- b) A sample of milk kept at 27°C is found to sour 40 times as rapidly as when it is kept at 4°C. Estimate the activation energy for the souring process. 3+2
- 5. The reaction $2NO + O_2 \rightarrow 2NO_2$ proceeds through the following elementary steps:

$$2NO \xrightarrow{k_1} N_2O_2(rapid); \Delta H = x$$

$$N_2O_2 + O_2 \xrightarrow{k_2} 2NO_2(slow)$$

Derive the differential rate expression and mention the overall order of the reaction. What can be said about the sign of x if the overall rate constant is found to decrease as temperature increases? 3+2

- 6. a) Predict the effect of increase of ionic strength on the rate constant for each of the following reactions:
 - i) $S_2O_8^{2-} + I^- \rightarrow Product$
 - ii) $C_{12}H_{22}O_{11} + OH^- \rightarrow Product$
 - b) Calculate ΔG^{\neq} , ΔH^{\neq} and ΔS^{\neq} for the second order reaction $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ at 500 K. Given $A = 2.0 \times 10^9 \, \text{s}^{-1}$ and the energy of activation is $111 \, \text{kJ mol}^{-1}$.

B. Sc. (CHEMISTRY) Examination, 2022

(1st Year, 2nd Semester)

CHEMISTRY (CORE)

Paper - Chem/TH/04

Time: Two hours

Full Marks: 40

(20 marks for each unit)

(Use a separate Answer script for each Unit)

UNIT: 2041-P

- 1. Answer *any four* questions:
 - a) i) Test the cyclic rules for $\left(P + \frac{a}{v^2}\right)v = RT$, where the terms bear usual significances.
 - ii) Prove that the work done in isothermal reversible expansion is greater than that in irreversible expansion for a given change of state.

 2+3
 - b) Using the thermodynamic equation of state: $\left(\frac{\partial u}{\partial v}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_v P, \text{ prove that } C_P C_v = \frac{Tv\alpha^2}{\beta},$ where the terms bear usual significances.
 - c) i) Prove that the Joule Thomson co-efficient, $\mu_{JT} = -\frac{1}{C_P} \left(\frac{\partial H}{\partial P} \right)_T.$

Explain why μ_{JT} is zero for an ideal gas.

[Turn over

- ii) 2 moles of an ideal monatomic gas (r = 1.67) at 300 K and 10.13×10^5 Nm⁻² is allowed to expand to 1.013×10^5 Nm⁻² by a reversible adiabatic process. Calculate the final temperature, Δu and ΔH . (2+1)+2
- d) i) Justify the statement with necessary derivation

 "The formation and maintenance of smaller bubbles will need greater values of excess pressure than the larger ones"
 - ii) Calculate the enthalpy change for the reaction: $2H_2(g) + C_2H_2(g) = C_2H_6(g)$, if the bond energies are:

$$\in_{H-H} = 433 \text{ kJ mol}^{-1}, \ \in_{C-C} = 336 \text{ kJ mol}^{-1}$$
 $\in_{C=C} = 812 \text{ kJ mol}^{-1} \text{ and } \in_{C-H} = 416 \text{ kJ mol}^{-1}$
 $3+2$

e) For laminar flow of a liquid, prove that the coefficient of viscosity of the liquid, $\eta = \frac{\pi P R^4}{8l(dv/dt)}$, where the terms bear usual significances.

UNIT: 2042-P

Answer any four questions.

- 2. a) Draw the following plots and state the values of the slope and the intercept for each
 - i) log (rate) versus log (concentration of reactant) for an n-th order reaction.

- ii) log (initial rate) versus log(substrate concentration) at low substrate concentration for an enzyme catalyzed reaction.
- b) The reaction $A \rightarrow Products$ is "3/2" order with respect to A. Deduce the integrated rate law. Find the expression of half-life period. 2+3
- 3. a) At what value of K_M does the rate of an enzyme catalyzed reaction obeying Michaelis-Menten kinetics become one-eighth of its maximum value?
 - b) The slope and intercept of the plot of l/r versus l/[S] are 3.5×10^2 s and 5×10^4 mol⁻¹Ls respectively, where r and [S] are the rate and substrate concentration of an enzyme catalyzed reaction obeying Michaelis-Menten kinetics. Estimate the Michaelis constant (K_M) and turn over number when the initial enzyme concentration is 2.5×10^{-9} molL⁻¹.
- 4. a) The hydrolysis of a substance is simultaneously catalyzed by H⁺ and OH⁻ ions. The reaction is first order with respect to all the species. Write down the expression of the rate constant and hence show that

the rate is minimum when $[H^+] = \left[\frac{k_{OH^-}}{k_{H^+}} \cdot K_w\right]^{\frac{1}{2}}$; the terms have their usual significances.

[Turn over