M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)

STOCHASTIC PROCESSES

PAPER - DSE - 07 (B26)

Time: 2 hours Full Marks: 40

Symbols / Notations have their usual meaning.

Answer any Five questions.

Each question carries 8 marks.

1. Let x and y be distinct states of a Markov Chain having 10 states and suppose that x leads to y. Let n_0 be the smallest positive integer such that $P^{n_0}(x,y) > 0$ and let $x_1, ..., x_{n_0-1}$ be states such that

$$P(x,x_1)P(x_1,x_2)...P(x_{n_0-2},x_{n_0-1})P(x_{n_0-1},y) > 0$$

- a) Show that $x, x_1, ..., x_{n_0-1}, y$ are distinct states.
- b) Use (a) to show that $n_0 \le 9$.
- c) Conclude that $P_x(T_y \le 9) > 0$.
- 2. Verify the following identities:

a)
$$P_x(T_y \le n+1) = P(x,y) + \sum_{x \ne y} P(x,z) P_z(T_y \le n), \ n \ge 0$$
;

b)
$$\rho_{xy} = P(x, y) + \sum_{z \neq y} P(x, z) \rho_{zy}.$$

3. Consider a Markov chain having state space {0, 1, ..., 6} and transition matrix:

[Turn over

- a) Determine which states are transient and which states are recurrent.
- b) Find ρ_{0y} , y = 0,...,6.
- 4. Consider a gambler's ruin chain on $\{0, 1, ..., d\}$. Find $P_x(T_0 < T_d)$, 0 < x < d.
- 5. Consider a Markov chain on the non-negative integers having transition function P given by P(x,x+1) = p and P(x,0) = 1 p, where $0 . Show that this chain has a unique stationary distribution <math>\pi$ and find π .
- 6. Consider an irreducible Markov chain having finite state space \mathcal{L} , transition function P such that P(x,x)=0, $x \in \mathcal{L}$ and stationary distribution π . Let p_x , $x \in \mathcal{L}$, be such that $0 < p_x < 1$ and let Q(x,y), $x \in \mathcal{L}$ and $y \in \mathcal{L}$ be defined by

$$Q(x,x)=1-p_x$$

and

$$Q(x,y) = p_x P(x,y), y \neq x$$

Show that Q is the transition function of an irreducible Markov chain having state space \mathcal{L} and stationary distribution π' , defined by

$$\pi'(x) = \frac{p_x^{-1}\pi(x)}{\sum_{y \in \mathcal{L}} P_y^{-1}\pi(y)}, x \in \mathcal{L}$$

Interpret the chain with transition function Q.