Ex/SC/MATH/PG/CORE/TH/08/2022

M. Sc. Mathematics Examination, 2022

(1st Year, 2nd Semester)

FUNCTIONAL ANALYSIS

Paper - Core-08

Time: Two Hours

Full Marks: 40

Use a separate answer script for each Part.

Symbols / Notations have their usual meanings.

Part – I (20 Marks)

Answer *any four* questions.

 $4 \times 5 = 20$

- 1. a) Let X be a normed linear space. If the unit sphere $\{x \in X : ||x|| = 1\}$ is compact in X, then prove that X is finite dimensional.
 - b) Let X be a Banach space under two norms $\|\cdot\|_1$ and $\|\cdot\|_2$. Prove that if there exists $\alpha > 0$ such that $\|x\|_1 \le \alpha \|x\|_2$ for all $x \in X$, then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.
- 2. a) Let X and Y be normed linear spaces. If Y is a Banach space, then prove that B(X,Y) is a Banach space.

3

b) Let X be a Banach space and B(X) be the space of all bounded linear operators on X. For $A \in B(X)$, let

$$\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

[Turn over

Show that the series defining $\exp(A)$ is convergent in B(X).

- 3. State and prove uniform boundedness principle. 5
- 4. Show that even a discontinuous linear map can have a closed graph. Does this contradict the closed graph theorem?
- 5. Let X_0 be a closed subspace of a normed linear space X. Prove that if $a \in X \setminus X_0$, then there exists $f \in X'$ such that f(x) = 0 for all $x \in X_0$ and $f(a) = \operatorname{dist}(a, X_0)$, $\|f\| = 1$.

Hence deduce that if x is a nonzero element in a normed linear space X, then there exists a bounded linear functional f on X such that f(x) = ||x||, ||f|| = 1.

6. Suppose that the dual X' of a normed linear space X is separable. Show that X is separable.

Part – II (20 Marks)

Answer *any four* of the followings : $4 \times 5 = 20$

- 2. i) Prove that if M and N are closed subspaces of a Hilbert space H such that $M \perp N$, then the subspace M+N is closed.

- ii) Construct an orthonormal sequence in $L_2[0, 2\pi]$.
- 3. State and prove Bessel's inequality for a Hilbert space H. When the inequality will turn to equality? Justify. What is the name of the equality?

 3+2
- 4. i) Prove that a continuous linear operator T on a Hilbert space H is self adjoint if and only if $\langle Tx, x \rangle$ is real, $\forall x \in H$.
 - ii) Define normal operator on a Hilbert space. Give an example of a normal operator which is not selfadjoint.
- 5. i) If T is normal operator on a Hilbert space H, then prove that $Tx = \lambda x$ if and only if $T^*x = \overline{\lambda}x$ for $(\theta \neq)x \in H$ and λ is a scalar.
 - ii) For a linear operator T on a Hilbert space H prove that $T^{**} = T$.
- 6. i) If T is a continuous linear operator on a Hilbert space H, then prove that T can be expressed uniquely in the form T = A + iB, where A and B are self-adjoint.
 - ii) Why $l_p(p \neq 2)$ not a Hilbert space? Justify. 3+2