Ex/SC/UG/GE/STAT/02/2022

Part – II (Statistics-II)

Attempt any two questions.

[4]

Each question carries Ten (10) marks: $2 \times 10 = 20$

- 1. Define the following terms with examples:
 - a) Simple and Composite Statistical Hypotheses
 - b) Probability of Type I and Type II Errors
 - c) Critical Region.
 - d) Power of Test 3+3+2+2
- 2. Let a random sample of size 15 be drawn from a uniform $(0, \theta)$ population, where $\theta > 0$ is an unknown parameter. Find a maximum likelihood statistic based on the sample above. Also find the probability density function of this statistic.
- 3. Define a Most Powerful (MP) size α test. State and prove how will you find an MP size α test for testing the following pair of simple hypotheses:
 - $H_0: \theta = \theta_0$
 - VS
 - $H_1: \theta = \theta_1$

where θ is a real unknown parameter and $\theta_0 \neq \theta_1 \in \mathbb{R}$.

BACHELOR OF SCIENCE EXAMINATION, 2022

(2nd Year, 2nd Semester)

PAPER – GE 4

STATISTICS - II

Time : Two hours

Full Marks : 40

Use separate answer script for each Part.

Symbols and notaions have their usual meanings.

Part – I

Answer any four questions.5×4All questions carry equal marks.

- 1. a) Define the term 'consistency' of the estimators with example. If $\hat{\theta}_n$ is an unbiased estimate of θ_n with variance σ_n^2 and $\theta_n \rightarrow \theta$ and $\sigma_n \rightarrow 0$ as $n \rightarrow \infty$, then prove that $\hat{\theta}_n$ is a consistent estimate of θ .
 - b) Define unbiased estimate of a population parameter. Show that, if $x_1, x_2, ..., x_n$ are the random sample of size *n* from a population with variance σ^2 , then

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
 is an unbiased estimate of σ^{2}

where \overline{x} is the sample mean.

2. a) Prove that for Cauchy's distribution, not sample mean but sample median is a consistent estimator of the population mean.

[Turn over

b) A random sample $(x_1, x_2, x_3, x_4, x_5)$ of size 5 is drawn from a normal population with unknown mean μ . Consider the following estimators to estimate μ .

i)
$$t_1 = \frac{1}{5} (x_1 + x_2 + x_3 + x_4 + x_5)$$

ii) $t_2 = \frac{x_1 + x_2}{2} + x_3$
iii) $t_3 = \frac{2x_1 + x_2 + \lambda x_3}{3}$

where λ is such that t_3 is an unbiased estimator. Find λ . State giving reasons, the estimator which is best among t_1 , t_2 and t_3 .

- 3. If T_1 is a minimum variance unbiased estimator for θ and T_2 is any other unbiased estimator of θ with efficiency e, then prove that the correlation coefficient between T_1 and T_2 is given by $\rho = \sqrt{e}$.
- 4. Define the term 'sufficiency' of an estimator with illustration.

State Factorization theorem (Neymann).

Let $x_1, x_2, ..., x_n$ be a random sample from a uniform population on $[0, \theta]$. Find a sufficient estimator for θ using this theorem.

5. a) Consider the Logistic trend curve: $U = \frac{K}{1 + e^{a+bt}}$ What are the main properties of this curve? Estimate the parameters by the method of three selected points.

- [3]
- b) Given the three selected points U_1 , U_2 and U_3 corresponding to $t_1 = 2$, $t_2 = 30$ and $t_3 = 58$ as follows:

$$t_1 = 2, \quad U_1 = 55 \cdot 8$$

 $t_2 = 30, \quad U_2 = 138 \cdot 6$
 $t_3 = 58, \quad U_3 = 151 \cdot 8$

Fit the Logistic curve by the method of selected points.

- 6. a) Define the following index numbers and discuss their merits and demerits:
 - i) Laspeyre's Index Number,
 - ii) Paasche's Index Number,
 - iii) Fisher's ideal Index Numbers.
 - b) Given the data Commodities

А	В
1	1
10	5
2	Х
5	2
	A 1 10 2 5

where p and q respectively stand for price and quantity and subscripts stand for time period. Find X, if the ratio between Laspeyre's (L) and Paaschi's

(P) index numbers is
$$\frac{L}{P} = \frac{28}{27}$$
.

[Turn over