Ex/SC/CHEM/PG/CORE/TH/XIII-P/2022

M. Sc. (CHEMISTRY) Examination, 2022

(4th Semester, CBCS)

PHYSICAL CHEMISTRY SPECIAL

PAPER - XIII-P

Time: Two hours Full Marks: 40

(20 marks for each unit)

Use a separate answer script for each Unit.

UNIT: P-4131

Answer any two questions.

- 1. a) Many electrons wave function written in Slater determinantal form satisfies the anti-symmetry requirement. Justify using a 3-electron system.
 - b) Apply the spin projection operator to construct spin eigen functions with $S = \frac{1}{2}$ and $M_s = \pm \frac{1}{2}$ for a 3 electrons system.
 - c) Show that for an atom with two non-interacting electrons, the two electron wave function is the product of eigen functions of two single electrons.

3+5+2

2. a) What are Slater Condon rules? Derive an expression for the energy expectation value of the wave function $\Psi = \frac{1}{\sqrt{2}} \left(\left| \overline{f_1} f_2 f_3 \right| - \left| f_1 \overline{f_2} f_3 \right| \right)$ using Slater-Condon rules.

[Turn over

- b) Write down the detail steps involved in performing Hartree Fock SCF calculations of a many electron system at a fixed geometry. 6+4
- 3. a) Using Hückel Molecular Orbital (HMO) theory, derive general expression of energy level and wave function of a cyclic conjugated polyene having N-carbon atoms (N may be odd or even).
 - b) Using HMO theory, calculate the energy levels for cyclo-propenyle radical and butadiene. 5+2+3

UNIT: P-4132

- 4. Answer *any three* questions :
 - a) Distinguish chemical potential from electrochemical potential. Derive Nernst equation based on the thermodynamic principle of equilibrium.
 - b) Define surface excess.
 - Derive $d\gamma = -q_M dV (q_m / Z_j F) d\mu_j \sum \Gamma_i d\mu_i$ for a polarizable electrode, where γ = interfacial tension and Γ_1 = surface excess for i-th type of species and all other terms bear usual significance.
 - i) How does the contact adsorption influence the capacity of the interface? Derive the necessary relation and explain.

- ii) How can the extent of contact adsorption on the surface of an electrode determined from electrocapillary measurements? 3+3
- d) i) Derive an expression of potential gradient $(d\Psi/dx)$ at a distance x from an electrode structured as Gouy-Chapman double layer.
 - ii) Using the above equation, show that the double layer is theoretically extended up to infinity.

4.5 + 1.5

5. Explain with necessary diagram the mechanisms of action of photovoltaic or photosynthetic cell.