- 3. a) Find the Gaussian curvature of the surface $\vec{r}(u,v) = (u\cos v, u\sin v, cv)$, c being a constant. Is it developable? Justify.
 - b) If the components of a contravariant vector in (x^{i}) coordinate system are (3, 4), find its components in (\bar{x}^{i}) coordinate system, where $\bar{x}^{1} = 7x^{1} 5x^{2}$ and $\bar{x}^{2} = -5x^{1} + 4x^{2}$.
- 4. a) If A^i and B^i are two non-null vectors such that $g_{ij}U^iU^j=g_{ij}V^iV^j$, where $U^i=A^i+B^i$ and $V^i=A^i-B^i$, then find the angle between A^i and B^i .
 - b) Calculate the Christoffel symbols of the second kind in cylindrical coordinate system.
 - c) Find the Riemann curvature tensor for the metric $ds^2 = (dx^1)^2 + (dx^2)^2 + (dx^3)^2$ and give the geometrical interpretation. 3+4+3
- 5. a) Compute the first and second fundamental forms for a patch \vec{r} on a surface of revolution given by $\vec{r}(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$, where f and g are smooth functions and f(u) > 0.
 - b) Find the arc length for a curve $\vec{r}(t) = (e^t \cos t, e^t \sin t, 0)$ from t = 0.
- 6. State and prove fundamental theorem of space curve. 10

B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)

DIFFERENTIAL GEOMETRY PAPER – DSE-3C

Time: Two hours

Full Marks: 40

Answer any four of the followings

- 1. a) Let $\vec{r}(t)$ be a regular curve in space. Prove that its torsion $\tau = \frac{\left[\vec{r} \quad \vec{r} \quad \vec{r}'\right]}{\left|\vec{r} \times \vec{r}\right|^2}$, where $\vec{r} = \frac{d\vec{r}}{dt}$.
 - b) Find the curvature and torsion of the circular helix $\vec{r} = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, \frac{bs}{c}\right); c = \sqrt{a^2 + b^2}$, and s is arc length.
- 2. a) Define Bertrand mates. Prove that for Bertrand mates the relation between curvature k and torsion τ satisfies the relation $ak + b\tau = 1$, where a, b are constants.
 - b) Find the surface area bounded by the parametric curves u = 0 to $u = \frac{\pi}{4}$ and v = 0 to $v = \frac{\pi}{2}$ for the surface given by $\vec{r}(u,v) = (a \sin u \cos v, a \sin u \sin v, a \cos u)$ where a is constant.

[Turn over