commutative, has identity as well as inverse for functions f with $f(1) \neq 0$. Also prove that the Möbius function μ has Dirichlet inverse.
ii) Using the results of (i), establish the Möbius inversion formula.

3+2
6. i) Determine all the primitive Pythagorean triples i.e., the positive solutions of $x^{2}+y^{2}=z^{2}$.
ii) If $2^{n}+1$ is an odd prime for some integer $n \geq 1$ then prove that n is a power of 2 .
$4+1$

B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)

Number Theory
 Paper - DSE-3A

Time : Two hours
Full Marks : 40
Use separate answer script for each Part.
Unexplained Symbols / Notations have their usual meaning.
The figures in the margin indicate full marks.

Part - I (marks : 20)

Answer any Five questions.
Each question carries four marks.

1. Determine all solutions in the positive integer of the following Diophantine equation: $18 x+5 y=48$
2. Let a and b be integers, not both zero. Then show that a and b are relatively prime if and only if there exist integers x and y such that $1=a x+b y$.
3. Prove that there are infinite number of primes.
4. Solve the following problem: $x \equiv 5(\bmod 6), x \equiv 4(\bmod 11), x \equiv 3(\bmod 17)$.
5. From Fermat's theorem deduce that, for any integer $n \geq 10,11^{12 n+6}+1$ is divisible by 13 .
6. i) For $n>2$, prove that $\phi(n)$ is an even integer.
ii) Show that $2^{20}-1$ is divisible by 41 .
7. If the integer $n>1$ has prime factorization $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$, then show that

$$
\begin{aligned}
\phi(n)=\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right)\left(p_{2}^{k_{2}}\right. & \left.-p_{2}^{k_{2}-1}\right) \ldots\left(p_{r}^{k_{r}}-p_{r}^{k_{r}-1}\right) \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{r}}\right)
\end{aligned}
$$

Hence calculate the value of $\phi(360)$.
8. If f is a multiplicative function and F is defined by $F(n)=\sum_{d \mid n} f(d)$, then show that F is also multiplicative.

Part - II

Answer any Four questions. $\quad \mathbf{5} \times \mathbf{4}=\mathbf{2 0}$

1. Suppose m is a positive integer and b is any integer such that $(b, m)=1$.
i) Prove that b is a primitive root modulo m if and only if $b, b^{2}, \ldots ., b^{\phi(m)}$ form a reduced residue system modulo m.
ii) 2 is a primitive root modulo 13. Reducing to an equivalent linear congruence check whether the congruence $4 x^{9} \equiv 7(\bmod 13)$ has solutions. $3+2$
2. i) Suppose p is an odd prime. Write, in terms of a
primitive root $\bmod p$, the quadratic residues $\bmod p$ and the quadratic nonresidues $\bmod p$. Illustrate the result taking $p=19$ and knowing that 2 is a primitive root of 19 .
ii) State Euler's criterion on quadratic residues of an odd prime and illustrate with an example. 3+2
3. i) Solve the quadratic congruence $3 x^{2}+9 x+y \equiv 0(\bmod 13)$ by reducing to the form $y^{2} \equiv d(\bmod 13)$.
ii) Evaluate the Legendre $\left(\frac{-46}{17}\right)$ symbol and use this to check whether the congruence $x^{2} \equiv-46(\bmod 17)$ is solvable.
$3+2$
4. i) Suppose p is an odd prime. Prove that $\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0$ and hence prove that there are $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic non-residues $\bmod p$.
ii) Using Quadratic reciprocity law check whether $x^{2} \equiv 5(\bmod 103)$ has solutions. $4+1$
5. i) Prove that the Dirichlet product or Dirichlet convolution of arithmetic functions is associative, [Turn over
