Ex/UG/SC/CORE/PHY/TH/08/2022

BACHELOR OF SCIENCE EXAMINATION, 2022

(2nd Year, 2nd Semester)

PHSYICS

[MATHEMATICAL PHYSICS - III]

PAPER – CORE 08

Time : Two hours

Full Marks : 40

Use separate answer-script for each group.

Group – A

Answer any two questions:

10×2=20

1. i) Evaluate $\int_c (z^2 + 2z + 2) dz$ where *c* is the arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ between the points (0, 0) and $(\pi a, 2a)$.

ii) State the relevant Cauchy Integral formula and evaluate I = $\oint \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$, where the closed curve

is (a)
$$|z| = \frac{\pi}{9}$$
, (b) $|z| = \frac{\pi}{6}$ and (c) $|z| = \frac{\pi}{3}$. 6

2. i) State and derive Laurent's series for a function f(z) of complex variable. 6

- ii) Find out the residue of the function f(z) at its pole $z = z_0$ of order *m*. 4
- 3. i) State and prove Jordan's Lemma. 4

[Turn over

Using contour integration and Jordan's Lemma ii)

evaluate
$$\int_{-\infty}^{\infty} \frac{\cos x}{a^2 - x^2} dx$$
. 6

 $10 \times 2 = 20$

Group – B

Answer any two questions:

1. a) Given two functions f_1 and f_2 , their convolution g is defined by :

$$g(x) := f_1 * f_2 = \int_{-\infty}^{\infty} f_1(y) f_2(x-y) dy$$

Show that the Fourier transform \mathcal{F} for the convolution satisfies the simple product rule:

 $\mathcal{F}[g(x)] = \mathcal{F}[f_1(x)] \cdot \mathcal{F}[f_2(x)] \times \text{constant}$

where the "constant" factor depends on the normalization conventions chosen.

- b) Suppose $\{\vec{X}_1, \vec{X}_2, \vec{X}_3, ..., \vec{X}_k\}$ is a set of vectors in \mathbb{R}^N . Show that the set of vectors is linearly dependent if k > N.
- c) Check whether $-i\frac{d}{dr}$ and $\frac{d^2}{dr^2}$ are Hermitian operators in the space of functions (on the real line) which vanish at the points $x = \pm \infty$. (Why is this vanishing condition necessary?) 4 + 2 + 4
- 2. a) Let F(s) denote the Laplace transform of a realvalued function f(x). Then show that the formula

for the Laplace transform (\mathcal{L}) of f''(x) can be written as: $\mathcal{L}[f''(x)] = s^2 F(s) - sf(0) - f'(0)$.

- b) Define an anti-Hermitian matrix. If \mathcal{H} is anti-Hermitian, then show that its eigenvalues are all purely imaginary or zero. Show further that the eigenvectors corresponding to distinct eigenvalues are orthogonal (to each other).
- Find the Laplace transform of x^n . Establish that c) $\mathcal{L}[x^n]$ is holomorphic (analytic) for $\operatorname{Re}(s) > 0$ and has a pole at s = 0. 3+4+3
- Using techniques from the theory of Laplace 3. a) transforms, solve the following system of linear differential equations.

$$y'(t) - x'(t) + y(t) + 2x(t) = e^{t}$$
$$y'(t) + x'(t) + x(t) = e^{2t}$$
$$x(0) = y(0) = 0$$

b) Given the two vectors: $\vec{V_1}$ and $\vec{V_2} \in \mathbb{R}^2$, check whether these may be considered as a basis for the vector space \mathbb{R}^2 .

$$\vec{V}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{V}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

If not then, using the Gram-Schmidt process, construct from these an orthonormal set of basis vectors for \mathbb{R}^2 . 5 + 5