Ex/SC/MATH/PG/CORE/TH/07/2022
M. Sc. Mathematics Examination, 2022
(1st Year, 2nd Semester)
Complex Analysis and Partial Differential Equations
Paper - Core-07
Time : Two Hours
Full Marks : 40

Use a separate answer script for each Part.

Symbols / Notations have their usual meanings.

> Part - I
> (Complex Analysis)
> $(20$ Marks)

Answer any four questions.

$$
4 \times 5=20
$$

1. Let $w=f(z)=\left(z^{2}+1\right)^{1 / 2}$. (i) Show that $z= \pm i$ are branch points of $f(z)$. (ii) Show that a complete circuit around both the branch points produces no change in the branches of $f(z)$.
2. Let $f(z)$ be analytic inside and on a simple closed curve except for a finite number of poles inside C. Suppose that $f(z) \neq 0$ on C. If N and P are, respectively, the number of zeros and poles of $f(z)$ inside C, counting multiplicities. Prove that $\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} \cdot d z=N-P \quad 5$
3. State Rouchés Theorem on the number of zeros of two analytic functions f and g inside a simple closed curve C. If $a>e$, use Rouche's Theorem to prove that the equation $e^{z}=a z^{n}$ has n roots inside the circle $|z|=1$.

$$
1+4=5
$$

4. Suppose that f is analytic inside and on a simple close curve C. Prove that the maximum value of $|f(z)|$ occurs on C, unless f is a constant.

5
5. State Cauchy's Residue Theorem. Using this theorem, show that the trigonometric integral $\int_{0}^{2 \pi} \frac{d \theta}{1+3 \cos ^{2} \theta}=\pi$.

$$
1+4=5
$$

6. i) Define Conformal mapping. Show that the function $f(z)=z^{2}$ is not conformal at $z=0$.
$1+1$
ii) Define Bilinear transformation. Find the Bilinear transformation which maps the points $z_{1}=2, z_{2}=i$ and $z_{3}=-2$ into the points $w_{1}=1, w_{2}=i$ and $w_{3}=-1$.

Part - II

(Partial Differential Equations)

(20 Marks)
Answer any two questions.

$$
2 \times 10=20
$$

1. a) Without solving the initial boundary value problem

$$
u_{t}=4 u_{x x}, \text { for } 0 \leq x \leq 1, t \geq 0
$$

subject to

$$
u(0, t)=u(2, t)=0 \text { for } t \geq 0
$$

and $u(x, 0)=4 x^{3}-5 x^{2}+x$ for $0 \leq x \leq 1$,
find the numerical bounds on $u(x, t)$.
b) Derive the Cauchy integral solution of the initial value problem

$$
\begin{equation*}
\theta_{t}=\theta_{x x},-\infty<x<\infty, t \geq 0 \tag{6}
\end{equation*}
$$

subject to $\theta(x, 0)=f(x)$.
2. Solve the boundary value problem

$$
\nabla^{2} u=0,0 \leq r \leq 10,0 \leq \theta \leq \pi
$$

subject to

$$
\begin{aligned}
& u(10, \theta)=\frac{400}{\pi}\left(\pi \theta-\theta^{2}\right), 0 \leq \theta \leq \pi \\
& u(r, 0)=0=u(r, \pi), 0 \leq r \leq 10
\end{aligned}
$$

3. a) Derive d'Alembert solution of Cauchy problem given by $u_{t t}-c^{2} u_{x x}=0,-\infty<x<\infty, t \geq 0$, together with $u(x, 0)=f(x), u_{t}(x, 0)=g(x),-\infty<x<\infty$.
Explain why the solution is called a travelling wave solution.
b) Give physical significance of the solution for $g(x)=0$ and

$$
f(x)=\left\{\begin{array}{cc}
b+x, & -b \leq x \leq 0 \\
b-x, & 0 \leq x \leq b \\
0, & x \geq b \text { or } x<-b
\end{array}\right.
$$

