Ex/SC/MATH/PG/CORE/TH/09/2022

M. Sc. Mathematics Examination, 2022

(1st Year, 2nd Semester)
Ordinary Differential Equations and Special Functions

Paper - Core-09
Time : Two Hours
Full Marks : 40

Use a separate answer script for each Part.

Symbols / Notations have their usual meanings.

Part - I (20 Marks)

Answer any four questions.

1. Find the Green's function of the boundary value problem $\frac{d^{2} y}{d x^{2}}+\alpha^{2} y=f(x), 0 \leq x \leq a$ subject to the boundary conditions: $y(0)=0$ and $y^{\prime}(a)=0$
2. Let $G(x, \xi)$ be the Green's function of the second order ordinary differential equation $L y=f(x)$ in $[0, a]$ subject to $h_{1} y(0)+h_{2} y^{\prime}(0)=0$ with $h_{1}^{2}+h_{2}^{2} \neq 0$ and $H_{1} y(a)+H_{2} y^{\prime}(a)=0$ with $H_{1}^{2}+H_{2}^{2} \neq 0$.

If L is self-adjoint, then prove that $G(x, \xi)=G(\xi, x)$.
3. a) Show that the Legendre equation of order n is self adjoint.
b) Let $L=a_{0}(x) \frac{d^{2}}{d x^{2}}+a_{1}(x) \frac{d}{d x}+a_{2}(x)$. Find $\quad \mathrm{a}$
function $\mu=\mu(x)$ such that the operator μL is selfadjoint.
$2+3$
4. Let f be a solution of the ODE

$$
\frac{d}{d t}\left[P(t) \frac{d x}{d t}\right]+Q(t) x=0
$$

on $a \leq t \leq b$. If f has an infinite number of zeros on $a \leq t \leq b$, then prove that $f(t)=0$ for all $t \in[a, b]$.
5. Find the series solution of the ordinary differential equation

$$
z^{4} w^{\prime \prime}+2 z^{3} w^{\prime}+w=0 \text { at } z=\infty .
$$

6. Prove the following Rodrigue's formula for $P_{n}(z)$:

$$
P_{n}(z)=\frac{1}{2^{n} n!\frac{d^{n}}{d z^{n}}\left(z^{2}-1\right)^{n} . . . ~}
$$

Part - II (20 Marks)

Answer any two questions.

1. Show that the necessary conditions for the point $z=z_{0}$ to be a regular singular point of the differential equation $\frac{d^{2} w}{d z^{2}}=p_{1}(z) \frac{d w}{d z}+p_{2}(z) w$ are that $p_{1}(z)$ and $p_{2}(z)$ should have poles of order not higher than 1 and 2 respectively at point $z=z_{0}$.
2. Show that Bessel's equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-n^{2}\right) w=0
$$

has contour integral solutions of the form

$$
\begin{aligned}
H_{\lambda}^{(1)}(z) & =\frac{1}{\pi} \int_{L_{1}} e^{-i z \sin \zeta+i \lambda \zeta} d \zeta \\
H_{\lambda}^{(1)}(z) & =-\frac{1}{\pi} \int_{L_{2}} e^{-i z \sin \zeta+i \lambda \zeta} d \zeta
\end{aligned}
$$

for $\operatorname{Re}(z)>0$ and L_{1}, L_{2} are two contours to be defined by you.
3. Answer either (a) $\mathbf{O r}$ (b)
a) Find the general form of an ordinary differential equation of second order with only three singularities (all regular) at $z=a, b, c$ with $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}$ exponents respectively. 10
b) Find a contour integral solution of

$$
z(1-z) \frac{d^{2} w}{d z^{2}}+\{\gamma-(\alpha+\beta+1) z\} \frac{d w}{d z}-\alpha \beta w=0
$$

in the form

$$
w=\int_{\Gamma}(t-z)^{-\alpha} t^{\alpha-\gamma}(t-1)^{\gamma-\beta-1} d t
$$

where Γ is a closed contour to be defined by you.

