[4]

- b) With a proper use of the radioactive equilibrium and the aspect of transformation of a target nucleus on being struck by a projectile (say a neutron) show $N_2 = N_1 \sigma f t$ where, symbols have their usual meaning.
- c) With a suitable graphical reprsentation discuss "Fricke dosimetry".
- d) With a suitable example explain radiometric titration when *either* the titrant is radiolabelled *or*, the indicator used is radiolabelled.

Ex/SC/CHEM/PG/CORE/TH/XV-A/2022

M. Sc. (CHEMISTRY) Examination, 2022

(4th Semester, CBCS)

ANALYTICAL CHEMISTRY SPECIAL

PAPER - XV-A

Time: Two hours

(20 marks for each unit)

Use a separate answer script for each Unit.

UNIT: A-4151

1. Answer *any five* questions :

 5×2

Full Marks: 40

- a) Phenol shows higher acidity at excited state while 2-hydroxybenzaldehyde does not with reference to the ground state. Explain.
- b) What happens upon irradiation of light to a mixture of methylene blue and Mohr's salt in dilute sulfuric acid medium? Explain your response.
- c) $T_1 + \Delta \rightarrow S_1$; $S_1 \rightarrow S_0 + hv$ Account on the feasibility of such reactions and explain with a suitable example.
- d) Irradiation of a hexane solution of 4-N, N'-Dimethylbenzonitrile (DMBN) shows emission at <400 nm while tetrahydrofuran solution of DMBN shows broad high intense longer wavelength (>550 nm) emission band. Explain this observation.

[Turn over

- e) Account on the quenching mechanism at different concentration of Quencher [Q] added to the solution of flurophore. Also determine Φ_F^0/Φ_F^Q (where Φ_F^0 refers to absence of Quencher and Φ_F^Q refers to presence of Quencher).
- f) Discuss the effect of concentration of Pyrene on the nature and energy of fluorescence spectra in methanol.
- g) Account on the effect of metal ions (M^{n+}) on the fluorescence process of a Fluorogenic ligand. Considering M^{n+} is a transition metal ion.
- h) "Photodecomposition is sometimes observed at a lower energy than that of the chemical dissociation energy." Explain with quantum mechanical reasons.

2. Write Notes on (any *Two*): 2×3

- Use of fluorescence technique for quality control of food products.
- b) Draw a schematic line diagram of a Spectrofluorometer and explain every part. Why are two monochromators placed perpendicularly?
- c) Design a molecule for FRET and mention its advantages.

- 3. a) How is X-ray fluorescence useful for element detection?
 - c) "Although Cr(III) is paramagentic, [Cr(NH₃)₆]³⁺ is eligible for photo-assisted aquation reaction." Explain.

UNIT: A-4152

- 3. a) How are crystalline water and coordinated water distinguished by TGA? Give an example of TGA of "Blue vitriol" from ambient temperature to 300°C and comment on the different types of water molecules present in the structure.
 - b) What is a null point balance? How does it work in a thermo-gravimetric instrument? 1+2
 - c) What is power compensation DSC? How does it differ from heat flux DSC? Give a line diagram of the instrument, power compensation DSC mentioning all components.
- 4. Discuss the working of an organic scintillator explaining the principle involved in detail.
- 5. Answer *any two* questions :
 - a) Describe the principle behind functioning of any "gas ionization detector".

 3×2