Ex/SC/MATH/UG/DSE/TH/04/A/2022
B. Sc. Mathematics (Hons.) Examination, 2022
(3rd Year, 2nd Semester)
Combinatorics \& Graph Theory
Paper - DSE-4A
Time : Two hours
Full Marks : 40
(Symbols have usual meanings, if not mentioned otherwise)

Part - I (20 marks)

Attempt any Two questions from this part :

1. a) Show that every self-complementary graph has $4 n$ or $4 n+1$ points where n is a positive integer.
b) Define n-cube. Find the number of points and lines in an n-cube.
$5+5=10$
2. a) Prove that a graph G is unicyclic if and only if $G-x$ is a tree for some edge x of G.
b) Prove that there always exists a graph G such that $\kappa(G)=a, \lambda(G)=b$ and $\delta(G)=c$ where a, b, c are integers with $0<a \leq b \leq c . \quad 5+5=10$
3. a) Prove that a planar graph can not be a 6 -connected graph.
b) Prove that every hamiltonian graph is 2-connected and every nonhamiltonian 2-connected graph has a theta subgraph. $\quad 5+5=10$

Part - II (20 marks)

Attempt Question 4 and any Two from the rest.
4. a) Given the function

$$
T(w, x, y, z)=\sum(1,2,3,5,13)+\sum_{\phi}(6,7,8,9,11,15):
$$

i) Find a minimal sum-of-products expression.
ii) Find a minimal product-of-sums expression.
iii) Compare the expressions obtained in (a) and (b); if they do not represent identical functions, explain.
b) Let $\left(A, \vee, \wedge,^{\prime}\right)$ be a finite boolean algebra. Let b be any nonzero element in A, and $a_{1}, a_{2}, \ldots, a_{k}$ be all the atoms of A such that $a_{i} \leq b$. Prove that $b=a_{1} \vee a_{2} \vee \ldots \vee a_{k}$ is the unique way to represent b as a join of atoms.

$$
6+4=10
$$

5. State the pigeonhole principle in an appropriate form to show the following. Suppose 50 chairs are arranged in a rectangular array of 5 rows and 10 columns. 41 students are seated on the chairs randomly one per chair. Using the above statement, show that some row contains at least 9 students, some column contains at least 5 students, some row contains at most 8 students and some column contains at most 4 students.
6. Solve the recurrence relation
$a_{n}-6 a_{n-1}+8 a_{n-1}=n 4^{n}+3^{n}$.
7. Let a_{r} denote the number of ways to divide r identical balls into four distinct urns so that each urn has an odd number of balls that is larger than or equal to three.
a) Determine the generating function $A(z)$.
b) Determine a closed-form expression for a_{r}.
