Bachelor of Science Examination, 2022

(2nd Year, 2nd Semester)
 Mathematics (Hons.)

Paper - Core - 10

Ring Theory and Linear Algebra - II

Time : Two hours
Full Marks : 40
Use separate answer script for each Part.
Symbols and notations have their usual meanings.
The figures in the margin indicate full marks.

Part - I (20 Marks)

Answer any four questions.
$4 \times 5=20$

1. i) Let F be a field and $f(x) \in F[x]$ such that $f(x)$ divides $g(x)$ for every nonconstant polynomial $g(x) \in F[x]$. Show that $f(x)$ is a constant polynomial.
ii) If a monic polynomial with integer coefficients has a rational root then show that this root must be an integer.
iii) Show that $\sqrt[5]{2}$ is irrational by using Rational Root Theorem.
2. i) Show that every Euclidean Domain (ED) is a Principal Ideal Domain (PID).
ii) Show that 3 is a prime element in $\mathbb{Z}[i]$ but 5 is not a prime element in $\mathbb{Z}[i]$.
3. i) Let R be a Unique Factorization Domain (UFD) and consider a linear polynomial $f(x)$ in $R[x]$. Is $f(x)$ irreducible in $R[x]$? Justify.
ii) Let R be a PID and P be a prime ideal of R. Show that R / P is PID. Does this result hold if P is an ideal of R ? Justify.
$2+(2+1)$
4. Let R be a commutative ring with identity. Show that $\frac{R[x]}{\langle x\rangle} \cong R$. Hence conclude that $\langle x\rangle$ is a prime ideal of $\mathbb{Z}[x]$ where as $\langle x\rangle$ is a maximal ideal of $\mathbb{Q}[x] . \quad 3+2$
5. i) Let $R[x]$ be the ring of polynomials and $I[x]=\{f(x) \in R[x]: f(0)=0=f(1)\}$. Is $I[x]$ a maximal ideal of $R[x]$? Justify.
ii) Show that the polynomial $x^{3}+8 i x-6 x-1+3 i$ is irreducible in $(\mathbb{Z}[i])[x]$. $2+3$
6. Let $\left.F_{1}=\mathbb{Q}[x] /<x^{2}-2\right\rangle$ and $F_{2}=\mathbb{Q}[x] /\left\langle x^{2}-3\right\rangle$. Show that both F_{1} and F_{2} are fields but F_{1} is not isomorphic to F_{2}.

Part - II (20 Marks)

Answer any five questions. $\quad 4 \times 5=20$

1. Let V be a finite dimensional vector space over a field F. Let $\mathfrak{B}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ be a basis for V and
2. a) Let $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right) \in M_{2}(\mathbb{C}) \quad\left(\begin{array}{ll}\theta & \text { is real }) \text {. }\end{array}\right.$

Without solving the characteristic polynomial how can you say that the eigenvalues of A are of unit modulus?
b) Suppose A is a real matrix of order $m \times n$ with $m>n, b \in \mathbb{R}^{m}$ such that the over determined system of linear equations $A X=b$ is inconsistent and $\operatorname{rank} A=n$. Let W be the column space of A and b_{0} be the orthogonal projection of b onto $W\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right.$ are assumed to be with the standard inner product). Find the least square approximate solution of $A X=b$.
$1+3$
4. a) Find all real 2×2 matrices such that $A^{2}=I$ and describe geometrically the way they operate on \mathbb{R}^{2} by left multiplication.
b) Let A be a real 2×2 matrix such that 3 is an eigenvalue with $\binom{1}{0}$ as a corresponding eigenvector and 2 is another eigenvalue with $\binom{1}{-1}$ as a corresponding eigenvector. Find A. State the relevant results that have been used to determine A.
$2+2$
5. a) Find the possible Jordan Forms of a linear operator T on a finite dimensional vector space whose characteristic polynomial is $(x-2)^{3}(x-5)^{5}$ and minimal polynomial is $(x-2)^{2}(x-5)^{3}$.
b) Give examples, with proper reasons, of two matrices which are not similar but their minimal polynomials are identical and their characteristic polynomials are also identical.
$3+1$
6. a) Find an inner product $<,>$ on \mathbb{R}^{2} such that $<(1,0),(0,1)>=3$.
b) Let A be a real or complex square matrix of order n. Assuming that $F^{n}(F=\mathbb{R}$ or $\mathbb{C})$ is with the standard inner product prove that rows of A are orthonormal iff its columns are orthonormal.
$\mathfrak{B}^{*}=\left\{f_{1}, f_{2}, \ldots ., f_{n}\right\}$ be the corresponding dual basis for V^{*} 。
a) Prove that for any $v \in V, v=\sum_{i=1}^{n} f_{i}(v) v_{i}$.
b) Prove that if V is an inner product space and \mathfrak{B} is an orthonormal basis then for all $i=1,2, \ldots . ., n, f_{i}(v)=<v, v_{i}>$ for all $v \in V . \quad 2+2$
2. a) Suppose V and W are two vector spaces over the same field F. Let $T: V \rightarrow W$ be a linear transformation. Define T^{t}, the transpose of T. If V and W are finite dimensional then prove that $\operatorname{rank} T=\operatorname{rank} T^{t}$.
b) Define the canonical mapping from a vector space V over a field F to its double dual $V^{* *}$.
3. Let T be a linear operator on a vector space V over a field F.
a) Prove that every eigenspace of T is T-invariant.
b) Prove that every one dimensional T-invariant subspace is an eigenspace of T.
c) What is the geometric multiplicity of λ in an elementary Jordan matrix of order n corresponding to λ ?
$1+2+1$

