Ex/SC/MATH/PG/CORE/TH/07/2022

M. Sc. Mathematics Examination, 2022

(1st Year, 2nd Semester)

COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS

Paper - Core-07

Time: Two Hours Full Marks: 40

Use a separate answer script for each Part.

Symbols / Notations have their usual meanings.

Part - I

(Complex Analysis)

(20 Marks)

Answer any four questions.

 $4 \times 5 = 20$

- 1. Let $w = f(z) = (z^2 + 1)^{1/2}$. (i) Show that $z = \pm i$ are branch points of f(z). (ii) Show that a complete circuit around both the branch points produces no change in the branches of f(z).
- 2. Let f(z) be analytic inside and on a simple closed curve except for a finite number of poles inside C. Suppose that $f(z) \neq 0$ on C. If N and P are, respectively, the number of zeros and poles of f(z) inside C, counting multiplicities. Prove that $\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \cdot dz = N P$ 5

3. State Rouché's Theorem on the number of zeros of two analytic functions f and g inside a simple closed curve C. If a > e, use Rouché's Theorem to prove that the equation $e^z = az^n$ has n roots inside the circle |z| = 1.

1+4=5

- 4. Suppose that f is analytic inside and on a simple close curve C. Prove that the maximum value of |f(z)| occurs on C, unless f is a constant.
- 5. State Cauchy's Residue Theorem. Using this theorem, show that the trigonometric integral $\int_0^{2\pi} \frac{d\theta}{1 + 3\cos^2 \theta} = \pi$. 1+4=5
- 6. i) Define Conformal mapping. Show that the function $f(z) = z^2$ is not conformal at z = 0.
 - ii) Define Bilinear transformation. Find the Bilinear transformation which maps the points $z_1 = 2$, $z_2 = i$ and $z_3 = -2$ into the points $w_1 = 1$, $w_2 = i$ and $w_3 = -1$.

Part - II

(Partial Differential Equations)

(20 Marks)

Answer *any two* questions.

 $2 \times 10 = 20$

1. a) Without solving the initial boundary value problem $u_t = 4u_{xx}$, for $0 \le x \le 1$, $t \ge 0$,

subject to

$$u(0,t) = u(2,t) = 0$$
 for $t \ge 0$
and $u(x,0) = 4x^3 - 5x^2 + x$ for $0 \le x \le 1$,
find the numerical bounds on $u(x,t)$.

b) Derive the Cauchy integral solution of the initial value problem

$$\theta_t = \theta_{xx}, -\infty < x < \infty, t \ge 0$$

subject to $\theta(x,0) = f(x)$.

2. Solve the boundary value problem

 $\nabla^2 u = 0 , \ 0 \le r \le 10 , \ 0 \le \theta \le \pi ,$ subject to

$$u(10,\theta) = \frac{400}{\pi} (\pi \theta - \theta^2), \ 0 \le \theta \le \pi$$
$$u(r,0) = 0 = u(r,\pi), \ 0 \le r \le 10.$$

- 3. a) Derive d'Alembert solution of Cauchy problem given by $u_{tt} c^2 u_{xx} = 0$, $-\infty < x < \infty$, $t \ge 0$, together with u(x,0) = f(x), $u_t(x,0) = g(x)$, $-\infty < x < \infty$. Explain why the solution is called a travelling wave solution.
 - b) Give physical significance of the solution for g(x)=0 and

$$f(x) = \begin{cases} b+x, & -b \le x \le 0 \\ b-x, & 0 \le x \le b \\ 0, & x \ge b \text{ or } x < -b \end{cases}$$