5. a) Find V_0 in circuit shown in figure below.

b) Find the closed loop gain of the inverting op-amp circuit provided below when open loop gain is (i) 100 and (ii) 100000. Give your comment.

^{5 + 5}

- 6. a) Write down the rule of op-amp in open loop configuration.
 - b) Draw the circuit diagram and explain the operating principle of a zero cross detector.
 - c) Draw circuit diagram of a square wave oscillator.
 - d) For a 8 bit ADC, reference voltage is 5 V. What will be the output bit pattern if $V_{in} = 4V$. 2+3+2+3

Ex/SC/PHY/UG/CORE/TH/10/2022

BACHELOR OF SCIENCE EXAMINATION, 2022

(2nd Year, 2nd Semester)

PHSYICS

[ANALOG SYSTEMS AND APPLICATIONS]

PAPER – CORE 10

Time : Two hours

Full Marks : 40

Answer any four questions.

Each question carries equal mark.

- a) Why the band energy positions of p-type Silicon is higher than n-type Silicon?
 - b) How the barrier potential depends on junction temperature?
 - c) Calculate the ripple factor of full wave and half wave rectifier.
 - d) Find the voltage (V_Q) and current (I_D) in the network shown in the Figure.

2+2+3+3 [Turn over

- 2. a) What is the reason of making base layer thin for a BJT?
 - b) Transistor amplifies a signal does it violate energy conservation principle? Justify your answer.
 - c) In Emitter Bias configuration, how stability of biasing is improved compared to Fixed Bias configuration?
 - d) For the transistor amplifier shown in the Figure below, $R_1 = 10 \text{ k}\Omega$, $R_2 = 5 \text{ k}\Omega$, $R_C = 1 \text{ k}\Omega$, $R_E = 2 \text{ k}\Omega$ and $R_L = 1 \text{ k}\Omega$.

Draw d.c. load and determine the operating point

- 3. a) Explain the difference in working principle of Light Emitting Diode (LED) and Photodiode?
 - b) Design a circuit to get the following output from the given input.

<u>Output</u>

- c) In Oscillator although there is no supply of continuous ac signal in the input, how will we get the ac signal in the output?
- d) What is Barkhausen criterion for oscillation?
- e) For an oscillator, calculate the resonance frequency of a LC tank circuit. $1\frac{1}{2}+2\frac{1}{2}+2+2+2$
- a) Draw circuit diagram of a differential amplifier working in common mode configuration. Draw its suitable equivalent r_e model circuit and calculate the gain of circuit.
 - b) Explain the virtual ground concept of operational amplifier (op-amp). 7+3

[Turn over