Ex/SC/CHEM/UG/CORE/TH/03/2022

B. Sc. (CHEMISTRY) Examination, 2022

(1st Year, 2nd Semester)

CHEMISTRY (CORE)

Paper - Core/Chem/TH/03

Time: Two hours Full Marks: 40

(20 marks for each unit)

(Use a separate Answer script for each Unit)

UNIT: 2031-I

1. Answer *any five* questions:

 2×5

- a) From its position in the periodic table, if it is realized that a newly discovered short-lived radioactive element is a metal, then using the Born-Haber cycle, the Born-Lande equation, radius-ratio calculations and any other aspect necessary, how can you predict if this element would form an oxide or not?
- b) Derive the Born-Lande equation for determining the lattice energy of NaCl. 2
- c) Use suitable calculations to derive the limiting condition for radius-ratio of cation to anion for a body-centred cubic lattice having coordination number eight.
- d) Melting points of the following fluorides, provided in parentheses, are not in accordance with the Fajan's rules. Justify or contradict highlighting

essential features of Fajan's rules.

LiF (845°C); NaF (993°C); KF (858°C); RbF (795°C); CsF (682°C).

- e) Using *either* the concept of hybridization *or* VSEPR explain shape of BrF₃.
- f) The radii of Sr²⁺ and F⁻ are 113 pm and 136 pm respectively. Using radius ratio calculations predict its structure. What is such a structure called?

$$1\frac{1}{2} + \frac{1}{2}$$

- g) In your own words, explain how percentage ionic character is determined across a covalent bond. If the bond length of HF is 0.91 Å and its dipole moment 1.98 debye. Calculate percentage ionic character present. $1\frac{1}{2} + \frac{1}{2}$
- a) Define half life and mean life. One microgram of phosphorous-32 was injected into a living system for biological tracer studies. The half-life of ³²P₁₅ is 14.3 days. How long will it take for the radioactivity to fall to 10% of the initial value?
 - b) What is nuclear shell model? Give two examples for doubly magic nucleus to explain the fact. 2
 - c) Red giant stars, which are cooler than the Sun, produce energy by means of the reactions, ${}^{9}\text{Be}_{4} + {}^{1}\text{H}_{1} \rightarrow {}^{6}\text{Li}_{13} + {}^{4}\text{He}_{2}$

ii) Predict the products of the following reaction and explain the mechanism.

$$Erythro-PhCHD-CHPh-OCOCH_3 \longrightarrow \Delta$$

iii)
$$H$$
 $*$
 Cl
 $NaOEt (1 mole)$
 $EtOH$
 $* = ^{14}C$

- 6. Answer *any two* of the following questions: $2\frac{1}{2} \times 2$
 - a) Account for the following observations:

In the following reaction,

$$CH_{3}CH_{2}CH_{2}CH_{2} - OTS + X^{\Theta} \xrightarrow{Acetone} CH_{3}CH_{2}CH_{2} - CH_{2} - X + TSO$$
 The order of nucleophilicity for various halide is
$$Cl^{\Theta} > Br^{\Theta} > I^{\Theta} \text{ when } Bu_{4} \overset{\oplus}{N}X^{\Theta} \text{ is used, but the}$$
 order is $I^{\Theta} > Br^{\Theta} > Cl^{\Theta}$ when LiX is used as reagent.

- b) Write down the structures of all monochlorinated products when 2-methylbutane is chlorinated at 300°C. What would be the anticipated percent yield of the major product?
- c) i) Propose a mechanism for the following reaction and justify your answer. $1\frac{1}{2}$

$$\begin{array}{ccc}
\text{Me} \\
\text{C-Me} \\
\text{Cl}
\end{array}
\xrightarrow{\text{MeOH}}$$

From the nuclidic mass ⁹Be (9.0154) and ⁶Li (6.01702), calculate the energy released in MeV and compare it with the energy released in carbon cycle (30 MeV) and in solar-hydrogen cycle (26.6 MeV).

2

- d) It is well known that the ratio of the number of neutrons to protons decide the so called belt of nuclear stability which can be shown by drawing a graph. Using this, explain the decay process involving $^{14}C_6$, $^{23}Mg_{12}$ and $^{214}Po_{84}$. $1\frac{1}{2}$
- e) $^{246}\mathrm{Cf_{90}}$ was emitted along with neutrons, when an unknown radioactive substance was bombarded using $^{12}\mathrm{C}$ as projectile. Predict the unknown radioactive substance and the type of nuclear reaction involved. $1\frac{1}{2}$

UNIT: 2032-O

3. a) Identify \mathbf{H}_a and \mathbf{H}_b in the following molecules as homotopic, enantiotopic and diastereotopic.

i)
$$H_a$$
 H_b H_a H_b H_b H_b

b) Designate \mathbf{H}_a and \mathbf{H}_b in the following compound by *pro-* R / *pro-S* configuration.

[Turn over

$$H_{b''''} C = C = C$$

$$H$$

c) The rate of racemisation of 3'-nitro derivative (A) is much lower than that of 5'-nitro derivative (B).

d) Which of the following compound is non-resolvable and why? Q 1

- e) Find the absolute configuration of the product/s obtained when benzaldehyde undergoes nucleophilic attack by CH₃MgBr on the Re-face.
- 4. a) Butan-2, 3-dione $\begin{pmatrix} CH_3 C C CH_3 \\ \parallel & \parallel \\ O & O \end{pmatrix}$ exists almost

exclusively in the Keto form whereas cyclo pentan-1,2dione exist exclusively in the enol form – explain. b) Predict the increasing rate of reaction rate of the following bases with Me₃B and explain your response.

 \ddot{N} : \ddot{N} - $CH_2CH_2CH_3$, $(CH_3CH_2CH_2)_3\ddot{N}$

c) Arrange the following compounds in order of increasing acidity.

$$CH_3 - CH = CH - COOH$$
, $CH_3CH_2CH_2 - COOH$,
 $CH_3 - C \equiv C - COOH$

- d) The photochemical chlorination of n-propane is less selective than photochemical bromination of n-propane. Explain the above reactions on the basis of Hammond's postulate. $1\frac{1}{2}$
- 5. Predict the product(s) of the following reactions and explain with plausible mechanism. Identify the major product resulting from each of the following reactions (Answer *any two*).

