B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)

Dynamical Systems

Paper - DSE-4E
Time : Two hours
Full Marks : 40
The figures in the margin indicate full marks.
Symbols / Notations have their usual meanings.

Part - I (Marks: 20)

Answer any TWO questions.

1. The equation of motion of a nonuniform oscillator is given by $\dot{\theta}=w-a \sin \theta$.
Explain the dynamics for different values of a and w. Draw the vector field on a line. Draw the same on a circle. Find and classify all fixed points. Determine the point at which saddle-node bifurcation occurs. Calculate the period of oscillation (T), when it overturns. Draw the graph of T as function of a. Hence explain the phenomenon of ghost and bottleneck.
2. Prove that
a) the Cantor set K is uncountable.
b) all elements in K can be represented using only digits 0 and 2 in base 3 .
c) K has measure zero. 3
d) the box counting dimension of K is $\log (2) / \log (3) .2$
3. a) Consider the logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$ for $0 \leq x_{n} \leq 1$ and $0 \leq r \leq 4$. Find all the fixed points and determine their stability.
b) Show that the logistic map has stable 2-cycle orbit for $r>3$. Find the value of r at which this 2 -cycle orbit becomes unstable.
c) Draw a rough sketch of the bifurcation diagram for the above map for $2.4<r<3.6$ indicating the bifurcation points.

2
d) What types of bifurcation occur at critical points? 1

Part - II (Marks: 20)

Answer any FOUR questions.

1. Show that there exists a pitchfork bifurcation in the system $\dot{x}=\xi x+x^{3}, x \in \mathbf{R}$, when $\xi \in \mathbf{R}$ is smoothly varied. What is the critical value of bifurcation? $4+1$
2. Show that the following system of differential equations has at least one periodic orbit:

$$
\begin{align*}
& \dot{x}=y, \\
& \dot{y}=-x+y\left(1-x^{2}-2 y^{2}\right) . \tag{5}
\end{align*}
$$

3. a) What do you mean by α and ω limit sets of a system of differential equations?
b) Define a limit cycle. When a limit cycle is said to be stable?
c) Consider the system

$$
\dot{r}=r(1-r)(2-r)(3-r), \dot{\theta}=1 .
$$

Assume two points $P=\left(\frac{1}{2}, 0\right)$ and $Q=(4,0)$ on the plane. Find the α and ω limit sets of these points.

$$
2+1+2
$$

4. Convert the following second order differential equation

$$
\ddot{x}+2 a \dot{x}+x+x^{3}=0, a \in \mathbf{R}
$$

into a system of first order differential equations. Determine the nature of the equilibrium points of this system for different values of a. $1+4$
5. The matrix A of the linear system $\dot{x}=A x$, where $x \in \mathbf{R}^{2}$, $\operatorname{det} A \neq 0$, has a pair of eigenvalues. Discuss the stability of the origin $(0,0)$ and draw all possible phase diagrams of the trajectories.

5

