## Ref. No.: Ex/SC/PHY/UG/CORE/TH/13/2022(S) B.SC. PHYSICS THIRD YEAR SECOND SEMESTER SUPPLEMENTARY EXAM - 2022

Subject: ELECTROMAGNETIC THEORY

Time: 2 Hours Full Marks: 40

Answer any four questions. Symbols used have their usual meanings.

1. (a) A cylindrical thick wire of radius a carries a steady current I which is uniformly distributed over its cross-section. A narrow gap of width  $w \ll a$  is created in the wire to form a parallel plate capacitor as shown in figure below.



- (i) Find out the displacement current density.
- (ii) Find the magnetic field inside the gap.
- (b) Discuss about the importance of Maxwell's modification to Ampere's law.
- (c) Write down the Poynting's theorem.

(2+3)+3+2

- 2. (a) Find out the expression for energy density and intensity of an electromagnetic wave propagating in 'free space'. Will they remain same if the space is filled by a dielectric medium of dielectric constant  $\epsilon$ ? Explain.
  - (b) Show that the skin depth in a poor conductor is independent of the frequency of electromagnetic wave. (4+2)+4
- 3. (a) What are p-polarisation and s-polarisation? By suitable diagram, explain the difference between them.
  - (b) A p-polarised wave is incident on the interface of two non-magnetic dielectrics of refractive indices  $n_1$  and  $n_2$ . If the electric field of the incident beam is given by  $\vec{E}_i = \vec{E}_0 \exp[i(\vec{k_1} \cdot \vec{r} - \omega t)]$ , then write down the expressions of electric field and magnetic field vectors of incident, reflected and transmitted beams.
  - (c) Using the expressions of  $\vec{E}$  and  $\vec{B}$  for p-polarised wave, prove that the angle of reflection is equal to the angle of incidence. (2+1)+3+4
- 4. (a) For an s-polarised wave falling on the interface of two non-magnetic dielectrics, establish the expressions of reflectance and transmittance.
  - (b) The x and y components of an electric field are given by the following equations:

$$E_x = \frac{\sqrt{3}}{2}\cos(\omega t - kz);$$
  $E_y = \frac{1}{2}\cos\left(\omega t - kz + \frac{\pi}{4}\right)$   
Draw a schematic diagram of the state of polarization with proper explanation.

(c) Using the concept of dielectric tensor, explain uniaxial and biaxial crystals.

5 + 3 + 2

Turn over

- 5. (a) "When the incident light is purely p-polarized, there will be no light to reflect if the reflected and refracted rays are orthogonal" Explain.
  - (b) What is a quarter wave plate? What will be the thickness of a quarter wave plate corresponding to an incident beam of  $\lambda=5893$  Å? Given, for that crystal,  $n_o=1.65836$  and  $n_e=1.48641$ .
  - (c) Write down the differences between ordinary and extra-ordinary rays.
  - (d) An unpolarised beam enters an anisotropic crystal like calcite. What are the states of polarisation of the two emergent beams? Show them in a schematic diagram. 3 + (1 + 2) + 2 + 2
- 6. (a) Prove that TEM mode of electromagnetic wave cannot exist in a hollow wave guide.
  - (b) What is the lowest possible TE mode that can propagate in a rectangular waveguide?
  - (c) What is the basic structure of an optical fiber?

5 + 3 + 2