup with semilattice E of idempotents. Suppose ρ is a congruence on S. Prove that $(Ker\rho, tr\rho)$ is a congruence pair. Conversely, if (N,τ) is a congruence pair, then the relation

$$\rho(N,\tau) = \{(a,b) \in S \times S : (a^{-1}a, b^{-1}b) \in \tau, ab^{-1} \in N\}$$

is a congruence on S. Moreover, $Ker \rho(N, \tau) = N$, $tr\rho(N, \tau) = \tau$ and $\rho(Ker\rho, tr\rho) = \rho$.

M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)

THEORY OF SEMIGROUPS - II PAPER - DSE - 07 (B15)

Time: Two hours

Full Marks · 40

Notations / Symbols have their usual meanings.

Answer any four questions.

- 1. a) Define O-simple semigroups. Let S be a semigroup. Then prove that S is O-simple if and only if SaS=S, for evry $a \ne 0$ in S.
 - b) If a is an element of a semigroup S, then prove that either
 - i) Ja, the J-class containing a, is the Kernel of S, Or
 - ii) the set $I(a) = \{b \in S : J_b < J_a\}$ is non-empty and is an ideal of J(a) (= S'aS') such that J(a)/I(a) is either O-simple or null semigroup.

(1+4)+5

- 2. Define primitive idempotent of a semigroup. Define Rees Matrix semigroup over a O-group. Prove that this semigroup is completely O-simple, i.e., O-simple and has a primitive idempotent.

 1+2+7
- 3. Let S be a O-simple semigroup containing at least one O-minimal left ideal and O-minimal right ideal. Prove that

[Turn over