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Abstract  

With the rapid progress in technology, research and implementation of digital 

computer based modern control techniques, has gained paramount importance for the 

operations of any system, over the past few decades. Automatic control of unmanned vehicle 

is one such research domain, where the computer based control technology has found its 

importance. This dissertation puts forward an unique concept of automatic control in the field 

of unmanned vehicular technology where the purpose of the control algorithm is to prevent 

occurrence of a precarious circumstance of collision which may occur when the two freely 

moveable vehicles comes close to one another. Control algorithm adopted in this dissertation 

is Coordinated Control, whose objective would be to prevent the collision of two vehicles, 

moving freely on an undefined trajectory but on a confined space. Every vehicle has a user-

specified range, preferably called Safety Zone around it, which is provided by employing 

Bluetooth device in the vehicles, and the trajectory of the vehicles has been modelled using 

the concept of Robot Kinematic Theory. The proposed Coordinated Controller has been 

designed using basic Coordinate Geometry and Pythagorean Theorem approach. The entire 

system with controller has been modelled in MATLAB Simulink environment. MATLAB 

TrueTime Toolbox has been used here for simulation of transmission and reception of data 

from one vehicle to another where a data element contains state vector of vehicles. The 

performance of the controller has been validated through the credible MATLAB-TrueTime 

based simulations results. 

Keywords- Anti-collision, Automatic control, Coordinate Control, Robot Kinematic, 

TrueTime 
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Chapter 1 

Introduction 

1.1 Literature Survey 

           Coordinate control is one of the most reliable techniques for automatic control. In 

recent research automatic control has become most popular due to the absence of human 

error. Automatic control is useful in various sectors such as power system [1]-[2], Intelligent 

Control Systems[3]; Stochastic Control, Neuro-fuzzy Control Systems[4], Automatic Control 

of Chemical  Processes, Automotive Control Systems, Thermal System Control, Robot and 

Manipulator Control[5], Process Control, Aerospace Control Systems[6], Motion and 

Navigation Control, Traffic and Transport Control[7], Defence and Military Systems Control, 

Studies on nuclear systems control[8], Control analysis of Social and Human Systems, 

Biomedical control systems. Real-Time Systems control, Real-Time and Fault-Tolerant 

Systems [9], Control of linear/nonlinear systems and Stability [10]. 

             Vehicular system control is contemporary research area for automatic control among 

the various system maintained above because the demand of automated control vehicle is 

rising. Due to the increase of number of man driven vehicles, the traffic jams, rough driving 

also increasing, that makes impulse increase of accidents. According to Willie D. Jones as 

reported in [11], in every second a person dies by a car crash. There is various ways to 

control vehicle systems automatically but coordinate control is the most proficient. 

Most of the automated control for the vehicle system is done by co-ordinated control 

(path tracking or path following). This path following or path tracking control is also one type 

of formation control where vehicles follow a specific track or behaviour, in other words it 

follows a command decided by user. There are several ways for formation control of 

vehicles, out of which three fundamental approaches have gained paramount importance over 

the past decades. They are namely: 
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1. Virtual structure approach 

In virtual structure approach every vehicle is controlled by a virtual robot. This virtual 

robot designs a predefined path for each and every vehicles and it controls every vehicles to 

converge on its predefined path through its controller. Here, the control signals are the error 

of state vector of each vehicles (state vector contains present co-ordinate, orientation and 

steering angles for each vehicles). The main advantages of the virtual structure approach is 

that it is reasonably easy to prescribe the coordinated behaviour for the group of vehicles, and 

during the steer the formation can be maintained very well, because the virtual structure can 

act as a whole in a given direction with some given orientation and maintains a rigid 

geometric relationship among multiple vehicles. However, the potential applications are 

limited if the formation has to maintain the exact same virtual structure all the time, 

especially when the formation shape is time varying or needs to be frequently reconfigured. 

Here the entire formation is considered as a rigid body. The entire structure follows a 

required predetermined dynamics, and the required structure motion translated to individual 

trajectories, for each one of vehicles structure [12]. A nonlinear control law was presented for 

formation control of a group of vehicles, using Lyapunov approach and the vehicle bicycle 

model [13].  

In [14] the authors present a co-ordinated path following control problem of 

nonholonomic vehicles, here the problem can be seen as a subtask of the general formation 

control problem. The solution to this problem is defined by a two layer architecture. In the 

inner layer, the kinematic model of the vehicle is used to solve the problem of position and 

orientation, with respect to a desired path. In this inner layer, the steering rate is utilized to 

form chained model control. And in the outer layer, the coordinated problem is solved by 

using a virtual vehicle to each controlled vehicle. The virtual vehicle sets predefined tasks 

which is required for coordination. The control input is the time derivative of the 

parameterized path of the virtual vehicle. Based on the kinematic model, a speed input is 

combined with the input to converge   the controlled vehicle with the virtual vehicle.  

Another similar work has been shown in [15] where the authors’ deals with a group of 

car like vehicles, and each vehicle is represented by the bicycle kinematic model.  Lyapunov 

approach has been introduced for nonlinear control law. The position errors of all vehicles 

with respect to the desired paths, and the coordination errors that trace deviations from the 

reference geometric formation are included in the Lyapunov function.  
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A combination of the virtual structure and path following approaches has been used to 

derive the formation architecture in [16]. A formation controller is used for the kinematic 

model of two-degree-of-freedom unicycle-type mobile robots. Here the approach is extended 

to consider the formation controller for including the physical dimensions and dynamics of 

the robots. Here the controller is designed in such a way that to synchronize the robot's 

motion, the path derivative is left as a free input and to justify this simulation results with 

three robots has been included to show the performance of control system. Here Lyapunov 

function has been used to design the controller. 

The path tracking controller for an articulated vehicle (a semitrailer-like vehicle) 

using time scale transformation and exact linearization has been designed in [17]. Here the 

basic advantage is, during the forward and/or backward movement the proposed controller 

allows articulated vehicles to follow arbitrary paths consisting of arcs and lines. So here we 

can observe the experimental result of the 8 shaped path tracking control of the articulated 

vehicle, where moving backward is also presented. Here the controller has been designed as 

follows. First the authors define a new time scale which is identical to the distance along the 

desired path and using a state equation with this time scale they describe the model of the 

vehicle. Then the authors linearize this state equation with appropriate state coordinate 

transformation and feedback. Finally, for the linearized system a linear controller is designed. 

Back stepping method is applied for path tracking control in [18]. In this paper, the 

authors have proposed the formation control problem of a group of wheeled mobile robots 

with a virtual robot. According to the requirement desired position of each robot is calculated 

from the virtual structure, which is determined by the virtual robot and the desired formation 

shape. Then, virtual orientation control input is applied and a nonlinear control algorithm is 

designed using backstepping technique. After that a mathematical stability is analysed 

adopting the cascaded system theorem. Then a strict stability analysis is done which shows 

the formation tracking errors are globally uniformly asymptotically convergent to zero. In the 

virtual structure approach there is no hierarchy in the formation, no leaders or followers, and 

the entire group moves as a single rigid body. A virtual structure constituted by all robots 

tracks forms the set of predefined trajectories and each robot tracks the corresponding 

trajectory generated by the formation shape. 
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2. Behaviour -based approach 

In the behaviour based approach, different tasks are defined for each robot in the 

group such as obstacle avoidance, destination arrival, formation keeping etc. Each task 

generates a different motion command for the robot based on relative importance. The 

differences between different behaviour based approaches are due to the way different motion 

commands are combined to a single control input. The behavioural approach for multi-robot 

teams is described where the control strategies for goal seeking, collision avoidance and 

formation maintenance are achieved with the implementation of formation behaviours with 

other navigational behaviours. The advantage is that control strategies can be derived 

naturally when vehicles have multiple competing objectives, and an explicit feedback is also 

included through communication between neighbours.  

The disadvantages are that it is difficult to analyze the approach mathematically and 

guarantee the group stability In competitive methods the group behaviour cannot be explicitly 

defined, and a supervisor is in charge of ranking priorities to different tasks, and then, only 

the most important task is preformed, one task at a time. 

A neural architecture for learning Coordination of different behaviours in a situated 

agent has been described in [19].Behaviour-oriented approaches define the control of an 

agent directly in terms of its tasks. Here key challenge is to manage the agent’s ongoing tasks 

so that action dispute is minimized and desired levels of compliance with overall goals are 

achieved. The mechanisms has presented for adapting the coordination strategy through short 

and long-term suppression and time varying performance feedback. Finally, to demonstrate 

the effectiveness of this method there has preliminary experimental results for a simulated 

robot. Behaviour-based methods have come out as a viable alternative to traditional 

approaches for designing intelligent agents and autonomous robots. These systems split 

responsibility for making decisions to carry out an agent’s mission into multiple behaviour 

modules, for which each dedicated to solve a distinct task. One approach to resolving this is 

to learn when behaviours should be activated [20]. It has been completely discussed by 

Mataric [21] that learning algorithms often fail to converge when presented with multiple 

goals, so such successes have largely been limited to single-task domains. 

A novel feedback control law for coordinating motions of multiple holonomic mobile 

robots to conquer or enclose a target by forming troop formations has shown in [22]. This 

motion coordination is a cooperative behaviour which provides security against intruders in 

surveillance areas. In this control law each robot has its own coordinate system and to 
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accomplish this cooperative behaviour without making any collision it senses a target or 

intruder, other robots and obstacles. All the robots are asymptotically stabilized and they 

form formations enclosing a target although there has no centralized controller and each robot 

has local feedback that is relative position feedback. Each robot especially has a vector called 

“a formation vector” and formations are controllable by the vectors. There is a reactive 

control framework for determining the formation vectors, in which robots have reactions 

heuristically designed according to this cooperative behaviour. Forming formations is a task 

of multiple mobile robots in a sense of security against invaders, which is capturing or 

enclosing an invader and prevention of invasions by forming formations [23]. 

Architecture for controlling mobile robots is described in [24]. Layers of control 

system are built to let the robot operate at increasing levels of competence. With 

asynchronous modules, layers are made up that communicate over low-band width channels. 

Each module is an instance of a fairly simple computational machine. Higher-level layers can 

link up the roles of lower levels by suppressing their outputs. However, when higher levels 

are added lower levels continue to function. The system has been used to control a mobile 

robot wandering around unconstrained areas; eventually it is intended to control a robot that 

wanders a large area using an on-board arm to perform simple tasks. There the advantages are 

concerning robustness, compsability and testability. 

A reactive behaviour that implements formations in multi-robot teams are delivered 

and evaluated in [25]. To enable a robotic team that reaches navigational goals, avoids 

hazards and simultaneously remain in formation, the formation behaviours are integrated with 

other navigational behaviours. The behaviours has implemented in simulation, on robots in 

the laboratory. The technique has been incorporated with the Autonomous Robot 

Architecture (AuRA). The results demonstrate their appropriateness in different types of task 

environments and the value of various types of formations in autonomous, human-led and 

communications-restricted applications.  

 

3. Leader following approach 

            In leader-follower approach, some robots are defined as leaders, while others act as 

followers. The leader’s task is concerned with some group objectives, such as trajectory 

tracking, navigation, obstacle avoidance etc., where the followers are only required to follow 

the leaders. A great deal of research has been done using the leader-follower approach. An 

advantage of the leader following approach is that it is easy to understand and implement. 
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In addition, the formation can still be maintained even if the leader is distracted by some 

disturbances. However, the disadvantage related to this approach is that there is no explicit 

feedback to the formation; that is, there is no explicit feedback from the followers to the 

leader in this case.  

A combined kinematic or torque control law has been developed for leader-follower 

based formation control using backstepping to accompany the dynamics of the robots and the 

formation with kinematic-based formation controllers[26]. The asymptotic stability of the 

entire formation is ensured using Lyapunov theory. Here kinematic controller is developed 

for the control strategies of single mobile robots and the idea of virtual leaders. The virtual 

leader is replaced with a physical mobile robot leader and the assumption of constant 

reference velocities is removed.  A novel approach is taken to develop the dynamical 

controller such that the torque control inputs for the follower robots include the dynamics of 

its leader as well as the dynamics of the follower robot, and in this case it is considered that 

all robot dynamics are known. The sensory information has used to calculate velocity control 

inputs in both [27] and [28], in [27] local sensory information and in [28] vision based 

approach to leader-following has been undertaken.  A modified leader follower control is 

introduced in [29] where Cartesian coordinates are used rather than polar. 

A Receding-Horizon-Leader-Follower (RHLF) control framework to solve the 

formation problem of multiple non-holonomic mobile robots with a rapid error convergence 

rate has been shown in [30]. To maintain the desired leader-follower relationship, there is a 

Separation Bearing Orientation Scheme (SBOS) for two-robot formations and Separation-

Separation-Orientation-Scheme (SSOS) for three robot formations in deriving the desired 

postures of the followers. Unlike the other leader–follower approaches in the existing 

literature, the orientation deviations between the leaders and followers are explicitly 

controlled in this framework. It enables to successfully solve formation controls when robots 

move backwards, which is termed as a formation backwards problem in this paper. Further, 

they have proposed to incorporate the receding-horizon scheme into their leader–follower 

controller to generate a fast convergence rate of the formation tracking errors. 

The work reported in [31] deals with leader–follower formations of nonholonomic 

mobile robots, introducing a formation control strategy alternative to those existing in the 

literature. Suitable constraints restrict the set of leader’s possible paths and admissible 

positions of the follower with respect to the leader. Here the proposed strategy has the 

characteristics that the follower position is not rigidly fixed with respect to the leader but 

varies in proper circle arcs centred in the leader reference frame.  In the proposed leader–
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follower control, the follower tracks a reference trajectory based on the leader position and 

predetermined formation without the need for leader’s velocity and dynamics in the leader–

follower formation control of multiple under actuated autonomous underwater vehicles 

(AUVs). This is desirable in marine robotics due to weak underwater communication and low 

bandwidth. A virtual vehicle is constructed such that its trajectory converges to the reference 

trajectory of the follower. Position tracking control is designed for the follower to track the 

virtual vehicle using Lyapunov and backstepping synthesis. A sliding mode control has 

discussed in [32].  

The problem of modelling and controlling leader-follower formation of mobile robots 

is also discussed in [33], hence a novel kinematics model for leader-follower robot formation 

has formulated based on the relative motion states between the robots and the local motion of 

the follower robot.  

Apart from the three approaches described above for the coordinated control, there 

have been other approaches, such as Model predictive control which are described in [34], 

[35] and [36]. A graph theory based solution, which uses the Laplacian eigen values of the 

graph for stability analysis, is presented in [37]. A combination of the three fundamental 

approaches (Virtual-structure approach, behavioural and leader-follower approach) is 

described in [38]. 

 

1.2 Reviews on TrueTime 

TrueTime is a MATLAB or Simulink-based simulator for real-time control systems 

that has been developed at Lund University since 1999. TrueTime facilitates co-simulation of 

controller task execution in real-time kernels, network transmissions, and continuous plant 

dynamics. Some of the features of the TrueTime simulator are – 

 Simulation of complex controller timing due to code execution, task scheduling, and 

wired/wireless network communication. 

 Possibility to write tasks as M-files or C++ functions. It is also possible to call 

Simulink block diagrams from within the code functions. 

 Network blocks (Ethernet, CAN, TDMA, FDMA, Round Robin, Switched Ethernet, 

FlexRay and PROFINET). 

 Wireless network block (802.11b WLAN and 802.15.4 ZigBee). 

 Battery-powered devices, Dynamic Voltage Scaling, and local clocks.  
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          Various real time represent of the systems has been done by using TrueTime simulator. 

The use of event triggering as well as time triggering makes TrueTime a compact simulator. 

It is possible to simulate the temporal behaviour of a multi-tasking real-time kernel 

containing controller tasks which is shown in [39]. The controller tasks control processes 

modelled as ordinary Simulink blocks. Different scheduling policies have been used, such as 

priority driven or deadline-driven scheduling.  The effects of context switching and interrupt 

handling are taken into account; with TrueTime here it is also possible to simulate the timing 

behaviour of communication networks which are used in this networked control loops. 

 

An extension of the Embedded Systems Modelling Language (ESMoL) tool chain 

that automatically synthesizes Time Triggered Architecture (TTA) based TrueTime models 

have been shown in [40]. Here time invariant Simulink models are imported into the ESMoL 

modelling environment where they are provided with details of the desired deployment 

platforms. A constraint based offline scheduler then generates the static TTA execution 

schedules. Finally, new TrueTime models synthesized that encapsulate all of the TTA 

execution semantics. Using this approach it is possible to rapidly prototype, evaluate, and 

modify controller designs and also their hardware platforms to better understand deployment 

induced performance and timing effects. 

A brief introduction to the TrueTime simulator and then several examples on how 

TrueTime can be used to simulate networked control systems are shown in [41]. Among the 

examples there are time-triggered and event-based networked controls and Ad-hoc On-

Demand Distance Vector (AODV) routing in wireless ad-hoc networks are also shown. In 

[42] TrueTime toolbox (for MATLAB) has been used as a simple and easy way to realize 

several network types. There is a demonstration of how to setup simple TrueTime network 

control system with an explanation of its basic settings and parameters. In the last section 

they briefly compared the simulation results of motor control system which uses different 

network types. 

In [43] details of all phases of adapting TrueTime simulation necessary for analysis of 

behaviour of WirelessHART protocol implemented for control of a system consisting of three 

nodes for control of DC servo motor are presented. At the end the authors have presented 

results of simulation for control and planning of execution tasks in WirelessHART network. 

[44] defines a complex road tunnel scenario involving multiple mobile robots navigating in a 

sensor network environment. Here a TrueTime simulation model of the tunnel scenario is 

developed. The TrueTime simulator allows concurrent simulation of the physical robots and 
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their environment, the software in the nodes, the network routing, the radio communication, 

and the ultra-sound navigation system.  

For the installation of industrial field buses in new industrial applications and plants 

there is need of new approaches to the designing of the control system. The modern 

networked control systems are usual decentralized systems interconnected by industrial 

network cables or wirelessly [45]. The paper describes networked control in industrial 

applications and the possibility to simulate the control systems by TrueTime. Wireless Sensor 

networks are projected by linking existing and emerging technologies of computers, wireless 

radio communications systems and sophisticated sensors to be used in application. There is a 

description of some typical simulation methods in Wireless Sensor Networks (WSN) [46] 

where the authors present the TrueTime simulation tool and introduce key steps of WSN 

frame construction and node models creation and function code written. Finally, they 

illuminate the simulation method by an example of route research. The results show that 

TrueTime provides a novel tool for simulating wireless sensor networks. 

TrueTime makes it possible to simulate the timely behaviour of real-time kernels 

executing controller tasks [47]. TrueTime also makes it possible to simulate simple models of 

network protocols and their influence on networked control loops. One example for the 

simulation of three phase servo motor using TrueTime simulator has shown in [48]. 

 

1.3 Scope and Organization of the Dissertation 

The main objective of this thesis is to construct control logic for automatic control of 

freely moveable vehicles, and to implement that logic so that during the movement of the 

vehicles they do not collide to each other. Here every vehicle will have a definite range 

around it, which will be obtained by using Bluetooth device. Control logic will be such that 

the range of the vehicles should not overlap each other to avoid collision. Basic Coordinate 

geometry concepts are utilized here to denote the location of every vehicle and kinematic 

models are constructed for the modelling of vehicles. A MATLAB SIMULINK based 

approach with the TrueTime toolbox is used to obtain a credible simulation. 

The rest of the dissertation is organized as follows: 
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Chapter 2: Provides an overview on TrueTime Toolbox which gives preliminary idea about 

each of its models. Some examples have been explained with the simulation result for the 

better understanding of TrueTime Simulator. 

Chapter 3: Demonstrates the mathematical modelling for the Kinematic model of the 

vehicles. In this section the mathematical expression for the controller is also discussed. 

Chapter 4: Depicts the simulation and results for the controls of freely moveable vehicles 

achieve collision avoidance. In this section justification of the work done is also presented 

and substantiated with simulation results. 

Chapter 5: Presents Conclusion to this dissertation and suggests scope for future work.  
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Chapter 2 

TrueTime Simulator 

2.1 Reason behind using TrueTime  

For the simulation of coordinated control, which is discussed in this thesis there is 

need of frequent data exchange between the adjacent car models. So data transmitters and 

receivers are required for the simulation of this model. TrueTime network has the capability 

of simulating sending and receiving data wired or wirelessly. Apart from sending and 

receiving, network block simulates medium access and packet transmission in a local area 

network. When a node tries to transmit a message (using the primitive ttSendMsg), a 

triggering signal is sent to the network block on the corresponding input channel. When the 

simulated transmission of the message is finished, the network block sends a new triggering 

signal on the output channel corresponding to the receiving node. Thus data transfer can be 

achieved efficiently and wirelessly.  

Apart from these TrueTime allows the execution time of tasks and the transmission 

times of messages to be modelled as constant, random, or data-dependent. Furthermore, 

TrueTime allows simulation of context switching and task synchronization using events or 

monitors.  

 

2.2 TrueTime Toolbox 

TrueTime toolbox is a MATLAB or Simulink-based simulator for real-time control 

systems. This toolbox helps to co-simulation of controller task execution in real-time kernels, 

network transmissions and continuous plant dynamics.  

This toolbox provides possibility to write tasks as M-files, C++ functions or call 

Simulink block diagrams from within the code functions. TrueTime blocks include generally 

used networks as Ethernet, CAN, TDMA, FDMA, Round Robin or Switched Ethernet). In a 

brief description we can say that TrueTime is a small library of simulation blocks which 

extends usability of MATLAB/Simulink to simulate discrete network process control [49].  

In every TrueTime toolbox simulation scheme there should be four main parts these 

are TrueTime kernel (computer, I/O device or some embedded system), True Time network 

(Network model wired or wireless and an ultrasound network), True Time sender and 

receiver and a controlled process. There is also an optional part TrueTime battery (all blocks 
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are shown on Fig. 2.1). TrueTime kernel is responsible for I/O and network data acquisition 

or data processing and calculations. It can realize a control algorithm/logic and it is the 

“brain” of every device. It uses several simple M-files (modified by us to satisfy our needs) 

which handle all mentioned operations. In the kernel can be executed several independent 

tasks (periodic, nonperiodic) which can cooperate on the same goal.  

TrueTime network or TrueTime Wireless network are blocks in which we choose 

desired network type and set its corresponding parameters. If we include TrueTime battery 

block we can set power supply for chosen TrueTime kernels. As battery is running out of 

power we can implement some specific behaviour to avoid collapse of our control system. 

 

 

Figure 2.1 TrueTime 2.0 beta 6 Block Library [TrueTime 2.0 Software] 
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2.3 Description of TrueTime Block Library 

As fig 2.1 shows TrueTime Block Library has six types of simulation block, each 

block has its own characteristics thus capability to perform. The detailed description of each 

block is given below: 

 

2.3.1 TrueTime Kernel Block 

The TRUETIME blocks are connected with ordinary Simulink blocks to form a real 

time control system. Before a simulation can be run, however, it is necessary to initialize 

kernel blocks and network blocks, and to create tasks, interrupt handlers, timers, events, 

monitors, etc for the simulation.  

The execution of tasks and interrupt handlers is defined by code functions. A code 

function is further divided into code segments according to the execution model shown in fig 

2.2. All execution of user code is done in the beginning of each code segment. The execution 

time of each segment should be returned by the code function. If the execution time of the 

first segment is 2 ms., this means that the delay from input to output for this task will be at 

least 2 ms. However, pre-emption from higher priority tasks may cause the delay to be 

longer. The second segment returns a negative execution time. This is used to indicate end of 

execution, i.e. that there are no more segments to execute. 

 

 

 
 

Figure 2.2 Sequence of segments executed in order by the Kernel [49] 
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The initialization code and the code that is executed during simulation may be written 

either as MATLAB M-files or as C++ code (for increased simulation speed). The name of the 

M-file would be same as the name of init function, which is declared on the block parameter 

of TrueTime Kernel block. Example of TrueTime kernel settings dialog is on the Fig. 2.3. As 

mentioned before it can provide control logic and data processing. Firstly it is needed to set 

basic parameters for this block.  

 

Figure 2.3 function block parameter of TrueTime Kernel block [49] 

 

 

TrueTime kernel parameters are as follows: 

 Init Function: - It defines the name of an M-file or a MEX file where the 

initialization code is stored. 

 Init Function Argument: - It is an optional argument to the initialization script. This 

can be any MATLAB structure. 

 Number of Analog input and out: - We need to mention here the number of input 

and output ports according to the requirement for any system execution. 

 Number of external triggers: - number of external triggering required for the 

execution of any system. 
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 Node number: - It is the number of that block among all the TrueTime blocks. 

 Clock offset and Drift: - Clock offset is a constant time offset from the nominal 

time; it sets time offset from first run of simulation. And clock drift can setup value 

time difference from standard time. When clock drift is set to 0.01, means that device 

local time will run 1% faster than real-time. 

 Energy supply input port: - Enable this check box if the kernel should depend on a 

power source. 

 

2.3.2 TrueTime Network Block 

The TrueTime network block simulates medium access and packet transmission in a 

local area network. When a node tries to transmit a message using the primitive ttSendMsg, a 

triggering signal is sent to the network block on the corresponding input channel. When the 

simulated transmission of the message is finished, the network block sends a new triggering 

signal on the output channel corresponding to the receiving node. The transmitted message is 

put in a buffer at the receiving computer node. A message contains information about the 

sending and the receiving computer node, arbitrary user data which is typically measurement 

signals or control signals, the length of the message, and optional real-time attributes such as 

a priority or a deadline.  

The network block is configured through the block mask dialog, using the command 

ttSetNetwork Parameter; it is also possible to change some parameters on source block 

parameter of network block which is shown in fig 2.4. The following network parameters are 

common to all models: 

 Network number: - The number of the network block. The networks must be 

numbered from 1 and upwards. In this simulator Wired and wireless networks are not 

allowed to use the same number. 

 Number of nodes: - The number of nodes that are connected to the network. This 

number will determine the size of the Network Send, Network Receive and Schedule 

input and outputs of the block. 

 Data rate (bits/s): - It defines the speed of the network. 

 Minimum frame size (bits): - A message or frame shorter than this will be padded to 

give the minimum length. It denotes the minimum frame size, including any overhead 

introduced by the protocol. That is, the minimum Ethernet frame size. 
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 Loss probability (0–1): - The probability that a network message is lost during 

transmission. Lost messages will consume network bandwidth, but will never arrive at 

the destination. 

 

Figure 2.4 source block parameter of TrueTime network block [49] 

 

 

 

TrueTime supports nine models of network, such as: 

 CSMA/CD or Ethernet 

 CSMA/AMP or CAN (Control Area Network) 

 Round Robin or Token bus 

 FDMA (Frequency Division Multiple Access) 

 TDMA (Time Division Multiple Access) 

 Switched Ethernet  

 FlexRay 

 PROFINET 

 NCM 
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2.3.3 TrueTime Send and TrueTime Receive  

TrueTime Send block sends a data from one node to another. A triggering pulse is 

required for the working of TrueTime Send block; this trigger may be type of falling, rising 

or either. The send block can be time-triggered or event-triggered. And TrueTime Receive 

block receives a data coming from one node; here triggering is optional. Block parameter for 

TrueTime Send and Receive has shown in fig 2.5. We can configure some parameter such as: 

 Trigger Type: - It defines the pattern to trigger the TrueTime Send and Receive 

block. It is required for Send block. But for Receive block it is optional. 

 Network number: - The number of the network block. The networks must be 

numbered from 1 and upwards. The network number can be same for one set of Send 

and Receive block. 

 Sender id: - It is the number of sending node and must be numbered from 1 and 

upwards. 

 Receiver id: - This is number of receiving node and it must be same for sender and 

receiver block for delivering a data from a sending node to receiving node. Sometimes 

Receiver source can be external for a TrueTime Send block. 

 Data length: - It is the length of sending data in bits, which has to be send to the 

Receiving end. 

 Priority: - It defines the urgency of that node or rather the requirement sequence. 
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Figure 2.5 Block Parameter of TrueTime Send and TrueTime Receive [49] 

 

 

 

2.3.4 TrueTime Wireless Network  

The use of the wireless network block is similar to wired network block and it works 

in the same way. To take the path-loss of the radio signals into account, it has x and y inputs 

to specify the true location of the nodes. Some more technical details about the wireless 

network can be found in [50]. The used radio model includes here can also support for: 

 

 Ad-hoc wireless networks. 

 Isotropic antenna. 

 Inability to send and receive messages at the same time. 



Chapter 2: TrueTime Simulator  

 

19 | P a g e  
 

 Path loss of radio signals modelled as 
1

ad
 where d  is the distance in meters and a   is 

a parameter chosen to model the environment. 

 Interference from other terminals. 

 

The wireless network block is configured through the block parameter shown in 

figure 2.6. Some parameters can also be set on a per node basis with the command 

ttSetNetwork Parameter. The following parameters are common to all models: 

 

 Network type: - It determines the MAC protocol to be used. It can be three types 

such as 802.11b/g (WLAN), 802.15.4 (ZigBee) or NCM_WIRELESS. 

 Network number: - The number of the network block. The networks must be 

numbered from 1 and upwards. Wired and wireless networks are not allowed to use 

the same number. 

 Number of nodes: - The number of nodes that are connected to the network. This 

number will determine the size of the Send, Receive and Schedule input and outputs 

of the block. 

 Data rate (bits/s): - It defines the speed of the network. 

 Minimum frame size (bits): - This is the minimum length of message or frame; it 

denotes the minimum frame size, including any overhead introduced by the protocol. 

That is most network protocols have a fixed number of header and tail bits, so the 

frame must be at least size of header + size of tail long. 

 Transmit power: - It determines how strong the radio signal will be, and thereby 

how long it can reach. 

 Receiver signal threshold: - This is the threshold value for received energy; if the 

received energy is above this threshold, then the medium is accounted as busy. 

 Path-loss exponent: - The path loss of the radio signal is defined as 
1

ad
 where d  is 

the distance in meters and a  is suitably chosen parameter to model the environment. 

Typically a is chosen in the interval [2 4]. 

 ACK timeout: - It is the time limit; a sending node will wait for an ACK message 

before concluding that the message was lost and retransmit it. 
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 Retry limit: - It is the maximum number of times a node will try to retransmit a 

message before giving up. 

 Error coding threshold: - A number in the interval [0, 1] that defines the percentage 

of block errors in a message that the coding can handle. For example, certain coding 

schemes can fully reconstruct a message if it has less than 3% block errors. For the 

noise is all other ongoing transmissions the numbers of block errors are calculated 

using the signal-to-noise ratio. 

 

 

Figure 2.6 Block parameter of TrueTime Wireless Network [49] 
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2.3.5 TrueTime Battery 

The simulation model of battery block has shown in figure 2.7. To use the battery, 

enable the check box in the kernel configuration mask and connect the output of the battery to 

the E input of the kernel block. Connect every power drain such as the P output of the kernel 

block, ordinary Simulink models, and the wireless network block to the P input of the battery. 

The battery block has one parameter, the initial power (also shown in figure 2.7), which can 

be set using the configuration mask. The battery uses a simple integrator model, so it can be 

both charged and recharged. Note that the kernel will not execute any code if it is configured 

to use batteries and the input P to the kernel block is zero.  

 
 

Figure 2.7 Block parameter of TrueTime Battery and Simulink model of TrueTime Battery [49] 

 
 

2.4 Illustrative Examples  

Here a demonstration of few examples based on the simulation models has been done 

from the TrueTime example directory and from [49]. 

 

2.4.1 Wired NCS with standalone interface block 

This simulation model consists of a DC motor which is controlled by a discrete PID 

controller interconnected by the Ethernet fieldbus. The model is shown in figure 2.8. The 

discrete PID controller has the parameters pk  = 1.4, ik  = 1.2, dk  = 0.1, with sample time of 

0.01 sec. 

 



Chapter 2: TrueTime Simulator  

 

22 | P a g e  
 

The DC motor transfer function is chosen as,-    

  3 2

107

11 91 108.3
G s

s s s


  
                                                                                            (2.1) 

                                                                                                                                
 

 

The simulated controlled output and reference inputs are shown in figure 2.9; and the 

graph for network schedule is shown in figure 2.10. 

                 
 

 
 

Figure 2.8 Simulation of Wired NCS model 

 
 

 
 

Figure 2.9 Graph for controlled output with Reference of Wired NCS model 
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Figure 2.10 Graph for network Schedule of Wired NCS model 

 

Here a third order system is controlled by a discrete PID controller and as evident 

from figure 2.9, the controlled output shows an over damped response. The settling time of 

the response is quite large. Such type of response is not quite preferable for a physical 

system, but in this section our main aim is to show the working of system which is 

incorporated with TrueTime simulator. Figure 2.10 shows the network response for sensor 

and controller. Some deviation of the signals can be seen, if the signal is Hi it means that the 

task is running. An intermediate value of the signal indicates that the task is ready but not 

running, whereas a Lo signal means that the task is idle. 

 
2.4.2 Wireless NCS with standalone interface block 
 

The wireless network block has two extra input ports. These ports are the x and y 

coordinates of the nodes to specify their location and compute the path-loss of the radio 

signal. Like wired control of a DC motor has done here with the help of a discrete PID 

controller interconnected by 802.11b (WLAN). The Simulink model has shown in figure 

2.11. And graph for controlled output and Reference has shown in figure 2.12; here graph for 

network schedule has also shown in 2.13. 
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The simulation represented by Fig. 2.8 is repeated with a wired network replaced by a 

wireless block as presented in Fig. 2.11 and the corresponding controlled output and 

reference input, as well as the network schedule are represented in Fig. 2.12 and 2.13 

respectively. 

 

 
 

Figure 2.11 Simulation of Wireless NCS model 

 

Figure 2.12 Controlled Output and Reference Graph for Wireless NCS model  
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 Figure 2.13 Network Schedule for Wireless NCS model 
 

 
 

 

Here the same system is controlled by a discrete PID controller and due to selected 

parameter it can be realised from figure 2.12 that like previous here the controlled output is 

an over damped response. The settling time of the response is quite large. Figure 2.13 shows 

the network response for sensor and controller. Here deviation of the signals can be seen 

which are quite different. Due to wireless transmission some delay in execution of tasks can 

be seen. 

 

2.4.3 Wired NCS Simulation with Standalone and Kernel Block 

  In this simulation a kernel block is used as a controller and standalone interface 

blocks as the sensor and actuator. Here also controlled system is a DC motor controlled by 

PID controller interconnected by Ethernet; shown in figure 2.14. Due to use of kernel block 

as a controller there is an initialization code and a task code for the kernel block (Controller); 

presented in APPENDIX – I. The system and the PID controller remain same as in the 

previous simulation and the controlled output corresponding to a reference input variation is 

presented in figure 2.15, and the corresponding Network Schedule in figure 2.16. 
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Figure 2.14 wired NCS model with a Kernel Block 

 

 

Figure 2.15 Reference and Controlled Output for Wired NCS model with Kernel 
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Figure 2.16 Network Schedule for wired NCS model with Kernel 

 

It is seen that the time response of the simulated system in this case resembles those in the 

previous cases. 

 

2.4.4 Wireless control of a first order system using Kernel block for Sensor, 

Actuator and Controller 

  In this simulation one First Order system is used and it is controlled by PID controller. 

The properties of controller, actuator and sensor are incorporated with TrueTime Kernel 

Blocks. The Simulink block diagram is shown in figure 2.17. The initialization and task 

codes for the Actuator, Controller and Sensor are given in APPENDIX-I. The transfer 

function for the system chosen is 

  
1

1
G s

s



                                                                                                                    (2.2)     
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Figure 2.17 Simulation for wireless control of first order system 

 

Taking PID controller parameters as pk = 100, ik  = 1, dk  = 0.049; the controlled 

output with reference has shown in figure 2.18, Actuator output is presented in figure 2.19, 

and Network Schedule graph in 2.20. 

 

 

Figure 2.18 Reference and Controlled Output of first order system 
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Figure 2.19 Output graph of Actuator 

 

 

Figure 2.20 Network Schedule graph  

 

Figure 2.20 shows the network schedule output for sensor and controller. Here some 

delay in response can be seen due to the wireless communication. 
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Chapter 3 

Coordinated Control 

3.1 Problem Formulation 

Automatic control for vehicular system can be done in various ways (such as using 

obstacle sensors, lighting sensors etc.) but coordinate control is the one which is most 

popular. Various ways for coordinate control has been discussed in Chapter-1. In coordinate 

control, Formation control or path following control is done; but there are some constraints 

such as:- 

1. Vehicles have to follow a predefined path constructed by the virtual robot in the 

virtual-structure approach. 

2. Vehicles are bound to do the predefined tasks in behaviour approach. 

3. Vehicles have to follow the leader and the leader performs predefined tasks in Leader-

follower approach. 

4.  For graph theory based solution vehicle trajectory is predefined. 

From the above discussion it is clear that approaches used here makes vehicles to 

follow a predefined trajectory or do predefined tasks. So the problem arises here is then what 

will happen to the freely moveable vehicles, that is the control of vehicles which does not 

follow any trajectory or any predefined tasks? 

So now a real problem is automatic control of vehicles which does not follow any predefined 

path or behaviour using a co-ordinated approach. 

3.2 Proposed Solution 

The solution proposed in this dissertation is inspired by a natural phenomenon viz.- “motion 

of similarly charged particles in a confined space” for the co-ordinated control of freely 

moveable vehicles to achieve collision avoidance. According to this theory if we randomly 

place some similarly charged particles in a confined space, they move freely without causing 

any collision with each other. This happens because each particle is similarly charged, so 

when they come close to each other they start repelling, and the distance between them from 

which they starts repelling depends upon their charge. The movement of two positively 

charged particles A and B is shown in figure 3.1. At first they are free to move whichever 

direction they want to but when they come close to each other they starts repelling. And the 

range from where they will start repelling depends upon their charge. 
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Figure 3.1 movement of positively charged particles 

 

 

 

3.3 Methodology 

As proposed we can assume here that each vehicle is a positively charged particle. It 

is further assumed that each car has a Bluetooth device. This Bluetooth device will have some 

range around the vehicle; the range will depends upon the power of Bluetooth device. So by 

varying the power of the device we can vary the range. Now they can sense each other when 

they come close to each other through Bluetooth transceiver system. One condition is shown 

figure 3.2 where two vehicles are moving freely having some Bluetooth transceiver range 

around them. 
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Figure 3.2 Movement of vehicles A and B  

 
 

 

 
 

Here vehicles A and B are moving freely in a confined place; we can assume that they 

are moving along X-Y plane having a coordinate. Let coordinate for A is  1 1,x y  and B is

 2 2,x y . Both vehicles have Bluetooth device we assume that they are placed in the centre of 

mass of the vehicle; A has a range of 1R  around it, similarly B has a range of 2R . Control 

logic implemented in this dissertation is such that, when 1R  and 2R  overlap each other the 

orientation of the vehicles will be reversed. That is if a vehicle is oriented at an angle   along 

X axis during its free move, it will become   when an overlap is detected. 
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3.4 Mathematical Modelling 

Mathematical modelling of vehicles has to be done for automatic control. There is two ways 

of modelling a vehicle:- 

1. Dynamic model 

2. Kinematic model 

In dynamic modelling we have to consider vehicle body and all the manipulators 

connected to the vehicle. For dynamic modelling we have to calculate total torque and force 

acting due to vehicle and its manipulators. Torque and force can be calculated by considering 

Lagrangian mechanics [51]. Lagrangian equation can be derived as 

-L K P                                                                                     (3.1) 

where,  K  is total kinetic energy for vehicle and manipulators 

and  P  is total potential energy for vehicle and manipulators 

From the above equation force and torque can be calculated as following (for thi  

manipulator). 

Force of thi  manipulator is;  

( )i

i i

L L
F

t x x

  
 
  

                                                           (3.2) 

Torque of thi manipulator is;  

( )i

i i

L L
T

t  

  
 
  

                                                    (3.3) 

where, x  and   are system variables. 

Then modelling of the vehicle is obtained by representing the torque and force 

equations in state space model. 

 

 

 

Kinematics is the mathematics of motion which does not consider the forces that 

affect the motion. The science of kinematics is the studies of position, velocity, acceleration, 
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and all higher order derivatives of the position variables with respect to time or any other 

variables. Hence, the study of the kinematics of manipulators refers to all the geometrical and 

time-based properties of the motion. So the kinematics of vehicles deals with:- 

 The geometric relationships of that vehicle system. 

 The relationship between control parameters and the behaviour of system in 

state space. 

In kinematic model we consider the vehicle as a rigid body and the effect of the 

manipulators is not considered here. For geometric calculations we take the coordinate point 

at the centre of mass of the vehicle. Figure 3.3 shows a vehicle with an orientation of  

placed in global frame; moving frame of the vehicle is also shown.  

 

 
Figure 3.3 Vehicle placed on Global frame with orientation   

 
  

As the figure shows the vehicle is placed on global frame (Xg, Yg); vehicles centre of 

mass lies on point P and its orientation is  with respect to global frame. So moving frame 

(Xm, Ym) will be lagging at an angle  to the global frame. Here coordinate of P is  ,x y ; 

now let us assume that the vehicle is moving with a linear velocityv  and an orientation of . 

So the position and orientation vector for the vehicle and the rotation matrix expressing the 

orientation of the global frame with respect to the moving frame will be (here rotation is 

about Z axis) 
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cos sin 0

( ) sin cos 0

0 0 1
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                             (3.5) 

And due to the orientation the linear velocity along X and Y axis will be respectively 

cosxv v                                                                                                                         (3.6)

sinyv v 
                                                                                                                                                       

(3.7) 

The kinematic equation for the vehicle will be 

cos 0

sin 0

0 1

x
v

y








   
    

     
    

   

                                        (3.8) 

From equation (6) we can get 

*cos
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dx
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dy
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d
w

dt








 

 

 

                                                                                                                     (3.9) 

Where v  is linear velocity;  is angular displacement and w  is angular velocity. 

Figure 3.3 shows the vehicle is in coordinate position P  ,x y ; if the vehicle moves 

with a linear velocity v  and an orientation , its position will change [52].  The way of 

changing and thus next expected position is shown in figure 3.4.   
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Figure 3.4 vector 1P   rotated and translated to form 2P  

 

In figure 3.4 a case is shown where a vehicle is at point 1P   ,x y  which is denoted by 

vector 1P ; due to   rotation about Z axis vector 1P  rotates   anti-clock wise and due to its 

linear velocity v  it moves 1l  along X axis and 2l  along Y axis; so its new coordinate is 2P

 1 1,x y , which is denoted by vector 2P  .  

It is clear from above discussion that when a vehicle a state vector of [ , , ]Tx y   is 

moving on plane with a velocity and orientation; it will have two transformation such that 

 Rotational 

 Translational 

As the vehicle is moving in ground so its rotation will be about Z axis; here the 

rotational matrix will be (for rotating angle ) 

cos sin 0

(Z, ) sin cos 0

0 0 1

R

 

  

 
 

  
 
 

                                                                                          (3.10) 
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And Translational matrix will be 

1

1 2 2

1 0

(l , l ) 0 1

0 0 1

l

T l

 
 

  
 
 

                                                                                                     (3.11) 

       So if the vehicle is at 1P  ,x y ; when its rotation about Z axis is  and translation 

along X axis is 1l , along Y axis is 2l ; then new position 2P  1 1,x y  can be obtained by 

     2 1 1 1 2 1, (Z, ) T , ,P x y R l l P x y  
                                                                         

 (3.12)
 

This can be represented in state space model [52]. 
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                                                                               (3.13) 

 

From equation (11) we can get the following equations 

1 1cos sinx x y l   
                                                                                                   

             
 (3.14) 

1 2sin cosy x y l   
                                                                                                

 (3.15) 

These equations have been used for developing the Simulink models. 

 

3.5 Controller Approach  

The co-ordinated controller development is based on the following assumptions [53]- 

1. Every vehicle has a circular safety area which is obtained by Bluetooth transceiver 

system. The centre of this communication area is the centre of mass of the vehicle; in 

this case the radius of communication area for vehicle A is 1R , and 2R for vehicle B. 
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2.  Every vehicle always transmits its state ([ , , ]Tx y  ) in its communication area; 

similarly it can receive the state of others state, if they are in communication area. 

3. Initially each vehicle starts from a location which is outside of others communication 

area. 

In this work we have considered two vehicles freely moving in a confined space, so 

both of them should have a certain coordinate; and as Bluetooth device is placed in the 

vehicles, there would be a range around that coordinate. The distance between the two 

vehicles can be calculated by geometric calculation in terms of the co-ordinates of each 

vehicle. Figure 3.5 shows a condition having two vehicles in a confined space. 

 

 

 

Figure 3.5 Geometry of two vehicles  

 

As figure 3.5 shows in our work there are two vehicles, A and B. Vehicle A having 

coordinate  1 1,x y  and Bluetooth range of 1R  , and B with coordinate  2 2,x y and Bluetooth 

range of 2R are moving in X-Y plane; so the distance between A and B will be-

2 2

2 1 2 1(x x ) (y y )d    
                                                                                            

 (3.16) 

To avoid collision d  should be always greater than sum of range of two vehicles. i.e. 

 1 2( )d R R                                                                                                             (3.17) 

where,   has very small positive value. 
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Now controller is placed on vehicle A (local controller) with the logic based on 

equation (3.15) to control vehicle A. Vehicle A has a state vector[ , , ]Tx y  . When controller 

of vehicle A receives zero or negative value of ; controller will turn orientation   into   ; 

thus new state vector will be[ , , ]Tx y   . That means if the orientation was anti-clock wise (

) along X axis, now orientation will be clock wise (  ). Thus vehicle will avoid collision 

automatically with the help of controller. The new position for the vehicles can be simulated 

using equation set (3.10)-(3.13). 

In the next chapter, a TrueTime bases simulation is presented for a two vehicle case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Result and Discussion 

40 | P a g e  
 

Chapter 4 

Result and Discussion 

4.1 Simulink model and result for vehicles movement without controller 

In this dissertation we have designed a Simulink model to represent automatic control 

of vehicles; Simulink blocks are used to design the vehicle model and controller. For data 

transmission and receiving, TrueTime blocks are used. The simulation of the vehicular 

models without controller is been shown in figure 4.1. 

 
Figure 4.1 Simulation of Vehicles A and B without controller 

  

 

With the following parameter of vehicle A and vehicle B we can get the trajectory of 

vehicles as shown in figure 4.2. MATLAB coding for this simulation is shown in 

APPENDIX-II. The simulation parameters are represented in Table 4.1. 
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Table 4.1 Initial parameters for vehicles A and B without controller 

Parameters for Vehicle A 

Starting coordinate 
0x =-130 

0y  =120 

Fixed orientation  =-1.9º (degree) 

Translational length along X and Y axis 
1l  =2.5 meter 

2l  = 3 meter 

Parameters for vehicle B 

Starting coordinate 
0x =-130 

0y =20 

Fixed orientation  =-1.1º (degree) 

Translational length along X and Y axis 
1l =2.5 meter 

2l =3meter 

 

 

 
 

Figure 4.2 Trajectory of Vehicles A and B 

 

Figure 4.3 shows clearly that after travelling of 38 seconds two vehicles are going to 

collide (in this case step size of the simulation is 1 second). To make this condition we have 

chosen following parameters. 
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A second simulation case is shown. The parameters are represented in Table 4.2 

Table 4.2 Initial parameters for vehicles A and B with a condition 

Parameters for Vehicle A 

Starting coordinate 
0x =-130 

0y  =55 

Fixed orientation  =0º (degree), for first 30 second 

 =-1.9º (degree), rest of the time 

Translational length along X and Y axis 
1l  =2.5 meter 

2l  = 0 meter 

Parameters for vehicle B 

Starting coordinate 
0x =-130 

0y =30 

Fixed orientation  =0º (degree), for first 30 second 

 =-2.45º (degree), rest of the time 

Translational length along X and Y axis 
1l =2 meter 

2l =0meter 

 

 

 
 

Figure 4.3 Trajectory of vehicles A and B with condition 
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Figure 4.2 shows the trajectory of two vehicles having a definite linear velocity and 

orientation. As the linear velocity and orientation is fixed throughout the journey the 

trajectories of the vehicles are like a continuous curve. The linear velocity and orientation can 

be different at any point of the journey for these freely moveable vehicles, and then the 

trajectory should be according that condition. So the occurrence of the collision between the 

vehicles is optional, it depends on their trajectory and their presence at a time, if the situation 

is such that two vehicles are in same coordinate at the same time so definitely there should be 

a collision. From figure 4.2 it is clear that the trajectory of the two vehicles meets at a certain 

point, but it cannot be unclouded from this figure that the meeting point coordinates are 

achieved by both of the vehicles at the same instant. So we could not be sure from figure 4.2 

that there is a definite collision or not.  

In the second condition the parameter are chosen such that by analysing the output 

result, shown in figure 4.3, there is a certain collision between two vehicles. Figure 4.3 shows 

that if two vehicles start their journey at the same time, after 38 second there is an 

indisputable collision between two vehicles (here the step size of the simulation is 1 second), 

because at 39th second of their journey the coordinate is same for the two vehicles.      

4.2 Simulink model and result for vehicles movement with Controller 

A local controller is included for avoiding the collision between the vehicles which 

could occur during their free move. The simulation model describing vehicles with the 

controller is shown in figure 4.4. MATLAB coding for this simulation is shown in 

APPENDIX-II. 

 
Figure 4.4 Simulink model of vehicles A and B with controller 
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Figure 4.4 shows the Simulink model where controller is used only for vehicle A, with the 

following parameter shown in Table 4.3, the Simulink result is shown in figure 4.5. The 

simulation parameters are chosen as described in Table 4.2, where a collision was shown to 

occur in absence of a co-ordinated controller. 

 

Table 4.3 Initial parameters for vehicles A and B with controller in one vehicle 

 

Parameters for Vehicle A 

Starting coordinate 
0x =-130 

0y  =55 

Fixed orientation without controller action  =0º (degree), for first 30 second 

 =2.5º (degree), rest of the time 

Fixed orientation with controller action  =-2.5º (degree), rest of the time 

Translational length along X and Y axis 
1l  =2 meter 

2l  = 0 meter 

Transmission radius 
1R =5 meter 

Parameters for vehicle B 

Starting coordinate 
0x =-130 

0y =35 

Fixed orientation without controller action  =0º (degree), for first 30 second 

 =-2.45º (degree), rest of the time 

Translational length along X and Y axis 
1l =2 meter 

2l =0meter 

Transmission radius 
2R =5 meter 

 

 

 

 



Chapter 4: Result and Discussion 

45 | P a g e  
 

 
 

Figure 4.5 Trajectory of vehicles A and B with controller 

 

A comparison of vehicles trajectory, with and without controller is shown in figure 4.6 

 
Figure 4.6 Trajectories of vehicles A and B with and without Controller  
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With the selection of certain parameters there is a situation (shown in figure 4.5) 

where two vehicles are going to collide, but ceased by the help of controller action. Here 

controller is placed on one vehicle, and the controller logic is such that commence of its 

action depends upon the distance between the two vehicles at a time. From the state vector, 

controller is aware of the coordinate of the vehicle in which it is placed, and the other vehicle 

in case of other vehicle is within its range. From the coordinate information controller can 

calculate the distance between two vehicles by employing Pythagorean Theorem. If this 

distance is good enough to keep two vehicles out of their range, there should be no collision. 

This condition can be shown in figure 4.5 (for first few seconds of journey). According to the 

selected parameter the clearance distance between two vehicles would be 10 meter (as the 

radius of range of vehicles are selected as 1R = 5 meter and 2R  = 5 meter) for which should 

will be no activity of controller.  

After few seconds distance between two vehicles is less than 10 meter, so the 

controller starts to litigate. As a result of that the orientation of the vehicle (in which 

controller is placed) is reversed for computing the next coordinate of its trajectory. That is 

how controller compelled the vehicles to preserve a certain distance between them. Due to 

reversed orientation the change of track of vehicle can be witnessed from figure 4.5.   

A comparison between the trajectory of vehicles which can be prevail with and 

without employing controller is exhibited in figure 4.6. From this figure we can experience 

the deviation of trajectories which a vehicle should adopt when there is controller on the 

vehicle and a sealed prospect of collision. Thus figure 4.6 depicts the automatic control for 

the freely moveable vehicles to deflect the collision. 

 

4.3  Simulink model and result for vehicles movement with Controller 

output affecting both the vehicles 

The simulation results presented in this section represents a case where a local 

controller is included in both the vehicles for avoiding the collision between the vehicles 

which could occur during their free move. The simulation model describing vehicles with the 

controller action taking place on both the vehicles is shown in figure 4.7. MATLAB coding 

for this simulation is shown in APPENDIX-II. 
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Figure 4.7 Simulink model of vehicles A and B where controller action takes place on both vehicles 

 

The controller designed in this dissertation is a local controller, so there should be two 
different controllers for both the vehicles. The parameters used for this simulation are shown 

in Table 4.4. The Simulink result is shown in figure 4.8.  

 

 

 

Table 4.4 initial parameter for vehicles A and B with controller in both vehicles  

Parameters for Vehicle A 

Starting coordinate 
0x =-130 

0y  =55 

Fixed orientation without controller action  =0º (degree), for first 30 second 

 =2.5º (degree), rest of the time 

Fixed orientation with controller action  =-2.5º (degree), rest of the time 

Translational length along X and Y axis 
1l  =2.5 meter 

2l  = 0 meter 

Transmission radius 
1R =10 meter 
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Parameters for vehicle B 

Starting coordinate 
0x =-130 

0y =30 

Fixed orientation without controller action  =0º (degree), for first 30 second 

 =-2.45º (degree), rest of the time 

Fixed orientation with controller action  =2.5º (degree), rest of the time 

Translational length along X and Y axis 
1l =2 meter 

2l =0meter 

Transmission radius 
2R =10 meter 

 

 

 

Figure 4.8 Trajectories of vehicles A and B with controller action in both vehicles 

 

A comparison of vehicles trajectory, without controller and with controller action taking 

place in both vehicles is shown in figure 4.9. 
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Figure 4.9 Comparison between vehicles trajectories with and without controller for both vehicles  

 

The selection of certain parameters makes a situation (shown in figure 4.8) where two 

vehicles are going to collide, but avoided by the help of controller action which affects both 

the vehicles. Here the controller output is fed to both the vehicles, and the controller logic is 

same as explained in the previous experiment. In this simulation according to the selected 

parameters the clearance distance between two vehicles would be 20 meter (as the radius of 

range of vehicles are selected as 1R = 10 meter and 2R  = 10 meter) for which definitely there 

is no activity of controller.  

After few seconds distance between two vehicles is less than 20 meters, so the 

controller starts to litigate. As a result of that the orientation of the vehicles (in this case 

controller affects both the vehicles) are reversed for computing the next coordinate of its 

trajectories. That is how controller compelled the vehicles to preserve a certain distance 

between them. Due to reversed orientation, the change of track of vehicle can be witnessed 

from figure 4.8.   
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A comparison between the trajectory of vehicles which can be prevail with and 

without employing controller is exhibited in figure 4.9. From this figure we can experience 

the deviation of trajectories which both the vehicles should adopt when the controller is 

litigate for controlling both the vehicles and a sealed prospect of collision. Thus figure 4.9 

depicts the automatic control of freely moveable vehicles to deflect the collision by the 

controlled action of both the vehicles. 
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Chapter 5 

Conclusion and Future Scope 

5.1 Conclusion 

Automatic control for two freely moveable vehicles has been employed in this thesis. 

From the theoretical analysis and MATLAB Simulink result it is unclouded that if the 

controller is embedded with the vehicles, the possibility of collision between the vehicles is 

averted. The Kinematic model for the vehicles has been developed here. The MATLAB 

Simulink result depicted here to show the trajectory of the vehicles with the specific 

parameters. 

Introduction of TrueTime Toolbox are being discussed here which has been validate 

with some examples. Different orders of systems are being controlled by the discrete PID 

controller with the help of TrueTime Simulator. The Simulink result depicts the system 

performance as they should be.  

 

5.2 Future Scope 

From the overall study covered by the dissertation we can provided some new idea for 

future study which can give this work a pulse. Such as 

1) A controller can be designed which will be able to control any number of vehicles 

around it (i.e. a generalised control logic), with the help of provided theory. 

2)  The input parameters can be applied as variable, i.e. at every point of the journey the 

linear velocity and orientation can be different for the vehicles. 

3) The controller can be designed such that controller action is designated to change any 

of the input parameters, i.e. to avoid collision controller can change the linear velocity 

or the orientation of the vehicles.   

4) Practical implementation of this designed simulation will be a great realisation for this 

proposed theory. 
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APPENDIX – I 
 

2.4.3 Codes for Kernel Block 

 

Initialization code 
 

function controller_init(arg) 
ttInitKernel('prioFP') 
% create task data 
data.MPn = 0; 
data.MIn = 0; 
data.MDn = 0; 
data.MX = 0; 
data.h =  0.010; 
data.K = 1.2; 
data.Ti = 1.1; 
data.Td = 0.4; 
data.yold = 0; 
data.u = 0; 
%periodic controller task 
period = 0.01; 
ttCreatePeriodicTask('controller_task', period, 'controller_code', data); 

 

 

 

Controller Code 

 
function [exectime, data] = controller_code(seg, data) 
switch seg 
    case 1 
        y = ttGetMsg;   %obtain sensor value 

         
        if isempty(y) 

            disp('Error in controller: no msg received'); 
            y = 0; 
        end 
        r = ttAnalogIn(1);  % Read referance value 
        data.MPn = data.K * (r-y); 
        data.MIn = data.K * data.h/data.Ti*(r-y)+ data.MX; 
        data.MDn = data.K * data.Td/data.h * (data.yold-y); 
        data.u = data.MPn + data.MIn + data.MDn; 
        data.MX = data.MIn; 
        data.yold = y; 

        exectime = 0.0005; 
    case 2 
        ttSendMsg (2, data.u, 100); 
        exectime = -1; 
end 

 

2.4.4 Codes for wireless control of first order system 

Actuator Initialization 

function actuator_init 
ttInitKernel('prioDM'); 
period = 0.01; 
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deadline = period; 
offset = 0.0; 
data.beta = 0.5; 
prio = 2; 
data.u = 0; 
data.exectime = 0.005; 
deadline = 10; 
ttCreateTask('actuator_task',deadline,'actuator_code'); %for an aperiodic 

task 
% Network handler 
prio = 1.0; 
data = 'actuator_task'; 
ttCreateHandler('network_handler', prio, 'nwhandler_code', data); 
ttAttachNetworkHandler('network_handler') 

 

Actuator Task  

function [exectime, data] = actuator_code(seg, data) 

%  persistent u 
switch seg 
    case 1 
       data.u = ttGetMsg; 
       exectime = 0.0005; 
    otherwise 
        if ~ isempty(data.u) 
            ttAnalogOut(1, data.u) 
        else 
            disp('Error: actuator received empty message!') 
        end 
        exectime = -1; %finished 
end 

 

Sensor Initialization 

function sensor_init 
ttInitKernel('prioDM'); 
period = 0.01; 
deadline = period; 
offset = 0.0; 
data.beta = 0.5; 

prio = 2; 
data.u = 0; 
data.exectime = 0.005; 
ttCreatePeriodicTask('sensor_task',offset, period,'sensor_code'); 

  
% Network handler 
prio = 1.0; 
data = 'actuator_task'; 
ttCreateHandler('network_handler', prio, 'nwhandler_code', data); 
ttAttachNetworkHandler('network_handler') 

 

Sensor Task 

function [exectime, data] = sensor_code(seg, data) 
persistent y 
switch seg 
    case 1 
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        y = ttAnalogIn(1); 
       exectime = 0.0005; 
       if isempty(y) 
            disp('Error in sensor:no msg received!'); 
             y = 0; 
        end 
    case 2 
        ttSendMsg(3,y, 80); % send 80 bit data to node 3, controller 
        exectime = 0.0004; 
    case 3 
        exectime = -1; 
end 

 

Network Handler Code 

function [exectime, data] = nwhandler_code(seg, data) 

  
ttCreateJob(data) 
exectime = -1; 

 

 

Controller Initialization 

function controller_init 
ttInitKernel('prioDM'); 
period = 0.01; 
deadline = period; 

offset = 0.0; 
prio = 3; 
data.u = 0; 
data.exectime = 0.01; 
data.K = 48; 
data.Ki = 1.1; 
data.Kd = 0.05; 
data.beta =0.5; 
data.h = 1; 
data.N = 10; 

data.u = 0; 
data.Iold = 0; 
data.Dold = 0; 
data.yold = 0; 
% data.rchan = 1; 
% data.ychan = 2; 
% data.uchan = 1; 
ttCreateTask('controller_task', period,'controller_code', data); % to 

create an aperiodic task 

% Create and attach network interrupt handler 
% prio = 1.0; 
data = 'controller_task'; 
ttCreateHandler('network_handler', 1, 'nwhandler_code', data) 
ttAttachNetworkHandler('network_handler') 
ttNoSchedule('network_handler'); 
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Controller Task 

function [exectime, data] = controller_code(seg, data) 
%   persistent y 
switch seg 
    case 1 
        y = ttGetMsg; 

         
        if isempty(y) 
            disp('Error in controller:no msg received!'); 
            y = 0; 
        end 
        % read reference or interference 
       r = ttAnalogIn(1); 
        P = data.K*(r-y); 
        I = data.Iold; 
        data.u = P + I; 
        exectime = 0.0005; 
    case 2 
        ttSendMsg(2, data.u, 80);%send 80 bit data to node 2, actuator 
        exectime = -1; 
end 
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APPENDIX-II 

Code for Trajectory of vehicles without controller 

clc; 
X = -130; 
Y = 120; 
L1 = 2.5; 
L2 = 3; 
theta = ((pi/180)*(-1.9)); 

  
for i=1:100 
X(i+1) = (X(i)*cos(theta))-(Y(i)*sin(theta))+(L1); 
Y(i+1) = (X(i)*sin(theta))+(Y(i)*cos(theta))+(L2); 
A(:,i) = X(i+1); 
B(:,i) = Y(i+1); 
end 
plot(A,B) 
hold all 

  
U = -130; 
V = 20; 
thetai = ((pi/180)*(-1.1)); 

  
for n=1:100 
U(n+1) = (U(n)*cos(thetai))-(V(n)*sin(thetai))+(L1); 
V(n+1) = (U(n)*sin(thetai))+(V(n)*cos(thetai))+(L2); 
C(:,n) = U(n+1); 
D(:,n) = V(n+1); 
end 
plot(C,D) 

  

Code for Trajectory of vehicles with condition 

clc; 
X = -130; 

Y = 55; 
L11 = 2.5; 
L12 = 0; 
L21 = 2; 
L22 = 0; 
% theta = ((pi/180)*(0)); 
U = -130; 
V = 30; 
% thetai = ((pi/180)*(0)); 

for i=1:100 
    if i<31  
        theta(i) = 0; 
        thetai(i) =0; 
    else 
        thetai(i) = ((pi/180)*(-2.45)); 
        theta(i) = ((pi/180)*(.51)); 

             
%     else 
%         theta(i) = 0; 

%         thetai(i) =0; 
    end      
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X(i+1) = (X(i)*cos(theta(i)))-(Y(i)*sin(theta(i)))+(L11); 
Y(i+1) = (X(i)*sin(theta(i)))+(Y(i)*cos(theta(i)))+(L12); 
A(:,i) = X(i+1); 
B(:,i) = Y(i+1); 
U(i+1) = (U(i)*cos(thetai(i)))-(V(i)*sin(thetai(i)))+(L21); 
V(i+1) = (U(i)*sin(thetai(i)))+(V(i)*cos(thetai(i)))+(L22); 
C(:,i) = U(i+1); 
D(:,i) = V(i+1); 
end 
plot(A,B,'-o') 
hold on 
plot(C,D,'-*') 
axis([-200 200 0 65]) 

 

Code of vehicle Trajectory with controller in one vehicle  

clc; 
X = -130; 

Y = 55; 
L1 = 2; 
L2 = 0; 
% theta = ((pi/180)*(0)); 
Range=10; 
U = -130; 
V = 30; 
% thetai = ((pi/180)*(0)); 
for i=1:100 
    if i<31  
        theta(i) = 0; 
        thetai(i) =0; 

   

         
    else 
        theta(i) = ((pi/180)*(2.5)); 
        thetai(i) =((pi/180)*(-2.45)); 
    end      

     

X(i+1) = (X(i)*cos(theta(i)))-(Y(i)*sin(theta(i)))+(L1); 
Y(i+1) = (X(i)*sin(theta(i)))+(Y(i)*cos(theta(i)))+(L2); 
A(:,i) = X(i+1); 
B(:,i) = Y(i+1); 
U(i+1) = (U(i)*cos(thetai(i)))-(V(i)*sin(thetai(i)))+(L1); 
V(i+1) = (U(i)*sin(thetai(i)))+(V(i)*cos(thetai(i)))+(L2); 
C(:,i) = U(i+1); 
D(:,i) = V(i+1); 
E(i) = (sqrt(((A(i)-C(i))^2)+((B(i)-D(i))^2))) - Range; 

    if  E(i) <= 0.01 
        theta(i) = -((pi/180)*(-2.5)); 
    end 
end 
plot(A,B,'-or') 
hold on 
plot(C,D,'-*r') 
axis([-200 200 0 65]) 
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Code of vehicle Trajectory with controller controlling both the vehicle 

clc; 
X = -130; 
Y = 55; 
L1 = 2.5; 
L2 = 0; 
L11 =2; 
L22 =0; 
% theta = ((pi/180)*(0)); 
Range=20; 
U = -130; 

V = 30; 
% thetai = ((pi/180)*(0)); 
for i=1:100 
    if i<31  
        theta(i) = 0; 
        thetai(i) =0; 

         
    else 

      thetai(i) = ((pi/180)*(-2.45)); 
      theta(i) = ((pi/180)*(2.5)); 
    end      

     
X(i+1) = (X(i)*cos(theta(i)))-(Y(i)*sin(theta(i)))+(L1); 
Y(i+1) = (X(i)*sin(theta(i)))+(Y(i)*cos(theta(i)))+(L2); 
A(:,i) = X(i+1); 
B(:,i) = Y(i+1); 
U(i+1) = (U(i)*cos(thetai(i)))-(V(i)*sin(thetai(i)))+(L11); 
V(i+1) = (U(i)*sin(thetai(i)))+(V(i)*cos(thetai(i)))+(L22); 
C(:,i) = U(i+1); 

D(:,i) = V(i+1); 
E(i) = (sqrt(((A(i)-C(i))^2)+((B(i)-D(i))^2))) - Range; 
    if  E(i) <= 0.01 
        theta(i) = -((pi/180)*(-2.5)); 
        thetai(i) = ((pi/180)*(2.45)); 
    end 
end 
plot(A,B,'-or') 
  hold on 
 plot(C,D,'-*r') 
 hold on 
axis([-200 200 0 65]) 
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