B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)

Mathematical Physics and Relativity

Paper - DSE-4C
Time : Two hours
Full Marks : 40

Answer any Four questions.

All questions carry equal marks.
The figures in the margin indicate full marks.
Symbols / Notations have their usual meanings.

1. a) Draw a diagram of the light cone and clearly distinguish the time-like, space-like and null vectors. Give their physical interpretations. $1+3+1$
b) If the space and time separation between two events in a S frame is L and and T respectively, then what will be the minimum and maximum space and time separation between these two events in another inertial frame S^{\prime} ?

$$
2 \frac{1}{2}+2 \frac{1}{2}
$$

2. a) Show that Maxwell's equation of electrodynamics are invariant under Lorentz Transformation.7
b) If the position vectors of two points in 4D Minkowski space-time are $\left(\frac{1}{c}, 0,0,0\right)$ and
$\left(\frac{2}{c}, 2,1,1\right)$, then examine whether the points are causally connected or not. 3
3. Define 4 -velocity, 4-acceleration and 4-momentum in Special Theory of Relativity. State the directions of four velocity and four acceleration with respect to world line. Are they orthogonal to each other? Find the magnitude of 4 -velocity and an estimation of the magnitude of 4acceleration. Clearly state which of the above vectors are time like?
$3+1+1+2+2+1$
4. Starting from Lorentz Transformation deduce the following:
a) the principle of simultaneity,
b) Newtonian limit,
c) group property of the set of Lorentz Transformation,
d) invariance of 4D volume element. $2+1+4+3$
5. a) Deduce the expression for kinetic energy in STR. Hence formulate the energy-momentum conservation relation in STR. $3+2$
b) A spaceship plans to go to a star 5 light years away. The rocket accelerates quickly and then moves at a uniform speed. Calculate with what speed the rocket must move relative to the Earth if the spaceship is to
reach there in 1 year, as measured by a clock being at rest inside the rocket.
6. a) Deduce the generalized Lorentz Transformation for arbitrary relative motion between two inertial frames.

5
b) Calculate the orientation of a rod of length l in an inertial frame that is moving with a velocity $\mu c(\mu<1)$ in a direction making an angle 2θ with the rod. 5

