Ex/UG/SC/CORE/PHY/TH/08/2022
Bachelor of Science Examination, 2022
(2nd Year, 2nd Semester)
PHSYICS

[Mathematical Physics - III]

Paper - Core 08
Time : Two hours
Full Marks : 40
Use separate answer-script for each group.
Group - A
Answer any two questions:
$10 \times 2=20$

1. i) Evaluate $\int_{c}\left(z^{2}+2 z+2\right) d z$ where c is the arc of the cycloid $x=a(\theta+\sin \theta), \quad y=a(1-\cos \theta)$ between the points $(0,0)$ and $(\pi a, 2 a)$.
ii) State the relevant Cauchy Integral formula and evaluate $\mathrm{I}=\oint \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$, where the closed curve is (a) $|z|=\frac{\pi}{9}$, (b) $|z|=\frac{\pi}{6}$ and (c) $|z|=\frac{\pi}{3}$.
2. i) State and derive Laurent's series for a function $f(z)$ of complex variable.
ii) Find out the residue of the function $f(z)$ at its pole $z=z_{0}$ of order m.
3. i) State and prove Jordan's Lemma.
ii) Using contour integration and Jordan's Lemma evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{a^{2}-x^{2}} d x$.

Group - B

Answer any two questions:
$10 \times 2=20$

1. a) Given two functions f_{1} and f_{2}, their convolution g is defined by :

$$
g(x):=f_{1} * f_{2}=\int_{-\infty}^{\infty} f_{1}(y) f_{2}(x-y) d y
$$

Show that the Fourier transform \mathcal{F} for the convolution satisfies the simple product rule:

$$
\mathcal{F}[g(x)]=\mathcal{F}\left[f_{1}(x)\right] \cdot \mathcal{F}\left[f_{2}(x)\right] \times \mathrm{constant}
$$

where the "constant" factor depends on the normalization conventions chosen.
b) Suppose $\left\{\vec{X}_{1}, \vec{X}_{2}, \vec{X}_{3}, \ldots \vec{X}_{k}\right\}$ is a set of vectors in \mathbb{R}^{N}. Show that the set of vectors is linearly dependent if $k>N$.
c) Check whether $-i \frac{d}{d x}$ and $\frac{d^{2}}{d x^{2}}$ are Hermitian operators in the space of functions (on the real line) which vanish at the points $x= \pm \infty$. (Why is this vanishing condition necessary?) $4+2+4$
2. a) Let $F(s)$ denote the Laplace transform of a realvalued function $f(x)$. Then show that the formula
for the Laplace transform (\mathcal{L}) of $f^{\prime \prime}(x)$ can be written as: $\mathcal{L}\left[f^{\prime \prime}(x)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$.
b) Define an anti-Hermitian matrix. If \mathcal{H} is antiHermitian, then show that its eigenvalues are all purely imaginary or zero. Show further that the eigenvectors corresponding to distinct eigenvalues are orthogonal (to each other).
c) Find the Laplace transform of x^{n}. Establish that $\mathcal{L}\left[x^{n}\right]$ is holomorphic (analytic) for $\operatorname{Re}(s)>0$ and has a pole at $s=0$. $3+4+3$
3. a) Using techniques from the theory of Laplace transforms, solve the following system of linear differential equations.

$$
\begin{gathered}
y^{\prime}(t)-x^{\prime}(t)+y(t)+2 x(t)=e^{t} \\
y^{\prime}(t)+x^{\prime}(t)+x(t)=e^{2 t} \\
x(0)=y(0)=0
\end{gathered}
$$

b) Given the two vectors: \vec{V}_{1} and $\vec{V}_{2} \in \mathbb{R}^{2}$, check whether these may be considered as a basis for the vector space \mathbb{R}^{2}.

$$
\vec{V}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \vec{V}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

If not then, using the Gram-Schmidt process, construct from these an orthonormal set of basis vectors for \mathbb{R}^{2}.

