Ex/SC/CHEM/PG/CORE/TH/XVI-P/2022 # M. Sc. (CHEMISTRY) Examination, 2022 (4th Semester, CBCS) # PHYSICAL CHEMISTRY SPECIAL ### PAPER - XVI-P Time: Two hours Full Marks: 40 (20 marks for each unit) Use a separate answer script for each Unit. ## **UNIT: P-4161** - 1. For a molecule belonging to the $C_{3\nu}$ point group symmetry, a pair of functions (xz, yz) can be considered as basis functions for the irreducible representation **E** (assuming C_3 lying along z axis) Justify. - 2. Consider two states ψ_1 and ψ_2 whose functions transform according to the irreducible representation A_2 , and a transition operator which transforms according to the E representation of the point group symmetry D_3 . Examine if the $\psi_1 \leftrightarrow \psi_2$ transition is allowed. - 3. Apply projection operator technique to construct symmetry adapted π -MOs for Tetramethylene Cyclobutane taking $2p_z(C)$ orbitals as basis functions. 5 - 4. Answer *any three* of the following. 3×3 - a) Apply group theoretical approach and *Method of Inspection* to construct sp³ hybrid orbitals of a AB₄ molecule which belongs to tetrahedron point group. [Turn over - b) Discuss how the symmetry adapted orbitals of *cis* butadiene correlate with those of cyclobutene under disrotatory mode of transformation. - c) In an octahedral chemical environment, how many states are possible for a d^2 system when the crystal field strength is very high compared to the d-electron correlation? What are these states? - d) Assign the types of symmetry associated with the genuine normal modes of H₂O. Which of these modes are IR and/or Raman active? [Character Tables will be provided] ## **UNIT: P-4162** Answer all the questions. - 5. Consider a free electron gas in three dimensions and hence show that wave vector at the Fermi surface depends only on the particle concentration and not on the mass. - 6. In an electric field E and magnetic field B, the force F acting on an electron of charge -e and velocity v is: - $F = -e\left(E + \frac{1}{c}v \times B\right)$. Considering the motion of the system in a uniform magnetic field **B** derive the expressions for the components of velocity. - 7. Assuming the two-sublattice model of antiferromagnetism, derive the expression of Néel temperature T_N in terms of β and α , the interaction parameters for two unlike atoms and two like atoms, respectively. How is T_N related to θ ? - 8. Justify and draw the qualitative energy level diagrams of a p-n junction before and after equilibrium has been established, explaining all the terms involved in it. 3 - 9. Suggest a method to synthesize greenish-yellow colored NaCl crystal in the laboratory.2