- 3. a) Let p < q be two distinct prime numbers such that p does not divide q-1. Show that any group of order pq is cyclic.
  - b) Let  $n \in \mathbb{N}$  be a product of distinct prime numbers. Show that any group of order n is either cyclic or non-abelian.
- 4. a) Define a *simple group*. Let G be a finite group and  $a \in G$  such that  $\left| \left\{ xax^{-1} \middle| x \in G \right\} \right| = 2$ . Then show that G is not simple.
  - b) Prove that every group of order 108 has a normal subgroup of order 9 or 27.
- 5. a) Let *G* be a finite group such that every Sylow subgroup is normal in *G*. Prove that *G* is the internal direct product of its Sylow subgroups.
  - b) Let G be group of order  $p^2$ , where p is a prime number. Prove that G is isomorphic to  $\left(\mathbb{Z}_{p^2},+\right)$  or  $\left(\mathbb{Z}_p\times\mathbb{Z}_p,+\right)$ .
- 6. a) Let *G* be a finite abelian group of order  $n \in \mathbb{N}$ . Let  $m \in \mathbb{N}$  be a divisor of *n*. Show that *G* has a subgroup of order *n*.
  - b) Define elementary divisors and invariant factors of a finite abelian group. Find the elementary divisors and the invariant factors of the group  $(\mathbb{Z}_{50} \times \mathbb{Z}_{20} \times \mathbb{Z}_8, +)$ .

## B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)

## GROUP THEORY - II PAPER - CORE-13

Time · Two hours

Full Marks: 40

All questions carry equal marks.

## Answer any four questions:

4×10

Let  $\mathbb{N}$  be the set of natural numbers and  $\mathbb{Z}_n$  be the set of all integers modulo  $n \in \mathbb{N}$ .

- 1. a) Let G be a group. Define the group of *inner* automorphisms I(G) of G and the center Z(G) of G. Show that  $I(G) \cong G / Z(G)$ .
  - b) Let G be a group and H be a subgroup of G such that  $T(H) \subseteq H$  for all automorphisms T on G. Show that H is a normal subgroup of G.
- 2. a) Let G be a finite group of order n and p be a prime number such that  $p^m$  divides n for some  $m \in \mathbb{N}$ . Show that G has a subgroup of order  $p^m$ .
  - b) Define *p-Sylow subgroups* of *G*. Let H be a normal subgroup of G such that *p* does not divide the index of *H* in *G*. Prove that *H* contains all *p*-Sylow subgroups of *G*.