Bachelor of Science Examination, 2022

(1st Year, 2nd Semester)
 Mathematics - I
 Paper - GE-2

Time : Two hours
Full Marks : 40
Use separate answer script for each Part.
Symbols and notaions have their usual meanings.
Part - I (Marks : 16)
Answer any four questions:

1. Prove that the pairs of lines joining the origin to the point of intersection of the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by the line $l x+m y+n=0$ are perpendicular to each other if $\frac{a^{2}+b^{2}}{l^{2}+m^{2}}=\frac{a^{2} b^{2}}{n^{2}}$.
2. Show that the locus of the point (r, θ) having equation $r^{2}-r a \cos 2 \theta \sec \theta-2 a^{2}=0$ consists of a straight line and a circle.
3. Find the pole of the focal chord of the parabola $y^{2}=4 a x$ passing through $(9 a, 6 a)$.
4. A sphere of constant radius k passes through the origin O and meets the axis in A, B, C. Prove that the locus of the centroid of triangle ABC is the sphere

$$
9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2} .
$$

5. Find the equation of the circle cutting $x^{2}+y^{2}+2 x-9=0, \quad x^{2}+y^{2}-8 x-9=0 \quad$ orthogonally and touching $y=x+4$.

Part - II (Marks : 12)

Answer any three questions:

1. a) If $y=e^{a \sin ^{-1} x}$ then show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0
$$

b) Find the values of a and b such that

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{a \sin 2 x-b \sin x}{x^{3}}=1
$$

c) Expand $\sin x$ in powers of x in infinite series. State the condition under which the expansion is valid.
d) If $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$

Show that both partial derivatives exist at $(0,0)$ but f is not continuous at $(0,0)$.
e) If $u=x f\left(\frac{y}{x}\right)+g\left(\frac{y}{x}\right)$, then find the value of $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$.

Part - III (Marks : 12)

Answer any three questions:

1. State and prove the Fundamental Theorem of Integral Calculus.

4
2. Prove that $\frac{1}{2}<\int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}+x^{3}}}<\frac{\pi}{6}$
3. Show that
a) $B(m, n)=B(n, m)$
b) $B(m, n)=2 \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{2 m-1}(\cos \theta)^{2 n-1} d \theta$
4. a) Test the convergence of the integral $\int_{0}^{1} \frac{d x}{x^{2 / 3}}$
b) Evaluate, if possible, $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$
5. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the region enclosed by the triangle having its vertices at $(0,0),(1,0),(1,1)$.

