B. Sc. Chemistry Examination, 2022

(3rd Year, 5th Semester, CBCS, Supplementary)

CHEMISTRY (CORE)

Paper – Core / Chem/Th- 14

Organometallics; Inorganic Reaction Mechanism and Coordination Chemistry of Non-Transitional
Elemments + Quantum Mechanics - II, Electrical and Magnetic Properties of Materials
Time: Two hours

Full Marks: 40

(20 marks for each unit)

Use a separate answer script for each unit.

UNIT - 5141 - I

- 1. For the reaction scheme:
 - A + B $\stackrel{K}{=}$ C $\stackrel{k}{=}$ Products, where K and k are equilibrium constant and first-order rate constant, respectively. Derive the rate expression with the initial condition $[B]_0 >> [A]_0$.
- 2. The free energy profile for a pure dissociative (D) substitution in an octahedral transition metal complex should be smelled with two transition states having difference in energy. Discuss critically.
- 3. For capturing K⁺ (among alkali metal ions like Li⁺, Na⁺, K⁺ and Cs⁺), 18-Crown-6 is the best host. State the probable reasons for this. Do you agree that this reaction is a selective one for K⁺?
- 4. The υ(NO) stretching frequency depends on the M—N—O angle in the nitrosyl complexes. Comment.
- 5. Define oxidative addition reaction with one example.
- 6. Determine the number of metal-metal bonds(s) in the following complexes which obey the 18 electron rule.
 - i) $(CO)_2Rh(\mu-Cl)_2Rh(CO)_2$
 - ii) $(\eta^5 C_5 H_5)(CO) Fe(\mu CO)_2 Fe(CO)(\eta^5 C_5 H_5)$
- 7. Arrange the following species with the increasing order of υ(CO) stretching frequency. Give explanation.
 2
 [Ni(CO)₄], [Co(CO)₄] and [Fe(CO)₄]²-
- 8. Explain why in [Pt(C₂(CN)₄)(PPh₃)₂], the C—C bond length is close to the single bond distance.

UNIT: 5142-P

9. (a) Draw the quantum probability density curves in v=2 and v=7 states of one dimensional Harmonic Oscillator. How do they differ from the classical probability curves?

2

- (b) Find the eigenvalues of \hat{l}_z and \hat{l}^2 operators for the spherical harmonics $Y_{3,-2}(\theta,\phi)$ where the symbols have their usual significances.
- (c) Compare the wave functions of a particle in box with infinite potential at the walls and a linear harmonic oscillator with proper justification.
- 10. Answer the following questions:

3 ×3

2

- (a) Given the normalized wave function for 1s electron of H atom: $\pi^{-1/2}a_0^{-3/2}e^{-r/a_0}$, calculate the average distance of an electron from the nucleus in the ground state of H atom.
- (b) Evaluate the uncertainty in linear momentum at the zero point level of one dimensional harmonic oscillator.
- (c) Write down the differential equation containing azimuth angle (φ) as a variable of a rigid rotor. Solve it using the boundary conditions.
- 11. (a) How do the HOMO-LUMO separation in atoms and molecules affect the polarizability?
 - (b) The presence of a dielectric in a parallel plate capacitor decreases its electric field Explain.
 - (c) Considering only the effect of spin of unpaired electrons calculate the change in apparent mass of 0.1 M of a solution of CoF_6^{3-} ion in one cm diameter test tube suspended in a Gouy balance when magnetic field of 5000 G is turned on.

1.5+2+2.5