Ex/SC/MATH/UG/CORE/TH/14/2022

B. Sc. Mathematics (Hons.) Examination, 2022

(3rd Year, 2nd Semester)
 Mechanics
 Paper - Core-14

Time : Two hours
Full Marks : 40
The figures in the margin indicate full marks.
(Symbols/Notations have their usual meanings)

Group - A

Any two questions :
$2 \times 6=12$

1. Two forces P and Q act along the straight lines whose equations are $y=x \tan \alpha, z=c$ and $y=-x \tan \alpha$, $z=-c$ respectively. Show that their central axis is $y=x \frac{P-Q}{P+Q} \tan \alpha, \quad \frac{z}{c}=\frac{P^{2}-Q^{2}}{P^{2}+2 P Q \cos 2 \alpha+Q^{2}}$.

Also prove that this line is a generator of the surface $\left(x^{2}+y^{2}\right) z \sin 2 \alpha=2 c x y$ for all values of P and Q.
2. The distance from the cusp of the centroid of the area of the cardioid $r=a(1+\cos \theta)$, when the density at any point varies as the nth power of the distance from the cusp is $\frac{(n+2)(2 n+5)}{(n+3)(n+4)} a$.
3. A uniform rod of length $2 l$, is attached by a smooth ring at the ends to a parabolic wire, fixed with its axis vertical
and vertex downwards, and of latus rectum $4 a$. Show that the angle θ which the rod makes with the horizon in a slanting position of equilibrium is given by $\cos ^{2} \theta=\frac{2 a}{l}$, and that, if these positions exist, they are stable.

Group - B

Any two questions :
$2 \times 7=14$
4. A particle is moving under the influence of an attractive force $\frac{m \mu}{y^{3}}$ towards the axis of x. Show that, if it is projected from the point $(0, k)$ with component velocities U and V parallel to the axes of x and y, it will not strike the axis of x unless $\mu>V^{2} K^{2}$, and that in this case the distance of the point of impact from the origin is $\frac{U K^{2}}{\sqrt{\mu}-V K}$.
5. A particle is projected horizontally from the lowest point of a rough sphere of a radius ' 1 ' unit and comes to rest at the lowest point after describing an $\operatorname{arc} \frac{\pi}{6}$, show that the velocity of projection must be $\sqrt{\frac{g\left(1+\mu^{2}\right)}{2\left(1-2 \mu^{2}\right)}}$ where μ is the coefficient of friction.
6. A particle moves in a nearly circular orbit of radius a
under a central force $\mu r^{3}\left(3+2 r^{2}\right)$, show that apsidal angle is $\pi \sqrt{\frac{3+2 a^{2}}{18+16 a^{2}}}$.

Group - C

Any two questions :

$2 \times 7=14$
7. Show that moment of inertia of a regular hexagon about any line through its centre in the the plane of the hexagon is $\frac{5 M c^{2}}{24}$, where c is the length of each side.
8. A thin rod of length $2 a$ can turn freely about one end O which is fixed. It is started from the position in which it hangs vertically with such a angular velocity just sufficient to carry it to the highest point. If the density of the rod is proportional to the nth power of the distance from O along the rod, then prove that the time taken by the rod to describe an angle $\theta(<\pi)$ with the downwards vertical through O is $\sqrt{\frac{2 a(n+2)}{g(n+3)}} \log \tan \left(\frac{\pi}{4}+\frac{\theta}{4}\right)$.
9. A bent lever whose arms are of lengths a and b, the angle between them being ' α ', makes small oscillation in its own plane about the fulcrum. Show that the length of the corresponding simple equivalent pendulum is $\frac{2}{3} \frac{a^{3}+b^{3}}{\sqrt{a^{4}+2 a^{2} b^{3} \cos \alpha+b^{4}}}$.

