Ex/SC/MATH/UG/DSE/TH/04/C/2022

B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)

MATHEMATICAL PHYSICS AND RELATIVITY PAPER – DSE-4C

Time: Two hours Full Marks: 40

Answer any Four questions.

All questions carry equal marks.

The figures in the margin indicate full marks.

Symbols / Notations have their usual meanings.

- a) Draw a diagram of the light cone and clearly distinguish the time-like, space-like and null vectors.
 Give their physical interpretations. 1+3+1
 - b) If the space and time separation between two events in a S frame is L and and T respectively, then what will be the minimum and maximum space and time separation between these two events in another inertial frame S'? $2\frac{1}{2} + 2\frac{1}{2}$
- 2. a) Show that Maxwell's equation of electrodynamics are invariant under Lorentz Transformation. 7
 - b) If the position vectors of two points in 4D Minkowski space-time are $\left(\frac{1}{c},0,0,0\right)$ and

[Turn over

 $\left(\frac{2}{c}, 2, 1, 1\right)$, then examine whether the points are causally connected or not.

- 3. Define 4-velocity, 4-acceleration and 4-momentum in Special Theory of Relativity. State the directions of four velocity and four acceleration with respect to world line. Are they orthogonal to each other? Find the magnitude of 4-velocity and an estimation of the magnitude of 4-acceleration. Clearly state which of the above vectors are time like?

 3+1+1+2+2+1
- 4. Starting from Lorentz Transformation deduce the following:
 - a) the principle of simultaneity,
 - b) Newtonian limit,
 - c) group property of the set of Lorentz Transformation,
 - d) invariance of 4D volume element. 2+1+4+3
- 5. a) Deduce the expression for kinetic energy in STR.

 Hence formulate the energy-momentum conservation relation in STR.

 3+2
 - b) A spaceship plans to go to a star 5 light years away. The rocket accelerates quickly and then moves at a uniform speed. Calculate with what speed the rocket must move relative to the Earth if the spaceship is to

- reach there in 1 year, as measured by a clock being at rest inside the rocket. 5
- 6. a) Deduce the generalized Lorentz Transformation for arbitrary relative motion between two inertial frames.
 - b) Calculate the orientation of a rod of length l in an inertial frame that is moving with a velocity $\mu c (\mu < 1)$ in a direction making an angle 2θ with the rod.