M. Sc. (CHEMISTRY) Examination, 2022

(2nd Semester, CBCS)

ORGANIC CHEMISTRY

Paper - VI

Time: Two hours Full Marks: 40

Use a separate answer script for each Unit.

<u>UNIT - 2061</u>

1. Answer *any two*:

- $2\frac{1}{2} + 2\frac{1}{2}$
- a) Under photochemical condition, 4n electronic systems follow disrotatory electrocyclic ring closure. Justify the statement by constructing the appropriate correlation diagram.
- b) Give possible mechanism for the following reaction.

c) Write down the product of the following reaction with probable mechanism.

2. Answer any one:

a) In dissociation of benzoic acid, the value of reaction constant has been observed to change with changing the solvent of the reaction medium as below. Justify this observation.

2

 $1\frac{1}{2} + 1\frac{1}{2}$

i)
$$XC_6H_4COOH \rightleftharpoons XC_6H_4COO^{\Theta} + H^{\Theta}$$

 $(H_2O, 25^{\circ}C) \rightarrow \rho = 1.00$

ii)
$$XC_6H_4COOH \rightleftharpoons XC_6H_4COO^{\oplus} + H^{\oplus}$$

(50% aq. EtOH, 25°C) $\rightarrow \rho = 1.60$

iii)
$$XC_6H_4COOH \rightleftharpoons XC_6H_4COO^{\oplus} + H^{\oplus}$$

 $(EtOH, 25^{\circ}C) \rightarrow \rho = 1.96$

b) Why do NH_2 and NMe_2 show negative σ_m values? Explain.

3. Answer *all* the questions :

a) During NaH mediated ethylation of the following imine the product selectivity varies with the variation of ethylating agents as shown below:

Explain the reason of such selectivity.

- Predict the major product(s) formed by the catalytic hydrogenation (H₂-Pt) of 1-phenylpropane-1, 2-dione in presence of methylamine in mehanol. Discuss the stereochemical control involved. $1\frac{1}{2}$
- f) Identify the product(s) formed when the following enantiomerically pure molecule **C** is heated with sodium ethoxide in ethanol (mechanism is not required). Draw that conformation of **C** through which the reaction actually proceeds.

b) Carry out the following transformation. Mechanistically explain role of all the reagents used in the first step. $1\frac{1}{2}$

$$\begin{array}{c|c} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\$$

c) What happens when the following molecule **B** is treated with alkaline hydrogen peroxide? Propose plausible mechanism to explain your answer. $1\frac{1}{2}$

d) How do you accomplish the following transformations?

$$i) \qquad \qquad \begin{array}{c} 1\frac{1}{2}+1 \\ \hline \\ COOH \\ \end{array}$$

- b) Cite a reaction which shows negative reaction constant (ρ) . Explain the reason of negative value of ρ .
- 4. a) Predict the product(s) of the following reaction and explain with probable mechanism (answer any *three*).

OCOCH₃

- b) Answer *any two* of the following questions: 2×2
 - i) How can you prepare DIBAL-H? Discuss with mechanism the role of solvent in the reduction of an ester (A) with DIBAL-H.

- ii) What is the importance of photosensitizer in photochemistry? What criteria should be fulfilled by a compound to become sensitizer? Explain with an example.
- iii) Predict the product of the following reaction and explain with probable mechanism.

$$\begin{array}{ccc}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

UNIT - 2062

5. a) Which one of the following compounds is a stronger base and why? $1\frac{1}{2}$

b) Accomplish the following transformation through temporary construction of a heterocyclic intermediate. Highlight the mechanistic feature of the salient step.

2+2

$$H_2N$$
 COOH \longrightarrow NHCOPH COOH

c) Design the schemes for the syntheses of the following compounds from non-heterocyclic precursors (only mention the steps with reagents, no mechanism is needed). $3+1\frac{1}{2}$

i)
$$NH_2$$
 NH_2 NH_2

6. a) Given below are the chemical shift values of the underlined methyl and methylene protons of two isomers having gross structure

$$(CH_3)_2 C = CHCH_2 CH_2 C(CH_3) = CHCHO$$

Isomer	¹ H-NMR Chemical Shifts	
	CH ₃	CH ₂
I	δ 1.98	δ 2.58
II	δ 2·16	δ 2·24

Predict the structures of isomer I and II with appropriate justification.

2

[Turn over