$\exists \mathbf{v}$	121	7/1	\mathbf{p}	IV	/Τ	IG	1/0	ore	/TI	$\mathbf{I}/$	09	/20	12	
111	.,,,	-//			•	, ,	I/ 🕻 .		, , ,	1/	v .	/ _ \	1 _	. Z

BACHELOR OF SCIENCE EXAMINATION, 2022

(2nd Year, 2nd Semester)

PHSYICS

[ELEMENTS OF MODERN PHYSICS]

Paper - Core 09

Time: Two hours Full Marks: 40

Answer any four questions.

- 1. a) What is de Broglie's hypothesis of wave-particle duality?
 - b) Discuss in brief how the Davisson-Germer experiment could establish the wave-particle duality.
 - c) An electron has a de Broglie wavelength equal to that of a photon. Show that the corresponding kinetic energy of the electron is: $\left(m^2c^4 + h^2v^2\right)^{1/2} mc^2$. (2+5)+3
- 2. a) Explain using the uncertainty principle why electrons cannot reside within the nucleus.
 - b) Examine whether the following operator: $\hat{L}f(x) = f(x) + x^2$ is linear or not.
 - c) Evaluate the commutator: [x, p] in momentum representation. 4+3+3
- 3. a) Prove that Hermitian operators have orthogonal eigenfunctions.

[Turn over

- b) Prove that the operator: $i\frac{d}{dx}$ is Hermitian.
- c) Calculate the expectation values of position $\langle x \rangle$ and momentum $\langle p_x \rangle$ of a particle trapped in a one-dimensional infinite well of width, a and hence comment on the results. 3+3+(2+2)
- 4. a) How do you explain the nuclear spin and parity of nuclei?
 - b) Draw the N-Z plot and hence explain the stability of nucleus.
 - c) How do you interpret the nuclear fission and fusions from the binding energy per nucleon curve?
 - d) The binding energy per nucleon for C^{12} is 7.68 MeV and that for C^{13} is 7.47 MeV. Calculate the energy required to remove a neutron from C^{13} . 2+2+3+3
- 5. a) State and explain Geiger-Nuttal law.
 - b) Explain why classical physics fails to explain α -decay. What are the basic notions of the quantum mechanical theory of α -decay?
 - c) A sample of Radium-E contains 4.0 mg. If the half-life is 5.0 days and the average energy of the β particles emitted is 0.34 MeV, at what rate in watts does the sample emit energy?

- d) What do you understand by electron-positron pair production? 3+2+3+2
- a) Discuss about the spin and magnetic moment of neutron.
 - b) Why do very light atoms reduce the energy of neutrons more than heavy atoms do?
 - c) Why is it possible to produce fission of U^{235} with slow neutrons whereas it is necessary to use fast neutrons to produce fission of U^{238} ?
 - d) Show that the mass of Ra²²⁶ (half-life 1600 years) with an activity 1 Currie is almost 1 gm. 3+2+2+3