Ex/SC/MATH/UG/CORE/TH/03/2022
 B. Sc. Mathematics (Hons.) Examination, 2022

(1st Year, 2nd Semester)
 Real Analysis
 Paper - Core-3

Time : Two hours
Full Marks: 40
Use separate answer script for each Part.

Part - I (Marks : 24)

Answer Q. No. 1 and any four from the rest.

1. Show that $[0,1]$ and $[0,1] \times[0,1]$ have the same cardinality.

4
2. Let F be an Archimedean ordered field. Show that if F satisfies Cantor's nested interval property then F satisfies Dedekind Completeness property.
3. Show that the set $\{m+n \sqrt{2}: m, n \in Z\}$ is dense in \mathbb{R}. 5
4. Prove that in \mathbb{R}, finite intersection of open sets is open. Give examples to show that arbitrary intersection of open sets may not be open.
5. Let S be a non-empty subset of \mathbb{R}. If S is a clopen set then show that $S=\mathbb{R}$. Give an example of a clopen set S in \mathbb{Q} such that $S \neq \varnothing, S \neq \mathbb{Q}$. 4+1
6. Show that every closed and bounded set in \mathbb{R} is compact. Does the same hold in \mathbb{Q} ? If not, then give an example.
7. Justify from the definition of a compact set whether the following sets are compact or not: (i) The set of natural numbers \mathbb{N} (ii) $(0,1)$

Part - II (Marks : 16)

Answer any four questions. $\quad 4 \times 4=16$ All questions carry equal marks.

1. i) Give an example of a sequence of rational numbers that converges to an irrational number.
ii) Give an example of a sequence of irrational numbers that converges to a rational number.
iii) Give an example of divergent sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ such that the sequence $\left\{u_{n}+v_{n}\right\}$ is convergent.
iv) Give an example of divergent $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ such that the sequence $\left\{u_{n} v_{n}\right\}$ is convergent.

$$
1+1+1+1=4
$$

2. i) Show that the sequence $\left\{u_{n}\right\}$ defined by $0<u_{1}<u_{2}$ and $u_{n+2}=\frac{1}{2}\left(u_{n}+u_{n+1}\right)$, is convergent.
ii) Find the limit.

1
3. Using Cauchy's general principle of convergence
i) Prove that the sequence $\left\{\frac{n}{n+1}\right\}$ is convergent.
ii) Prove that the sequence $\left\{u_{n}\right\}$, where $u_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}$ is not convergent.
4. i) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, where $p>0$.
5. i) Show that the series
$1+\frac{\alpha \cdot \beta}{1 \cdot \gamma} x+\frac{\alpha(\alpha+1) \beta(\beta+1)}{1.2 \cdot \gamma(\gamma+1)} x^{2}+\frac{\alpha(\alpha+1)(\alpha+2) \beta(\beta+1)(\beta+2)}{1.2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)} x^{3}+\cdots$,
where $\alpha, \beta, \gamma, x>0$ is convergent if $0<x<1$ and divergent if $x>1$.
ii) Also, when $x=1$, show that the series is convergent if $\gamma>\alpha+\beta$ and divergent if $\gamma \leq \alpha+\beta$.
6. Show that the series

$$
\frac{1}{(1+a)^{p}}-\frac{1}{(2+a)^{p}}+\frac{1}{(3+a)^{p}}-\cdots, a>0
$$

is
i) absolutely convergent if $p>1$.
ii) conditionally convergent if $0<p \leq 1$. 2

