3. a) Let $p<q$ be two distinct prime numbers such that p does not divide $q-1$. Show that any group of order $p q$ is cyclic.
b) Let $n \in \mathbb{N}$ be a product of distinct prime numbers. Show that any group of order n is either cyclic or non-abelian.
4. a) Define a simple group. Let G be a finite group and $a \in G$ such that $\left|\left\{x a x^{-1} \mid x \in G\right\}\right|=2$. Then show that G is not simple.
b) Prove that every group of order 108 has a normal subgroup of order 9 or 27.
5. a) Let G be a finite group such that every Sylow subgroup is normal in G. Prove that G is the internal direct product of its Sylow subgroups.
b) Let G be group of order p^{2}, where p is a prime number. Prove that G is isomorphic to $\left(\mathbb{Z}_{p^{2}},+\right)$ or $\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p},+\right)$.
6. a) Let G be a finite abelian group of order $n \in \mathbb{N}$. Let $m \in \mathbb{N}$ be a divisor of n. Show that G has a subgroup of order n.
b) Define elementary divisors and invariant factors of a finite abelian group. Find the elementary divisors and the invariant factors of the group $\left(\mathbb{Z}_{50} \times \mathbb{Z}_{20} \times \mathbb{Z}_{8},+\right)$.

B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)
Group Theory - II
Paper - Core-13
Time: Two hours
Full Marks : 40
All questions carry equal marks.

Answer any four questions :

Let \mathbb{N} be the set of natural numbers and \mathbb{Z}_{n} be the set of all integers modulo $n \in \mathbb{N}$.

1. a) Let G be a group. Define the group of inner automorphisms $I(G)$ of G and the center $Z(G)$ of G. Show that $I(G) \cong G / Z(G)$.
b) Let G be a group and H be a subgroup of G such that $T(H) \subseteq H$ for all automorphisms T on G. Show that H is a normal subgroup of G.
2. a) Let G be a finite group of order n and p be a prime number such that p^{m} divides n for some $m \in \mathbb{N}$. Show that G has a subgroup of order p^{m}.
b) Define p-Sylow subgroups of G. Let H be a normal subgroup of G such that p does not divide the index of H in G. Prove that H contains all p-Sylow subgroups of G.
