Ex/SC/MATH/PG/DSE/TH/05B/2022

M. Sc. MATHEMATICS EXAMINATION, 2022

(2nd Year, 2nd Semester)

ADVANCED FUNCTIONAL ANALYSIS

PAPER – DSE-05 (UNIT 4.1)

Time : Two hours

Full Marks : 40

Answer should be brief and clear.

Notations have their usual meaning.

Answer Any Four questions.

 $10 \times 4 = 40$

- 1. Let *X* be a topological vector space. Prove the following statements.
 - i) If $A \subseteq X$ is compact and $B \subseteq X$ is closed, show that A+B is closed in X. 4+3
 - ii) Show that a subset $E \subseteq X$ is bounded if and only if every countable subset of *E* is bounded. 3
- 2. Let X and Y be two topological vector spaces over \mathbb{R} and let $T: X \to Y$ be \mathbb{R} -linear map. Let $K \subseteq X$ be a closed \mathbb{R} -linear subspace of X. If T(x) = 0, $\forall x \in K$, show that there exists a unique \mathbb{R} -linear map $\tilde{T}: X/K \to Y$ such that $\tilde{T} \circ \pi = T$, where $\pi: X \to X/K$ is the quotient map defined by sending a point $x \in X$ to its left coset $x+K \in X/K$. Deduce that \tilde{T} is continuous if and only if T is continuous, and also that \tilde{T} is open if and only if T is open. 4+3+3

[Turn over

- 3. Let X and Y be two topological vector spaces over \mathbb{R} with $\dim_{\mathbb{R}} (Y) < \infty$ Let $T: X \to Y$ be a surjective \mathbb{R} -linear map. Prove that T is an open map. If $\ker(T): T^{-1}(0)$ is closed in X, show that T is continuous. 5+5
- 4. Let V be an open neighbourhood of 0 in a topological vector space X. Let X^{*} be the dual space of X. If $K := \{ f \in X^* : |f(x)| \le 1, \forall x \in V \}$, show that K is weak *-compact. 10
- 5. Let A be a convex absorbing subset of a \mathbb{C} -vector space X. For each $x \in X$, let

$$\mu_A(x) := \inf \left\{ t \in \mathbb{R} : t > 0 \text{ and } x / t \in A \right\}.$$

Show that

- i) $\mu_A(x+y) \le \mu_A(x) + \mu_A(y), \forall x, y \in X$, 2
- ii) $\mu_A(tx) = t\mu_A(x), \forall t > 0 \text{ in } \mathbb{R}$, 3

2

- iii) μ_A is a seminorm if A is balanced,
- iv) if $B = \{x \in X : \mu_A(x) < 1\}$ and $C = \{x \in X : \mu_A(x) \le 1\}$, then $B \subseteq A \subseteq C$ and $\mu_B = \mu_A = \mu_C$.
- 6. Let *B* be a closed unit ball in a normed linear space X. Let X^* be the dual space of X. For each $x^* \in X^*$, we define $||x^*|| := \sup\{|\langle x, x^* \rangle| : x \in B\}$. Prove the following:

- [3]
- i) The above definition of $||x^*||$ makes X^{*} a Banach space. 3
- ii) If B^* is the closed unit ball in X^* , for each $x \in X$, $||x|| = \sup\{|\langle x, x^* \rangle | : x^* \in B^*\}.$

Consequently, the map $x^* \rightarrow \langle x, x^* \rangle$ is a bounded linear functional on X^{*} of norm equal to ||x||. 4

iii) B* is weak *-compact. 3