Ex/SC/MATH/UG/CORE/TH/10/2022

BACHELOR OF SCIENCE EXAMINATION, 2022

(2nd Year, 2nd Semester)

Mathematics (Hons.)

Paper – Core - 10

RING THEORY AND LINEAR ALGEBRA - II

Time: Two hours Full Marks: 40

Use separate answer script for each Part.

Symbols and notations have their usual meanings.

The figures in the margin indicate full marks.

Part - I (20 Marks)

Answer *any four* questions. $4 \times 5 = 20$

- 1. i) Let F be a field and $f(x) \in F[x]$ such that f(x) divides g(x) for every nonconstant polynomial $g(x) \in F[x]$. Show that f(x) is a constant polynomial.
 - ii) If a monic polynomial with integer coefficients has a rational root then show that this root must be an integer.
 - iii) Show that $\sqrt[5]{2}$ is irrational by using Rational Root Theorem. 1+2+2
- 2. i) Show that every Euclidean Domain (ED) is a Principal Ideal Domain (PID).
 - ii) Show that 3 is a prime element in $\mathbb{Z}[i]$ but 5 is not a prime element in $\mathbb{Z}[i]$. 3+2

[Turn over

- 3. i) Let R be a Unique Factorization Domain (UFD) and consider a linear polynomial f(x) in R[x]. Is f(x) irreducible in R[x]? Justify.
 - ii) Let R be a PID and P be a prime ideal of R. Show that R/P is PID. Does this result hold if P is an ideal of R? Justify. 2+(2+1)
- 4. Let R be a commutative ring with identity. Show that $\frac{R[x]}{\langle x \rangle} \cong R$. Hence conclude that $\langle x \rangle$ is a prime ideal of $\mathbb{Z}[x]$ where as $\langle x \rangle$ is a maximal ideal of $\mathbb{Q}[x]$. 3+2
- 5. i) Let R[x] be the ring of polynomials and $I[x] = \{f(x) \in R[x] : f(0) = 0 = f(1)\}$. Is I[x] a maximal ideal of R[x]? Justify.
 - ii) Show that the polynomial $x^3 + 8ix 6x 1 + 3i$ is irreducible in $(\mathbb{Z}[i])[x]$. 2+3
- 6. Let $F_1 = \mathbb{Q}[x]/\langle x^2 2 \rangle$ and $F_2 = \mathbb{Q}[x]/\langle x^2 3 \rangle$. Show that both F_1 and F_2 are fields but F_1 is not isomorphic to F_2 .

Part – II (20 Marks)

Answer *any five* questions. $4 \times 5 = 20$

1. Let V be a finite dimensional vector space over a field F. Let $\mathfrak{B} = \{v_1, v_2,, v_n\}$ be a basis for V and

- 7. a) Let $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in M_2(\mathbb{C})$ (θ is real). Without solving the characteristic polynomial how can you say that the eigenvalues of A are of unit modulus?
 - b) Suppose A is a real matrix of order $m \times n$ with m > n, $b \in \mathbb{R}^m$ such that the over determined system of linear equations AX = b is inconsistent and rankA = n. Let W be the column space of A and b_0 be the orthogonal projection of b onto $W(\mathbb{R}^n, \mathbb{R}^m)$ are assumed to be with the standard inner product). Find the least square approximate solution of AX = b.

1+3

- 4. a) Find all real 2×2 matrices such that $A^2 = I$ and describe geometrically the way they operate on \mathbb{R}^2 by left multiplication.
 - b) Let A be a real 2×2 matrix such that 3 is an eigenvalue with $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ as a corresponding eigenvector and 2 is another eigenvalue with $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ as a corresponding eigenvector. Find A. State the relevant results that have been used to determine A. 2+2
- 5. a) Find the possible Jordan Forms of a linear operator T on a finite dimensional vector space whose characteristic polynomial is $(x-2)^3(x-5)^5$ and minimal polynomial is $(x-2)^2(x-5)^3$.
 - b) Give examples, with proper reasons, of two matrices which are not similar but their minimal polynomials are identical and their characteristic polynomials are also identical.

 3+1
- 6. a) Find an inner product <, > on \mathbb{R}^2 such that <(1,0),(0,1)>=3.
 - b) Let A be a real or complex square matrix of order n. Assuming that $F^n(F = \mathbb{R} \text{ or } \mathbb{C})$ is with the standard inner product prove that rows of A are orthonormal iff its columns are orthonormal.

- $\mathfrak{B}^* = \{f_1, f_2, \dots, f_n\}$ be the corresponding dual basis for V^* .
- a) Prove that for any $v \in V$, $v = \sum_{i=1}^{n} f_i(v)v_i$.
- b) Prove that if V is an inner product space and \mathfrak{B} is an orthonormal basis then for all $i = 1, 2,, n, f_i(v) = \langle v, v_i \rangle$ for all $v \in V$. 2+2
- 2. a) Suppose V and W are two vector spaces over the same field F. Let $T:V \to W$ be a linear transformation. Define T^t , the transpose of T. If V and W are finite dimensional then prove that $\operatorname{rank} T = \operatorname{rank} T^t$.
 - b) Define the canonical mapping from a vector space V over a field F to its double dual V^{**} . 3+1
- 3. Let *T* be a linear operator on a vector space *V* over a field F.
 - a) Prove that every eigenspace of T is T-invariant.
 - b) Prove that every one dimensional T-invariant subspace is an eigenspace of T.
 - c) What is the geometric multiplicity of λ in an elementary Jordan matrix of order n corresponding to λ ? 1+2+1

[Turn over