Ex/SC/MATH/UG/DSE/04/C/2022 (S)

B. Sc. Mathematics Examination, 2022
(3rd Year, 2nd Semester, Supplementary)
Mathematical Physics and Relativity
Paper - DSE-4C
Time : Two hours
Full Marks : 40
The figures in the margin indicate full marks. (Symbols/Notations have their usual meanigns)

Answer any Four questions. $\quad \mathbf{4 \times 1 0}=\mathbf{4 0}$

1. a) What is proper time? Find the relation between coordinate time and proper time. Is proper time Lorentz invariant? Justify. $\quad 2+2+1$
b) At what speed v_{0} will the Galżlean and the Lorentz expression for x differ by 1% ?
2. a) Derive the relativistic energy-momentum relation.
b) The space and time co-ordinates of two events as measured in a fram S are as follows :

Event 1: $x_{1}=x_{0}, y_{1}=z_{1}=0, t_{1}=\frac{x_{0}}{c}$
Event 2 : $x_{2}=2 x_{0}, y_{2}=z_{2}=0, t_{2}=\frac{x_{0}}{2 c}$
There exists a frame S^{\prime} in which these two events occur at the same time. Find the relative velocity of S^{\prime} with respect to S. What is the time at which both
3. a) Suppose S and S^{\prime} are two inertial frame of references where S^{\prime}-frame is moving relative to S-frame with constant velocity v. Does the clock of an observer in S^{\prime} frame go slow relative to the clock of an observer in S-frame? Justify your answer. 6
b) If u and v are two velocities in the same direction and V be their resultant velocity, given by

$$
\tanh ^{-1} \frac{V}{c}=\tanh ^{-1} \frac{u}{c}+\tanh ^{-1} \frac{v}{c}
$$

then deduce the law of composition of velocity. 4
4. Derive an expression for K.E. in STR. Deduce from it the expression for K.E. in classical mechanics. Hence deduce the energy-mass relation in relativistic. $4+2+4$
5. a) Deduce the transformation laws for the momentum components.
b) A rod is of length l_{0} in its rest frame. In another inertial frame S it is oriented in a direction of the unit vector \vec{e} and is moving with a velocity \vec{v}. Show that the length of the rod in the 2 nd frame is

$$
l=\frac{l_{0} \sqrt{c^{2}-v^{2}}}{\sqrt{c^{2}-v^{2} \sin ^{2} \theta}}
$$

where $v=|\vec{v}|$ and θ is the angle between \vec{e} and \vec{v}.
6. a) A circular ring moves parallel to its plane relative to an inertial frame S . Determine the shape of the ring relative to S -frame.

4
b) Show that $\square=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial f^{2}}-\nabla^{2}$ is invariant under Lorentz transformation.

