Bachelor of Science Examination, 2022

(2nd Year, 2nd Semester)
 Mathematics (Hons.)
 Paper - Core - 08

Riemann Integration and Series of Functions
Time : Two hours
Full Marks : 40
Use separate answer script for each Part.
Symbols and notaions have their usual meanings.

Part - I (20 Marks)

Answer any two questions.
$2 \times 10=20$
All questions carry equal marks.

1. i) If f is continuous on $[a, b]$ then show that f is Riemann integrable on $[a, b]$. Is the converse true? Justify your answer.
ii) Examine the convergence of the integral $\int_{0}^{\infty} \frac{d x}{(1+x) \sqrt{x}}$ $4+2+4$
2. i) If f is Riemann integrable on $[a, b]$ then show that $|f|$ is Riemann integrable on $[a, b]$. Is the converse true? Justify your answer.
ii) Show that $\Gamma\left(n+\frac{1}{2}\right)=\frac{\Gamma(2 n+1) \sqrt{\pi}}{2^{2 n} \Gamma(n+1)} \quad 4+2+4$
3. i) State and prove Fundamental Theorem of Integral Calculus.
ii) Evaluate $\int_{0}^{1} x^{\alpha+k-1}(t-x)^{\beta+k-1} d x$ and find the value when $\alpha=\beta=\frac{1}{2}$

Part - II (20 Marks)

Answer any four questions.

$4 \times 5=20$
All questions carry equal marks.

1. i) Define pointwise and uniform convergence of sequence of functions. $\quad 1+1=2$
ii) Show that the sequence of functions $\left\{f_{n}\right\}$ which is defined by $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, 0 \leq x \leq 1$, is not uniformly convergent.
2. Prove that the series of functions

$$
\frac{x}{x+1}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+\cdots, x \geq 0
$$

is convergent on $[0, \infty)$ but the convergence is not uniform on $[0, \infty)$.
3. Prove that
i) the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}+n^{4} x^{2}}$ is uniformly convergent for all real x.
ii) The series $1-\frac{e^{-2 x}}{2^{2}-1}+\frac{e^{-4 x}}{4^{2}-1}-\frac{e^{-6 x}}{6^{2}-1}+\cdots$ converges uniformly for all $x \geq 0$.
4. Let $R(>0)$ be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$. Then the radii of convergence of the power series $a_{0} x+\frac{a_{1}}{2} x^{2}+\frac{a_{2}}{3} x^{3}+\cdots$ obtained by term-by-term integrating and the power series $a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \quad$ obtained by term-by-term differentiation are R.

5
5. Expand in Fourier series of $f(x)=x+x^{2}$ on $-\pi<x<\pi$ and deduce that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots$
6. Find the Fourier series of the periodic function f with period 2π, where $f(x)=\left\{\begin{array}{cc}0, & -\pi<x<a, \\ 1, & a \leq x \leq b, \\ 0, & b<x<\pi\end{array}\right.$

Find the sum of the series for $x=4 \pi+a$ and deduce that $\sum_{n=1}^{\infty} \frac{\sin n(b-a)}{n}=\frac{\pi-b+a}{2}$.

