3. a) Find the Gaussian curvature of the surface $\vec{r}(u, v)=(u \cos v, u \sin v, c v), c$ being a constant. Is it developable? Justify.
b) If the components of a contravariant vector in $\left(x^{i}\right)$ coordinate system are $(3,4)$, find its components in $\left(\bar{x}^{i}\right)$ coordinate system, where $\bar{x}^{1}=7 x^{1}-5 x^{2}$ and $\bar{x}^{2}=-5 x^{1}+4 x^{2}$.
$6+4$
4. a) If A^{i} and B^{i} are two non-null vectors such that $g_{i j} U^{i} U^{j}=g_{i j} V^{i} V^{j}$, where $U^{i}=A^{i}+B^{i} \quad$ and $V^{i}=A^{i}-B^{i}$, then find the angle between A^{i} and B^{i}.
b) Calculate the Christoffel symbols of the second kind in cylindrical coordinate system.
c) Find the Riemann curvature tensor for the metric $d s^{2}=\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} \quad$ and give the geometrical interpretation.
$3+4+3$
5. a) Compute the first and second fundamental forms for a patch \vec{r} on a surface of revolution given by $\vec{r}(u, v)=(f(u) \cos v, f(u) \sin v, g(u))$, where f and g are smooth functions and $f(u)>0$.
b) Find the arc length for a curve $\vec{r}(t)=\left(e^{t} \cos t, e^{t} \sin t, 0\right)$ from $t=0 . \quad 6+4$
6. State and prove fundamental theorem of space curve. 10

B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)
 Differential Geometry

PAPER - DSE-3C
Time : Two hours
Full Marks : 40

Answer any four of the followings

1. a) Let $\vec{r}(t)$ be a regular curve in space. Prove that its torsion $\tau=\frac{\left[\begin{array}{ccc}\overrightarrow{\dot{r}} & \overrightarrow{\dot{r}} & \vec{r}\end{array}\right]}{|\overrightarrow{\dot{r}} \times \overrightarrow{\dot{r}}|^{2}}$, where $\overrightarrow{\dot{r}}=\frac{d \vec{r}}{d t}$.
b) Find the curvature and torsion of the circular helix $\vec{r}=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, \frac{b s}{c}\right) ; c=\sqrt{a^{2}+b^{2}}$, and s is arc length.
$6+4$
2. a) Define Bertrand mates. Prove that for Bertrand mates the relation between curvature k and torsion τ satisfies the relation $a k+b \tau=1$, where a, b are constants.
b) Find the surface area bounded by the parametric curves $u=0$ to $u=\frac{\pi}{4}$ and $v=0$ to $v=\frac{\pi}{2}$ for the surface given by
$\vec{r}(u, v)=(a \sin u \cos v, a \sin u \sin v, a \cos u)$
where a is constant.
