
Bio Inspired Algorithm Based Adaptive

PID Controller

A thesis submitted in partial fulfillment of the requirement for the degree of

Master of technology in Instrumentation & Electronics Engineering

 Submitted by

 Shuvam Roy

Examination Roll No.-M4IEE16-02

Reg. No.-129477 of 2014-2015

Class Roll No.-001411103003

Under the supervision of

Prof. Rajanikanta Mudi

Department of

Instrumentation & Electronics Engineering

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

KOLKATA-700032

2016

i

CERTIFICATE OF RECOMMENDATION

I hereby recommend that the thesis titled “BIO-INSPIRED ALGORITHM

BASED ADAPTIVE PID CONTROLLER” carried out under my supervision by

Mr. Shuvam Roy (Registration no.129477 of 2014-15) may be accepted in partial

fulfillment of the requirement for the degree of “Master of Technology in

Instrumentation & Electronics Engineering” of Jadavpur University.

..

(Prof. Rajanikanta Mudi)
Thesis Supervisor

Department of

Instrumentation& Electronics Engineering

JADAVPUR UNIVERSITY

Salt Lake Campus
Kolkata (West Bengal)-700098

.. ...

(Prof. Rajanikanta Mudi) (Prof. Sivaji Bandyopadhyay)

Head of Department Dean

Instrumentation & Electronics Faculty of Engineering and
Engineering Technology

JADAVPUR UNIVERSITY JADAVPUR UNIVERSITY

Kolkata-700098 Kolkata-70032

ii

Certificate of Approval*

(*Only in case the thesis is approved)

The thesis at in stance is hereby approved as a creditable study of an

Engineering subject carried out and presented in a manner satisfactory to

warrant its acceptance as a prerequisite to the degree for which it has

been submitted. It is understood that by this approval the undersigned

does not necessarily endorse or approve any statement made, opinion

expressed or conclusion drawn therein, but approve this thesis for the

purpose for which it is submitted.

------------------------------ ---------------------------

Signature of the examiner Signature of the Supervisor

iii

Declaration of Originality and Compliance of
Academic Ethics

I hereby declare that this thesis contains literature survey and

original research work by me, as a part of my Master of

Technology in Instrumentation & Electronics engineering

studies.

All information in this document have been obtained and

presented in accordance with academic rules and ethical

conduct.

I also declare that, as required by these rules and conduct, I

have fully cited and referenced all material and results that are

not original to this work.

Name: SHUVAM ROY.

Roll Number: M4IEE16-02

Thesis Title: BIO-INSPIRED ALGORITHM BASED

ADAPTIVE PID CONTROLLER

Signature with Date:

iv

Acknowledgement

I would like to thank a lot of people who gave me

unending support and inspiration from the beginning and

without whose help this thesis and project would not have been

completed.

First and foremost, I would like to thank my guide Prof. Rajani

Kanta Mudi, whose suggestions, guidance and encouragement

have helped me immensely in understanding the subject.

My sincere obligation goes to Prof. Bipan Tudu & Mr.Ujjwal

Manikya Nath (Research scholar) for their constant support.

I would also like to thank all my classmates and the staffs of the

department for the constant support and help they provided me

all the time.

Regards

Shuvam Roy

v

CONTENTS

Serial No Topics Pg. no

Chapter 1 : Introduction & Scope of the thesis 1-18

1.1 Introduction 1

1.2 Close-Loop Control with Three-term Controller 1

1.3 Conventional PID Controller 1-3

1.4 Method Based on Performance Criteria 3-4

1.5 PID Tuning Methods 4

1.5.1 Step Response / Process Reaction Curve Method 4-5

1.5.2 Ultimate Cycle Method 5-6

1.6 Design of the Adaptive-PID Controller 6-8

1.7 Tuning Strategy of APID Controller 8-9

1.8 Literature Review 9-13

1.9 Scope of the Thesis 13-15

References 15-18

Chapter 2 : Real Coded Genetic Algorithm based APID controller 19-41

2.1 Introduction 19-20

2.2 Real Coded Genetic Algorithm 20-21

2.3 Objective Function of the Algorithm 21

vi

2.4 Genetic Algorithms Parameters 21

2.5 Different Operations used in Genetic Algorithms 22-24

2.6 Steps of Genetic algorithm 24

2.7 Results 24

2.7.1 Second Order Linear Process 25-28

2.7.2 First Order Integrating Process 28-31

2.7.3 Third Order Linear Process 31-34

2.7.4 Second Order Nonlinear Process 34-37

2.7.5 pH-Neutralization Process 37-40

2.8 Conclusion 40-41

References 41

Chapter 3 : Bacterial Foraging Optimization based APID controller 42-61

3.1 Introduction 42

3.2 E. coli Bacteria 42

3.3 BFO Algorithm 42-43

3.4 Optimal Foraging Formulation 43-46

3.5 Steps of BFO Algorithm 46-47

3.6 Objective Function of the Algorithm 47

3.7 Results 47-48

vii

3.7.1 Second Order Linear Process 48-51

3.7.2 First Order Integrating Process 51-54

3.7.3 Second Order Nonlinear Process 54-57

3.7.4 pH-Neutralization Process 57-60

3.8 Conclusion 60-61

References 61

Chapter 4 : Particle Swarm Optimization based APID controller 62-81

4.1 Introduction 62

4.2 Particle Swarm Optimization 62-63

4.3 Objective Function of Particle Swarm Optimization 63

4.4 Initial Settings of PSO Algorithm 64

4.5 Different Operations used in PSO Algorithm 64-66

4.6 Steps of PSO Algorithm 66-67

4.7 Results 67-68

4.7.1 Second Order Linear Process 68-71

4.7.2 First Order Integrating Process 71-74

4.7.3 Second Order Nonlinear Process 74-77

4.7.4 pH-Neutralization Process 77-80

4.8 Conclusion 80-81

viii

References 81

Chapter 5 : Artificial Bee Colony Algorithm based APID controller 82-99

5.1 Introduction 82

5.2 Behavior of Honey bee Swarm 82-83

5.3 Proposed Approach 83-84

5.4 Objective Function of ABC algorithm 85

5.5 Initial Settings of Artificial Bee Colony Algorithm 85

5.6 Results 85-86

5.6.1 Second order Linear Process 86-89

5.6.2 First Order Integrating Process 89-92

5.6.3 Second Order Nonlinear Process 92-95

5.6.4 pH-Neutralization Process 95-98

5.7 Conclusion 98-99

References 99

Chapter 6 : Future Scope 100-102

6.1 Conclusion 100

6.2 Future Scope 100-101

ix

LIST OF FIGURES

Sl. No Title Page
No

Fig.1.1 Block diagram of a close loop control with PID controller 1

Fig.1.2 Parallel form of PID controller and process 2

Fig.1.3 Step response curve 5

Fig.1.4 Adaptive form of PID controller (APID) 7

Fig.1.5 Close loop response of second order process 8

Fig.2.1 Genetic loop 20

Fig.2.2(a) Response of second order linear process for L=0.2s, minimization of
IAE+ITAE by Genetic algorithm

26

Fig.2.2(b) Response of second order linear process for L=0.3s, minimization of
IAE+ITAE by Genetic algorithm

27

Fig.2.2(c) Response of second order linear process for L=0.2s, minimization of IAE
by Genetic algorithm

27

Fig.2.2(d) Response of second order linear process for L=0.3s, minimization of IAE
by Genetic algorithm

28

Fig.2.3(a) Response of first order integrating process for L=0.2s, minimization of
IAE+ITAE by Genetic algorithm

30

Fig.2.3(b) Response of first order integrating process for L=0.3s, minimization of
IAE+ITAE by Genetic algorithm

30

Fig.2.3(c) Response of first order integrating process for L=0.2s, minimization of
IAE by Genetic algorithm

31

Fig.2.3(d) Response of first order integrating process for L=0.3s, minimization of
IAE by Genetic algorithm

31

Fig.2.4(a) Response of third order linear process for L=0.1s, minimization of
IAE+ITAE by Genetic algorithm

33

Fig.2.4(b) Response of third order linear process for L=0.2s, minimization of
IAE+ITAE by Genetic algorithm

33

Fig.2.4(c) Response of third order linear process for L=0.1s, minimization of IAE by
Genetic algorithm

34

Fig.2.4(d) Response of third order linear process for L=0.2s, minimization of IAE by 34

x

Genetic algorithm

Fig.2.5(a) Response of second order non linear process for L=0.3s, minimization of
IAE+ITAE by Genetic algorithm

36

Fig.2.5(b) Response of second order non linear process for L=0.4s, minimization of
IAE+ITAE by Genetic algorithm

36

Fig.2.5(c) Response of second order non linear process for L=0.3s, minimization of
IAE by Genetic algorithm

37

Fig.2.5(d) Response of second order non linear process for L=0.4s, minimization of
IAE by Genetic algorithm

37

Fig.2.6(a) Response of pH neutralization process for L=0.01s, minimization of
IAE+ITAE by Genetic algorithm

39

Fig.2.6(b) Response of pH neutralization process for L=0.02s, minimization of
IAE+ITAE by Genetic algorithm

39

Fig.2.6(c) Response of pH neutralization process for L=0.01s, minimization of IAE
by Genetic algorithm

40

Fig.2.6(d) Response of pH neutralization process for L=0.02s, minimization of IAE
by Genetic algorithm

40

Fig.3.1(a) Response of second order linear process for L=0.2s, minimization of
IAE+ITAE by Bacterial Foraging optimization algorithm

49

Fig.3.1(b) Response of second order linear process for L=0.3s, minimization of
IAE+ITAE by Bacterial foraging optimization algorithm

50

Fig.3.1(c) Response of second order linear process for L=0.2s, minimization of IAE
by Bacterial foraging optimization algorithm

50

Fig.3.1(d) Response of second order linear process for L=0.3s, minimization of IAE
by Bacterial foraging optimization algorithm

51

Fig.3.2(a) Response of first order integrating process for L=0.2s, minimization of
IAE+ITAE by Bacterial foraging optimization algorithm

53

Fig.3.2(b) Response of first order integrating process for L=0.3s, minimization of
IAE+ITAE by Bacterial foraging optimization algorithm

53

Fig.3.2(c) Response of first order integrating process for L=0.2s, minimization of
IAE by Bacterial foraging optimization algorithm

54

Fig.3.2(d) Response of first order integrating process for L=0.3s, minimization of
IAE by Bacterial foraging optimization algorithm

54

Fig.3.3(a) Response of second order non-linear for L=0.3s, minimization of
IAE+ITAE by Bacterial foraging optimization algorithm

56

xi

Fig.3.3(b) Response of second order non-linear for L=0.4s, minimization of
IAE+ITAE by Bacterial foraging optimization algorithm

56

Fig.3.3(c) Response of second order non-linear for L=0.3s, minimization of IAE by
Bacterial foraging optimization algorithm

57

Fig.3.3(d) Response of second order non-linear for L=0.4s, minimization of IAE by
Bacterial foraging optimization algorithm

57

Fig.3.4(a) Response of pH neutralization process for L=0.01s, minimization of
IAE+ITAE by Bacterial foraging optimization algorithm

59

Fig.3.4(b) Response of pH neutralization process for L=0.02s, minimization of
IAE+ITAE by Bacterial foraging optimization algorithm

59

Fig.3.4(c) Response of pH neutralization process for L=0.01s, minimization of IAE
by Bacterial foraging algorithm

60

Fig.3.4(d) Response of pH neutralization process for L=0.02s, minimization of IAE
by Bacterial foraging optimization algorithm

60

Fig.4.1(a) Response of second order linear process for L=0.2s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

69

Fig.4.1(b) Response of second order linear process for L=0.3s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

70

Fig.4.1(c) Response of second order linear process for L=0.2s, minimization of IAE
by Particle swarm optimization algorithm

70

Fig.4.1(d) Response of second order linear process for L=0.3s, minimization of IAE
by Particle swarm optimization algorithm

71

Fig.4.2(a) Response of first order integrating process for L = 0.2s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

73

Fig.4.2(b) Response of first order integrating process for L = 0.3s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

73

Fig.4.2(c) Response of first order integrating process for L = 0.2s, minimization of
IAE by Particle swarm optimization algorithm

74

Fig.4.2(d) Response of first order integrating process for L = 0.3s, minimization of
IAE by Particle Swarm optimization algorithm

74

Fig.4.3(a) Response of second order nonlinear process for L = 0.3s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

76

Fig.4.3(b) Response of second order nonlinear process for L = 0.4s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

76

xii

Fig.4.3(c) Response of second order nonlinear process for L = 0.3s, minimization of
IAE by Particle swarm optimization algorithm

77

Fig.4.3(d) Response of second order nonlinear process for L = 0.4s, minimization of
IAE by Particle swarm optimization algorithm

77

Fig.4.4(a) Response of pH neutralization process for L = 0.01s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

79

Fig.4.4(b) Response of pH neutralization process for L = 0.02s, minimization of
IAE+ITAE by Particle swarm optimization algorithm

79

Fig.4.4(c) Response of pH neutralization process for L = 0.01s, minimization of IAE
by Particle swarm optimization algorithm

80

Fig.4.4(d) Response of pH neutralization process for L = 0.02s, minimization of IAE
by Particle swarm optimization algorithm

80

Fig.5.1(a) Response of second order linear process for L=0.2s, minimization of
IAE+ITAE by Artificial Bee colony algorithm

87

Fig.5.1(b) Response of second order linear process for L=0.3s, minimization of
IAE+ITAE by Artificial Bee colony algorithm

88

Fig.5.1(c) Response of second order linear process for L=0.2s, minimization of IAE
by Artificial Bee colony algorithm

88

Fig.5.1(d) Response of second order linear process for L=0.3s, minimization of IAE
by Artificial Bee colony algorithm

89

Fig.5.2(a) Response of first order integrating process for L=0.2s, minimization of
IAE+ITAE by Artificial Bee colony algorithm

90

Fig.5.2(b) Response of first order integrating process for L=0.3s, minimization of
IAE+ITAE by Artificial Bee colony algorithm

91

Fig.5.2(c) Response of first order integrating process for L=0.2s, minimization of
IAE by Artificial Bee colony algorithm

91

Fig.5.2(d) Response of first order integrating process for L=0.3s, minimization of
IAE by Artificial Bee colony algorithm

92

Fig.5.3(a) Response of second order non-linear process for L=0.3s, minimization of
IAE+ITAE by Artificial Bee colony Algorithm

94

Fig.5.3(b) Response of second order non-linear process for L=0.4s, minimization of
IAE+ITAE by Artificial Bee colony algorithm

94

xiii

Fig.5.3(c) Response of second order non-linear process for L=0.3s, minimization of
IAE by Artificial Bee colony algorithm

95

Fig.5.3(d) Response of second order non-linear process for L=0.4s, minimization of
IAE by Artificial Bee colony algorithm

95

Fig.5.4(a) Response of pH neutralization process for L=0.01s, minimization of
IAE+ITAE by Artificial Bee colony algorithm

97

Fig.5.4(b) Response of pH neutralization process for L=0.02s, minimization of
IAE+ITAE by Artificial Bee colony algorithm

97

Fig.5.4(c) Response of pH neutralization process for L=0.01s, minimization of IAE
by Artificial Bee colony algorithm

98

Fig.5.4(d) Response of pH neutralization process for L=0.02s, minimization of IAE
by Artificial Bee colony algorithm

98

xiv

LIST OF TABLES

Sl. No. Title Page
No.

Table.1.1 Controller setting based on the continuous cycling method 6

Table.2.1 Genetic algorithm parameters 21

Table.2.2(a) Performance analysis of second order linear process with objective
function IAE+ITAE by Genetic Algorithm

25

Table.2.2(b) Performance analysis of second order linear process with objective
function IAE by Genetic Algorithm

26

Table.2.3(a) Performance analysis of first order integrating process with
objective function IAE+ITAE by Genetic Algorithm

29

Table.2.3(b) Performance analysis of first order integrating process with
objective function IAE by Genetic Algorithm

29

Table.2.4(a) Performance analysis of third order linear process with objective
function IAE+ITAE by Genetic Algorithm

32

Table.2.4(b) Performance analysis of third order linear process with objective
function IAE by Genetic Algorithm

32

Table.2.5(a) Performance analysis of second order non linear process with
objective function IAE+ITAE by Genetic Algorithm

35

Table.2.5(b) Performance analysis of second order non linear process with
objective function IAE by Genetic Algorithm

35

Table.2.6(a) Performance analysis of for pH neutralization process with
objective function IAE+ITAE by Genetic Algorithm

38

Table.2.6(b) Performance analysis of for pH neutralization process with
objective function IAE by Genetic Algorithm

38

Table.3.1(a) Performance analysis of second order linear process with objective
function IAE+ITAE by Bacterial Foraging Algorithm

48

Table.3.1(b) Performance analysis of second order linear process with objective
function IAE by Bacterial Foraging Algorithm

49

Table.3.2(a) Performance analysis of first order integrating process with
objective function IAE+ITAE by Bacterial Foraging Algorithm

52

Table.3.2(b) Performance analysis of first order integrating process with 52

xv

objective function IAE Bacterial Foraging Algorithm

Table.3.3(a) Performance analysis of second order non linear process with
objective function IAE+ITAE by Bacterial Foraging Algorithm

55

Table. 3.3(b) Performance analysis of second order non linear process with
objective function IAE by Bacterial Foraging Algorithm

55

Table .3.4(a) Performance analysis of for pH neutralization process with
objective function IAE+ITAE by Bacterial Foraging Algorithm

58

Table .3.4(b) Performance analysis of for pH neutralization process with
objective function IAE by Bacterial Foraging Algorithm

58

Table .4.1 Parameters of PSO algorithm 63

Table .4.2 Initial settings of the algorithm 64

Table .4.3(a) Performance analysis of second order linear process with objective
function IAE+ITAE by Particle swarm algorithm

68

Table .4.3(b) Performance analysis of second order linear process with objective
function IAE by Particle swarm algorithm

69

Table .4.4(a) Performance analysis of first order integrating process with
objective function IAE+ITAE by Particle swarm algorithm

72

Table .4.4(b) Performance analysis of first order integrating process with
objective function IAE Particle swarm algorithm

75

Table .4.5(a) Performance analysis of second order non linear process with
objective function IAE+ITAE by Particle swarm algorithm

75

Table .4.5(b) Performance analysis of second order non linear process with
objective function IAE by Particle swarm algorithm

75

Table .4.6(a) Performance analysis of for pH neutralization process with
objective function IAE+ITAE by Particle swarm algorithm

78

Table .4.6(b) Performance analysis of for pH neutralization process with
objective function IAE by Particle swarm algorithm

78

Table .5.1 Initial settings of the ABC algorithm 85

Table .5.2(a) Performance analysis of second order linear process with objective
function IAE+ITAE by Artificial Bee Colony Algorithm

86

Table .5.2(b) Performance analysis of second order linear process with objective
function IAE by Artificial Bee Colony Algorithm

87

Table .5.3(a) Performance analysis of first order integrating process with
objective function IAE+ITAE by Artificial Bee Colony Algorithm

89

xvi

Table .5.3(b) Performance analysis of first order integrating process with
objective function IAE by Artificial Bee Colony Algorithm

90

Table .5.4(a) Performance analysis of second order non linear process with
objective function IAE+ITAE by Artificial Bee Colony Algorithm

93

Table .5.4(b) Performance analysis of second order non linear process with
objective function IAE by Artificial Bee Colony Algorithm

93

Table .5.5(a) Performance analysis of for pH neutralization process with
objective function IAE+ITAE by Artificial Bee Colony Algorithm

96

Table .5.5(b) Performance analysis of for pH neutralization process with
objective function IAE by Artificial Bee Colony Algorithm

96

CHAPTER-1

INTRODUCTION & SCOPE OF THE THESIS

 Introduction

 1

1.1 Introduction

For industrial processes, Proportional, Integral, and Derivative (PID) controllers are mostly

used by process engineers [1]. In spite of considerable advances in process control over the

past half century, till today PID controllers / regulators are the backbone for the most

industrial control systems [1]. Even if more sophisticated control techniques are developed, it

is a common practice to have a hierarchical structure with PID control at the lowest level [3,

4]. According to a survey for process control systems in refinery, chemical, and paper

industries, more than 95% of the control loops are found to be of PID type [8]. With its three

term functionality covering control of both transient and steady-state responses, the PID

controller offers the simplest and yet most efficient solution for many real world control

problems [5, 6]. At present, the developments of PID controllers are mostly software based,

so as to get the best out of PID control [5]. A number of software based techniques have also

been realized in hardware modules while search still goes on to find the next key technology

for PID tuning [7].

1.2 Close-loop Control with Three-term Controller

PID controllers are quite adequate for many control problems where there are modest

performance requirements. Controllers used in the process industries are mainly concerned in

maintaining the process variables-level, flow temperature, pressure, pH etc. at the desired

operating value [8]. As these processes become large and / or more complex, the role of

controller becomes more crucial [9]. In a close-loop feedback control, PID controller provides

distinctive features for its three terms (P, I, and D). Depending on the instantaneous process

error, necessary action is taken by the P term it provides an overall control action proportional

to the error signal similar to all pass filters. I term has the ability to eliminate steady- state–

error (offset) and it behaves like a low pass filter, where as anticipatory corrective measure is

taken by D term and its behavior is identical to a high pass filter.

1.3 Conventional PID Controller

Fig. 1.1 Block diagram of a close loop control with PID controller

 Introduction

 2

Standard nomenclature for different symbols used in Fig. 1.1

r =set point (the desired value of a controlled variable is referred to as its set point)

y=process output (controlled variables)

e=error signal

u=controller output

d=disturbance

Here, our objective is to make the controlled variable y equal to its set point r [10, 11].

Through decades, various methods have been developed for the tuning PID

parameters. Among them Ziegler-Nichols (ZN) [6, 11] continuous cycling method is most

widely used by practicing engineers for the initial settings of PID parameters.

If iT =∞ and dT =0 then controller turns out to be a proportional controller only. In

proportional mode, controller fails to bring the process output to its desired value r, which

results in an offset.

The introduction of integral action facilitates the achievement of equality between

measured value and desired value, as a constant error produces an increasing controller output

until the error becomes zero.

On the other hand, the introduction of derivative action facilitates that any change in

the process value can be anticipated, and thus an appropriate correction may be added prior to

the actual change. So the PID controller takes the corrective measure depending on the

present, past, and future status of the error signal.

Fig. 1.2 Parallel form of PID controller and process

 Introduction

 3

The conventional PID controller can be modeled by eq. 1.1

)]()()([
0

ke
t

T
ie

T

t
keKu d

k

ii
pc ∆

∆
+

∆
+= Σ

=

 (1.1a)

Or

)]()()()(
0

keKieKkeKku d

k

i
ipc ∆++= Σ

=

 (1.1b)

Where pK = proportional gain,)/(ipi TtKK ∆= integral gain,)/(tTKK dpi ∆= derivative gain,

iT = integral time, dT = derivative time and t∆ is the sampling time. Proper selection of these

tuning parameters is a critical task to attain the desired close-loop performance. Though

decades, various methods have been developed for the tuning of PID parameters [3]. Among

them Ziegler-nichols method (ZN) continuous cycling method [11] is most widely used. In

this study also, we have used ZN continuous cycling method [1] for the initial settings of the

PID parameters, i.e., up KK 6.0= , ui tT 5.0= and ud tT 125.0= where uK is the ultimate gain and

ut is the ultimate period.

1.4 Method Based on Performance Criteria

It is based on minimizing an appropriate performance criterion, either for optimum regulatory

or for optimum servo performance. Based on the minimum IAE, ITAE or IAE+ITAE value,

settings for PI and PID controllers are derived [11]. These settings are expected to provide

desirable performance for time delay to time constant ratio from 0.1 to 1. Other tuning

relations for PI controller for achieving minimum IAE value are suggested by Shinskey [8],

Marlin [13], Edgar [10] etc. In 1993, Zhuang and Atherton suggested PI and PID settings

based on the minimization of ISE, ISTE, and IST
1
E [14]. For the FOPTD process model,

repeated optimization is carried out for different values of time delay to time constant ratio.

Using least square fit technique, simple relations for PID parameters are obtained from

graphical results. For a given range of gain margin and phase margin values, the setting for a

PID controller is given by Ho [15] with ISE minimization.

The ISE criterion penalizes large errors, while the ITAE criterion penalizes error that

persists for longer periods of time. In general, the ITAE criterion is the preferred criterion in

practice, because it usually results in the most conservative controller settings [15]. By

contrast, the ISE criterion provides the most aggressive settings, while the IAE criterion tends

to produce controller settings that are between those for the ITAE and ISE criteria. Based on

ITAE minimization, different settings for PI and PID controllers are provided by Zhuang [16],

Luyben [17] and many other researchers. PI and PID tuning relations based on ITAE

 Introduction

 4

performance index are also developed for the FOPTD process model by Smith et al. [15].

In all the above tuning rules, the optimal controller settings are different for set-point

changes in comparison to those for step load disturbances. In general, the controller settings

for set-point changes are more conservative. Next, we provide a brief review on PID design

and tuning methods proposed by various researchers.

1.5 PID Tuning Methods

Till today more than two hundred PID tuning rules have been proposed by the researchers

[14], but none of them is suitable for all possible applications. Almost every tuning rule has

some special feature for a specific class of processes hence before selecting the tuning rule we

must know the nature of the process where it is to be applied.

An extensive list of tuning rules from the mid of twentieth century to the beginning of

the twenty first century is given in [14]. Depending on the nature of these tuning relations

they may be broadly classified into different categories, some of them are briefly described

below.

 1.5.1 Step Response / Process Reaction Curve Method [10]

The process reaction curve methods works by generating a process reaction curve (below) in

response to a disturbance. Controller gain, integral time and derivative time can be calculated

using this curve. The process reaction curve is identified by performing in an open loop step

test of the process and finding model parameters for initial step disturbance P (%). These

parameters are as follows: lag time L (min), change in PV in response to step disturbance

K∆MV (%), reaction rate N (% min
-1

), lag ratio R (dimensionless). A typical process reaction

curve is generated using the following method:

1. Put the controller in manual mode

2. Wait until the process value reaches steady state or as close as possible (stable and

not changing)

3. Introduce a small disturbance (step the output of the PID controller) - The step must

be big enough to see a significant change in the process value. A rule of thumb is the

signal to noise ratio should be greater than 5.

4. Collect data and plot

5. Repeat: making the step in the opposite direction.

K = the process gain
MV

PV
K

∆

∆
= (1.2)

\

 Introduction

 5

Fig. 1.3 Process response Curve

1.5.1 Ultimate Cycle Method [6]

Ziegler-Nichols method known as continuous cycling refers to sustained oscillation with

constant amplitude. In this method, integration and derivative terms of the controller are

disabled and the proportional gain is increased until a continuous oscillation occurs at gain

(Ku) for the closed loop system. Considering gain and its related oscillating period (Tu), the

PID parameters can be calculated from the following equations:

up KK 6.0= (1.3)

ui tT 5.0= (1.4)

ud tT 125.0= (1.5)

The main drawback of ultimate cycle based tuning method [11] is that the process is

to be operated in continuous cycling situation and it may cause any type of mechanical failure

of the actuator parts. But the most important feature of this tuning technique is its model free

approach, i.e., prior to the tuning no model is required for the process for which the controller

is to be tuned. Procedure of ultimate cycle method is given below:

Step-1

After the process has reached steady state (at least approximately), eliminate the integral and

derivative action by setting dT =0 and iT to the largest possible value.

 Step –1

 Set pK equal to a small value (e.g., 0.5).

 Introduction

 6

Step -3

Introduce a small, momentary set-point change so that the controlled variable moves away

from the set point. Gradually increase pK in small increments until continuous cycle occurs.

The term continuous cycling refers to a sustained oscillation with constant amplitude. The

numerical value of pK that produces continuous cycling (for proportional-only control) is

called the ultimate gain cuK . The period of corresponding sustained oscillation is referred to

as ultimate period uT .

Step-4

Calculate the PID controller settings using Ziegler-Nichols (Z-N) tuning relations in Table 1.1

Table 1.1 Controller setting based on the continuous cycling method

Ziegler-Nichols

(Z-N)

Kp Ti Td

P 0.5 Kcu - -

PI 0.45 Kcu Tu/1.1 -

PID 0.6 Kcu Tu/1 Tu/8

1.6 Design of the Adaptive-PID Controller [10, 11]

Most of the conventional controllers (PID) are tuned based on Ziegler Nichols (ZN) [1, 1]

tuning method for its simple tuning structure. But sometimes its performance is not

satisfactory for higher order processes due to large non-linearity. In order to achieve

satisfactory performances the parameters of conventional controllers (PID) are modified by an

online gain updating factor (α), known as Adaptive PID controllers (APID) [10-11]. This

online gain is updated by some heuristic relations. Each of such ZN [11, 13] tuned parameters

of APID (i.e., proportional, integral and derivative gains) is updated online by the single

modifying factor α through some simple relations. This online gain updating factor is function

of)(ke and)(ke∆ .

Here e (k) and ∆e (k) are expressed as

)(kyre(k) −= (1.6)

)1()()(−−=∆ kekeke (1.7)

 Introduction

 7

Where r (k) is the set point and y (k) is the process output. The proposed gain updating factor

α is defined by

)()()(kekek NN ∆×=α (1.8)

||)()(rkekeN ÷= (1.9)

)1()()(eN −−=∆ kekek NN (1.10)

Variables in Eq. (1.9) and Eq. (1.10) are the normalized value of)(ke and)(ke∆ respectively.

From Eq. (1.11), without loss of generality it may be assumed that the possible variation of α

will lie in the range [−1, 1] for all close-loop stable processes. In APID dip KKK ,, will be

continuously modified by the gain updating factor α with the following simple heuristic

relations.

Fig.1.4 Adaptive form of PID controller (APID)

 |))(|1()(1 kKKkK p
m
p α+= (1.11)

))(()(24 kKKKkK i
m
i α+= (1.12)

 |))(|1()(3 kKKkK d
m
d α+= (1.13)

Thus from Eqs.(1) and (7)-(9), APID can be expressed as

)()()()()()()(
0

kekKiekKkekKku
m
d

k

i

m
i

m
pm ∆++= Σ

=

 (1.14)

In Eqn. (1.14),)(kK
m
p ,)(kK

m
i and)(kK

m
d are the modified proportional, integral and

derivative gains respectively at th
k instant and)(kum is the corresponding control action.

4321 ,,, KKKK are the four additional positive constants. However, out of seven parameters of

[3], i.e., 4321 ,,,,,, KKKKKKK dip , the first three constants, i.e., dip andKKK , are selected

based on ZN ultimate cycle method, where as the remaining four constants, i.e.,

4321 ,, andKKKK

are chosen by trial. The objective behind such online gain adjustments is

 Introduction

 8

that, when the process is moving towards the set point, control action will be less aggressive

to avoid possible large overshoots and/or undershoots, and when the process is moving away

from the set point, control action will be more aggressive to make a rapid convergence of the

system. Following this gain adaptive technique, in a significantly improved performance of

APID is found for high-order and nonlinear systems both in set-point and load disturbance

responses.

1.7 Tuning Strategy of APID Controller

While designing APID [10, 11], the following major points are taken into consideration to

provide the appropriate control action in different operating phases. For a better

understanding, typical close-loop response of an under-damped second-order process is

illustrated in Fig.1.5

Fig. 1.5 close loop response of second order process

While the process is far from the set-point and moving fast towards it (e.g., points A, C, or F

in Fig. 1.5), proportional gain should be reasonably large to reach the set-point quickly but the

integral gain should be small enough to prevent the large accumulation of control action,

which may result in a large overshoot or undershoot in future. At the same time, to reduce

oscillations derivative gain should be increased for higher damping. Observe that, in such

transient phase e and ∆e are of opposite signs. Therefore, α becomes negative according to

eqs (1.4) which will make both the proportional and derivatives gain higher, and integral gain

lower than their corresponding initial values (i.e., i
m
id

m
dp

m
p KKKKKK 3.0,, <>>) as

indicated by eqs. (1.11) - (1.13).Thus, the gain adaptive rules (eqs.(1.11)-(1.13)) try to adjust

 Introduction

 9

the parameters of APID towards reducing the overshoot and/or undershoot, and oscillation in

the process response.

When the process is moving further away from the set-point (e.g., points B, D, or E in

Fig.1.5), increased proportional, and derivative as well as integral gains are expected to bring

back the process variable to its desired value quickly. Under such situations both e and ∆e

will have the same sign, thereby making α positive (eqs (1.8)) which in turn makes all gain

parameters of APID (i.e., dip KKK ,,) larger than their respective initial values according to

eqs (1.11) - (1.13). As a result the control action becomes more aggressive (i.e., ca
uu >)

which will try to restrict further deterioration of such situations. Therefore, APID satisfies the

need for a relatively strong control action to improve process recovery.

From the above discussion it is evident that the proposed auto-tuning scheme always

attempt to modify APID parameters (proportional, integral, and derivative gains) in the right

directions to generate required control action in different transient phases for providing

improved performance under both set-point change and load disturbance. Of course,

depending on the type of response desired to achieve, suitable value of 321 ,, KKK are to be

selected by the designer either from the knowledge about the process to be controlled or

through trial and error.

1.8 Literature Review

Automatic control is the application of control theory for regulation of processes without

direct human intervention. In the simplest type of an automatic control loop,

a controller compares a measured value of a process with a desired set value, and processes

the resulting error signal to change some input to the process, in such a way that the process

stays at its set-point despite of the disturbances [38]. Designing a system with features of

automatic control generally requires the feeding of electrical or mechanical energy to enhance

the dynamic features of an otherwise sluggish or variant, even errant system. This closed-loop

control is an application of negative feedback to a system. An everyday example of a

feedback control system is an automobile speed control, which uses the difference between

the actual and the desired speed to vary the fuel rate. Since the system output is used to

regulate its input, such a device is said to be a closed-loop control system. Practically every

aspect of our day-to-day activities is affected by some type of control system. Control systems

are found in abundance in all sectors of industry, such as quality control of manufactured

products, automatic assembly lines, machine-tool control, space technology and weapon

systems, computer control, transportation systems, power systems, robotics, Micro Electro

Mechanical Systems (MEMS), nanotechnology, and many others [39].

 Introduction

 10

There have been many developments in automatic control theory during recent years.

It is difficult to provide an impartial analysis of an area while it is still developing; however,

looking back on the progress of feedback control theory it is by now possible to distinguish

some main trends. In about 170 BC the Greek Ctesibius invented a float regulator for a water

clock, a device not unlike the ball and cock in a modern flush toilet. The invention of the

mechanical clock in the 14
th
 century made the water clock and its feedback control system

obsolete. The float regulator does not appear again until its use in the Industrial Revolution. In

[40] steam engine is invented in 1713, and this date marks the accepted beginning of the

industrial revolution; however, its roots can be traced back into the 17
th
 century.

The introduction of prime movers, or self-driven machines like advanced grain mills,

furnaces, boilers, and the steam engine created a new requirement for automatic control

systems including temperature regulators (1614), pressure regulators (1681), float

regulators (1700) and speed control devices [41]. The design of feedback control systems up

through the industrial revolution was by trial-and-error, together with a great deal of

engineering intuition. Thus, it was more of an art than a science. In the mid-19
th
 century,

control theory began to acquire its written language, the language of mathematics. In 1868 the

first rigorous mathematical analysis of a feedback control system was provided by J.C.

Maxwell [41]. Thus, relative to this written language, we could call the period before about

1868 the prehistory of automatic control. The First and Second World Wars saw major

advancements in the field of mass communication and signal processing. Other key advances

in automatic controls include differential equations, stability theory and system

theory (1938), frequency domain analysis (1940), and stochastic analysis (1941) [43]. With

the advent of the space age in 1957, controls design, particularly in the United States, turned

away from the frequency domain techniques of classical control theory and backed into the

differential equation techniques of the late 19th century, which were contained in the time

domain. The modern era saw time-domain design for navigation (1960), optimal

control and estimation theory (1961), nonlinear control theory (1969), digital

control and filtering theory (1974), and the personal computer (1983) [44]. As per Fridland in

[45], we may call the period from 1868 to the early 1900’s the primitive period of automatic

control, the period from then until 1960 the classical period, and the period from 1960

through present times the modern period.

Today, a number of different controllers are used in industry and in many other fields.

In quite general way those controllers can be divided into two main groups: unconventional

controller [46] and conventional controller. Unconventional controllers utilize a new approach

to the controller design in which knowledge of mathematical model of a process generally is

not required. Examples of unconventional controllers are fuzzy controller and neuro or neuro-

 Introduction

 11

fuzzy controller. As conventional controllers we can count proportional-integral-derivative

(PID) controllers and other types such as optimal, adaptive, robust controller. It is a

characteristic of all conventional controllers that one has to know a mathematical model of

the process in order to design a controller. PID controller contains proportional (P), integral

(I) and derivative (D) term. P term helps the process to reach its desired value quickly, but

produces offset. To remove offset I term is included. I term eliminates offset but produce

overshoot. Overshoot may not occur if D term is used because it provides damping and

improves the dynamic characteristics of the process. The three terms can be used in various

combinations to achieve good response in controlling purpose. The PID controller has been

used successfully for regulating processes in industry for more than 60 years and used till

today. A survey of Desborough and Miller in [47] indicates that more than 97% of regulatory

controllers utilize the PID algorithm.

 Although, a PID controller has only three adjustable parameters, finding appropriate

settings is not simple which results in controller having poor tuning parameter and it becomes

unable to provide satisfactory performance. Many researchers have attempted to develop the

design methods for the PID controller in [48]. Ziegler-Nichols in [49] and Cohen-Coon in

[50] provide tuning methods for PID controller in closed loop and open-loop respectively.

Apart from open-loop and closed-loop tuning method, PID controller can be designed using

gain and phase margin specification [51] and using optimization technique [51]. In ref [53,

54] PID controllers for integral with dead time process is discussed. However, both of the

approaches required open-loop process model first. Process model can be obtained using

step test in open-loop which is very time-consuming and may result in undesirable output

changes. Then process parameters-time delay (θ), process gain (K), time constant (τ) are

estimated from experimental data obtained using step test [55].

The main alternative is to use closed-loop experiment, one proposed by Ziegler-

Nichols in [48]. This approach of classical method require very little information about the

process i.e. ultimate gain (Ku) and ultimate period of oscillation (uT) which can be obtained

using single experiment. The recommended setting for a proportional-integral (PI) controller

are uc KK 45.0= and uI P83.0=τ . In general there are some disadvantages of closed-loop

experimentation method. First, this is essentially trial and error method, since several values

of gain must be tested before the ultimate gain (or the gain to give ¼
th
 decay ratio) is

determined. Second, while one loop is being tested in this manner its output may affect

several other loops, thus possibly upsetting an entire unit. Third, it can only be used on

processes for which the phase lag exceeds -180 degrees at high frequencies. For example, it

does not work on a simple second-order process. This problem can be circumvented by

 Introduction

 12

introducing sustained oscillations with an on-off controller using the relay method in [56], but

the system should be capable to withstand the oscillation resulting from on-off action. The

work reported in [56] was further extended using proportional controller by Yuwana and

Seborg [47]. Their work mainly concerned with first-order with delay model (FOPTD) where

through pade’s approximation the response seems to be second-order response.

 Shamsuzzoha and Skogestad in [48] proposed guidelines for a PI/PID controller of

an unidentified process models using closed-loop experiments. It requires one closed loop

step set-point response experiment using a proportional only controller, and mainly uses

information about the first peak (overshoot), which is easily identified. The set-point

experiment is similar to that of Ziegler-Nichols (1941) but the controller gain is typically

about one half, so the system is not at the verge of stability with sustained oscillations. The

recommended controller in [48] suggests the value of gain change is a function of the height

of the first peak (overshoot); the controller integral time is mainly a function of peak time.

At present a new set point weighting technique known as dynamic set point weighting

[57] is proposed to improve the set point response and load rejection characteristics of

Ziegler-Nichols tuned PID controllers when their responses of are not satisfactory. Instead of

a fixed (single or multi-valued) set point weighting factor, here dynamic set point weighting is

suggested based on the change of error (∆ e) of the controlled variable and normalized dead

time of the process under control.

Finally when the controller response tuned by ZN method is found to be

unsatisfactory in some cases for higher order & non-linear processes, then an improved auto-

tuning scheme is proposed [58, 59] to overcome the disadvantages of ZN tuned PID

controllers (ZNPID). The ZNPIDs are upgraded by some easily interpretable heuristic rules

through an online gain modifying factor defined on the instantaneous process states is known

as adaptive PID controller (APID). This study thereby making the scheme suitable for a wide

range of processes and more generalized too.

It might be possible that their performances are not optimal for some cases. To

achieve optimal performances now a day optimization techniques are used severely to find the

optimal settings of the APID controller. To design our controller, initially the parameters of

the conventional PID controller are obtained using ZN method and after that an adaptation

scheme is incorporated to get enhanced performance. Finally, we optimize various tuning

parameters by the optimization algorithm for various processes. These optimization

algorithms are based on the minimization of objective functions such as Integral-absolute-

error [IAE] [39], Integral time & absolute error [ITAE] or integral square error [ISE] etc.

 Introduction

 13

Performances of the optimized PID are not found to be satisfactory. Experimental results

exhibit remarkably improved performance of the optimal APID when compared with ZN

tuned PID, optimized PID and APID. This fact justifies our present study, i.e., incorporation

of optimization techniques in APID rather than PID.

In this leading literature we attempt to develop the optimized APID controllers with

respect to an objective function based on different optimization algorithms such as Genetic

algorithm, [60] Artificial bee colony algorithm (ABC) [61], Bacterial foraging optimization

algorithm [62] and Particle swarm optimization algorithm [63] to develop GA-APID,BFO-

APID,PSO-APID and ABC-APID respectively. Finally, we compare the performances of

optimized APID based on different algorithms stated above and compare with other

controllers with other controllers. Experimental results exhibit remarkably improved

performance of the optimal APID (GA-APID, BFO-APID, PSO-APID or BFO-APID) when

compared with PID, optimized PID (GA-APID, BFO-APID, PSO-APID or BFO-APID), and

APID.

1.9 Scope of the Thesis

Our literature survey reveals that a lot of works has been done towards improving the

performance of PID controllers with increased robustness. In a broad sense, such

development works on controller tuning are mostly dependent on the process model.

However, for a practical process it is very difficult to find its exact model, as a result, most of

the theoretical developments have limitation from practical implementation point of view.

Along with mathematical complexity in finding out the appropriate process model, there is

always a certain amount of uncertainty in model parameters. Model parameters are also

changing with time due to natural phenomena like aging, scaling, erosion etc. So obtaining

the desired performance from a PID controller is not only goal. Additionally it has to be

robust enough to withstand the model uncertainties as well as process nonlinearities. At the

same time, it is found that an optimally tuned controller is more prone to fragile. So

depending on the area of application, there should be a compromise between optimality and

robustness of selected parameters.

Soft-computing tools like fuzzy logics, neural networks and different optimization

techniques are also used by the researchers to obtain optimal settings of PID parameters. In

such cases the engineers have tried to incorporate the human intelligence in the controller

behavior. Certain improvements are found in the controller performances on making them

more intelligent but at the higher computational complexity. A controller designed to reduce

the initial overshoot during set-point change usually fails to offer good load rejection

 Introduction

 14

behavior. On the other hand, a controller with better load capability cannot restrict the

overshoot in the set-point response. Although in some cases improvements in the process

behavior are observed during both set-point and load disturbance responses. In case of APID

controller the gain is online updated continuously by an online updating factor through some

heuristic relations. It might possible that their performances are not optimal in some cases.

We can solve this type of problems by using optimization algorithms. In our case, we have

decided to explore the optimal power of different optimization algorithms to design our

proposed Adaptive PID (APID) controllers. Here, all the above said designs including two

steps- first, we define the structure of the adaptive PID controller and then the algorithms are

used to find their best set of parameters with respect to an objective function. In our

experimental purpose we have studied the performances of the developed adaptive controllers

based on different optimization algorithms over PID & APID controllers for various types of

process with dead time.

 For the optimization purpose we have chosen IAE and IAE+ITAE as objective

functions, because they provide the overall improved performance, as we know, lower values

of IAE & ITAE indicates improved set point response and good load rejection respectively.

In chapter-2, we have presented the detailed description of the Genetic algorithm based

APID controllers with respect to two objective functions (IAE+ITAE, IAE). Initially we have

optimized the conventional PID controllers & compare it with PID controller. In this case we

found that the result is not very encouraging. So, we followed the same procedure on APID

controllers and found that it provides the best performance when compared with others.

In chapter-3, we have presented the detailed description of the Bacterial foraging

optimization (BFO) based APID controllers with respect to two objective functions

(IAE+ITAE, IAE). Initially we have optimized the conventional PID controllers and compared

it with PID controller. In this case also we found that the result is not quite satisfactory. Like

previous case, then we applied BFO on APID controllers. The resulting optimal APID (BFO-

APID) compared to PID, APID and BFO-PID controllers.

In chapter-4, we have explored the overall performance of the Particle swarm optimization

based APID controllers with respect to two objective functions (IAE+ITAE, IAE). Initially the

PID and APID controllers are tuned by ZN method. In case of APID controller the value of

the four variables are taken as constant based on trial and error method. After that the optimal

 Introduction

 15

PID (PSO-PID) is designed and found that the overall performance is not quite satisfactory.

This fact motivated us to apply the same technique on APID controller with seven tunable

parameters (4321, ,,,,, kkkkKKK dip), which provides an improved performance over other

controllers. The same impressive performance is obtained with increased dead time also.

In chapter-5, we have observed the overall performance of the Artificial bee colony

algorithm based APID controllers with respect to two objective functions (IAE+ITAE, IAE).

Initially the PID and APID controllers are tuned by ZN method. In case of APID controller

the value of the four variables are chosen by trial and error method. After that the optimal PID

(ABC-PID) is designed and found that the overall performance is not quite satisfactory. This

fact motivated us to apply the same technique on APID controller with seven tunable

parameters (4321, ,,,,, kkkkKKK dip). This simulation study reveals that ABC-APID

provides significantly improved performance, even with increased dead time.

In Chapter-6, first we have provided a brief summary of the present study. Then we have

discussed the implementation issues of the four optimization techniques, genetic algorithm,

particle swarm optimization, bacterial foraging and artificial bee colony based optimization

while designing optimal PID controllers in Chapters 2, 3, 4, 5. Lastly, we also try to point out

future scopes for further improvement.

References

[1] K. J. Astrom and T. Hagglund, Automatic tuning of PID controllers, Instrument Society of

America, Research Triangle Park, 1988.

[2] K. J. Astrom and T. Hagglund, Revisiting the Ziegler-Nichols step response method for PID

control, Journal of Process Control, Vol. 14, No. 6, pp. 635-650, 1004.

[3] L. Desbourough and R. Miller, Increasing customer value of industrial control performance

monitoring - Honeywell’s experience, Proc. Sixth International Conference on Chemical

Process Control, AICHE Symposium Series Number 316, Vol. 98, 1001.

[4] K. J. Astrom and T. Hagglund, The future of PID control, Control Engineering Practice, Vol.

9, No. 11, pp. 1163-1175, 1001.

[5] K. H. Ang, G. Chong, and Y. Li, PID control system analysis, design, and technology, IEEE

Transaction on Control System Technology, Vol. 13, No. 4, pp. 559-576, 1005.

[6] J. G. Ziegler and N. B. Nichols, Optimum setting for automatic controllers, ASME

Transaction, Vol. 64, No. 11, pp. 759-768, 1941.

[7] P. Marsh, Turn on, tune in, New Electronics, Vol. 31, No. 4, pp. 31-31, 1998.

[8] F. G. Shinsky, Process Control Systems - Application, Design and Tuning, McGraw-Hill,

New York, 1998.

 Introduction

 16

[9] B. W. Bequette, Process Control Modeling, Design, and Simulation, Pearson Education, New

Jersey, 1003.

[10] [10] A. O’Dwyer, Hand book of PI and PID Controller Tuning Rules, Imperial College Press,

London, 1003.

[11] D. E. Seborg, T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, John Wiley

& Sons, Singapore, 1004.

[12] T. E. Marlin, Process Control, McGraw-Hill, New York, 1995.

[13] T. F. Edgar et al., Perry's Chemical Engineers’ Handbook, McGraw-Hill, New York, 1997.

[14] M. Zhuang and D. P. Atherton, Automatic tuning of optimum PID controllers, IEE Proc. -

Control Theory Applications, Vol.140, No. 3, pp. 116-114, 1993.

[15] C. A. Smith and A. B. Corripio, Principles and Practice of Automatic Control, John Wiley,

New York, 1997.

[16] H. P. Huang, M. L. Roan, and J. C. Jeng, On-line adaptive tuning for PID controllers, IEE

Proc. - Control Theory Applications, Vol. 149, No. 1, pp. 60-67, 1001.

[17] B. D. Tyreus and W. L. Luyben, Tuning PI controllers for integrator / dead-time process,

Industrial & Engineering Chemistry Research, Vol. 31, pp. 1615-1618, 1991.

[18] D. E. Seborg and T. F. Edgar, Adaptive control strategies for process control: A survey,

AICHE Journal, Vol. 31, No. 6, pp. 881-913, 1986.

[19] K. J. Astrom and B. Wittenmark, A Survey of Adaptive Control Applications, Proc. IEEE 34
th

International Conference on Decision & Control, pp. 649-654, 1995.

[20] R. K. Mudi, C. Dey, and T. T. Lee, An improved auto-tuning scheme for PI controllers, ISA

Transaction, Vol. 47, No. 1, pp. 45-51, 1008.

[21] C. Dey and R. K. Mudi, An improved auto-tuning scheme for PID controllers, ISA

Transaction, Vol. 48, No. 4, pp. 396-409, 1009.

[22] I. K. Kookos, A. I. Lygros, and K. G. Arvanitis, On-line PI controller tuning for integrator /

dead-time processes, European Journal of Control, Vol. 5, pp.19-31, 1999.

[23] E. Poulin, and A. Pomerleau, PI settings for integrating processes based on ultimate cycle

information, IEEE Transaction on Control System Technology, Vol. 7, No. 4, pp. 509-511,

1999.

[24] C. Dey and R. K. Mudi, A simple auto-tuning PID controller for integrating plus dead-time

processes, Control and Intelligent Systems.

[25] M. Chidambaram and R. Padma Sree, A simple method of tuning PID controllers for

integrator / dead-time processes, Computers and Chemical Engineering, Vol. 17, No. 1, pp.

111-115, 1003.

[26] R. Padma Sree, M. N. Srinivas, and M. Chidamabaram, A simple method of tuning PID

controllers for stable and unstable FOPTD systems, Computers and Chemical Engineering,

Vol. 18, No. 11, pp. 1101-1118, 1004.

[27] A. R. Benaskeur and A. Desbiens, Backstepping-based adaptive PID control, IEE Proc. -

Control Theory Applications, Vol. 149, No. 1, pp. 54-59, 1001.

 Introduction

 17

[28] H. Panagopoulos, K. J. Astrom, and T. Hagglund, Design of PID controllers based on

constrained optimization, IEE Proc. - Control Theory Applications, Vol. 149, No. 1, pp. 31-

40, 1001.

[29] F. Lin, R. D. Brandt, and G. Saikalis, Self-tuning of PID controllers by adaptive interaction,

Proc. American Control Conference, pp. 3676-3681, 1000.

[30] I. Kaya and D. P. Atherton, A PI-PD controller design for integrating processes, Proc.

American Control Conference, pp. 158-161, 1999.

[31] R. C. Panda, C. C. Yu, and H. P. Huang, PID tuning rules for SOPDT systems: Review and

some new results, ISA Transaction, Vol. 43, No. 1, pp. 183-195, 1004.

[32] R. R. Pecharroman and F. L. Pagola, Improved identification for PID controllers auto-tuning,

Proc. European Control Conference -ECC-1999, in CD, Germany, 1999.

[33] R. Toscana, A simple robust PI / PID controller design via numerical optimization approach,

Journal of Process Control, Vol. 15, No. 1, pp. 81-88, 1005.

[34] K. J. Astrom and T. Hagglund, Automatic tuning of simple regulators with specifications on

phase and amplitude margins, Automatica, Vol. 10, No. 5, pp. 645-651, 1984.

[35] C. C. Hang, K. J. Astrom, and Q. G. Wang, Relay feedback auto-tuning process controllers - a

tutorial review, Journal of Process Control, Vol. 11, No. 1, pp. 143-161, 1001.

[36] C. Dey, R.K. Mudi, and D. Simhachalam, An Auto-tuning PID Controller for Integrating Plus

Dead-time Processes. Advanced Materials Research. 403-408, 4934-4943(1011).

[37] C. Dey, R.K. Mudi, and D.Simhachalam,; A Simple Nonlinear PD Controller for Integrating

Processes. ISA Trans. 53(1), 161-171(1014).

[38] G. Stephanopoulos, ‘Chemical Process Control: An Introduction to Theory and Practice.’ PHI,

New Delhi, 1006.

[39] F. Golnaraghi and B. C. Kuo, ‘Automatic Control System.’ John Wiley & Sons, 9
th

 ed., New

York, U.S.A., 1010.

[40] http://en.wikipedia.org/wiki/Thomas_NewcomenWikipedia.

[41] M. Bokharaie, ‘A summary of the History of Control Theory.’ Internal Rept., School of Elect.

Eng., Ga. Inst. of Technology, Atlanta, GA 30331, 1973.

[42] http://en.wikipedia.org/wiki/James_Clerk_MaxwellWikipedia.

[43] http://en.wikipedia.org/wiki/Automatic_control.

[44] K. Ogata, ‘Modern Control Engineering.’ Prentice Hall, 5
th

 ed., New Jersey, U.S.A., 1010.

[45] B. Friedland, ‘Control System Design: An Introduction to State-Space Methods.’ New York:

McGraw-Hill, 1986.

[46] Z. Vukich and O. Kuljaca, ‘Lecture on PID Controllers.’ Faculty of Electrical Engineering and

Computing, 1001.

[47] L. D. Desborough and R. M. Miller, ‘Increasing customer value of industrial control

performance monitoring-Honeywell’s experience.’ Chemical Process Control–VI (Tuscon,

Arizona, Jan. 1001), AIChE Symposium Series No. 316, 98, U.S.A, 1001.

[48] K. J. Astrom and T. Hagglund, ‘PID Controllers : Theory, Design and Tuning.’ Instrument

Society of Amarica, 1995.

 Introduction

 18

[49] J. G. Ziegler, N. B. Nichols and Y. B. Rochester, ‘Optimum Settings for Automatic

Controllers.’, Transaction of ASME, pp. 759-765, 1941.

[50] G. H. Cohen and G. A. Coon, ‘Theoretical Consideration of Retarded Control.’, Transactions

ASME, vol. 75, pp. 817-834, 1953.

[51] W. K. Ho, C. C. Hang and L. S. Cao, ‘Tuning of PID Controllers Based on Gain and Phase

Margin Specification.’ Automatica, vol. 31(03), pp. 497-501, 1995.

[52] H. Panagopoulus, K. J. Astrom and T. Hagglund, ’Design of PID Controllers Based on

Constrained Optimisation.’ Process Inst. Elect. Engineering, vol.149, pp. 31-40, 1001.

[53] A. Visioli, ‘Optimal tuning of PID controllers for integral and unstable processes.’ IEE Proc.-

Control Theory Appl., vol. 148, pp. 180-184, 1001.

[54] M. Chidambaram and R. P. Sree, ‘A Simple Method of Tuning of PID Controller for

Integrating/Dead Time Processes.’ Computers and Chemical Engineering, vol. 17, pp. 111-

115, 1003.

[55] Faculty of Engineering Technology Mechanical Automation and Mechatronics, University

Twente, ‘System Identification and Parameter Estimation.’ Copyright R.G.K.M. Aarts,

Enschede, 1011/1011 ed., 1011.

[56] K. J. Astrom and T. Hagglund, ‘Automatic tuning of simple regulators with specifications on

phase and amplitude margins.’ Automatica, vol. 10, pp. 645–651, 1984.

[57] C. Dey, R. K. Mudi, and T. T. Lee, “Dynamic set-point weighted PID controller,” Control and

Intelligent Systems, vol. 37, 1009, no. 4, pp. 111-119.

[58] R. K. Mudi, C. Dey, and T. T. Lee, An improved auto-tuning scheme for PI controllers, ISA

Transaction, Vol. 47, No. 1, pp. 45-51, 1008.

[59] C. Dey and R. K. Mudi, An improved auto-tuning scheme for PID controllers, ISA

Transaction, Vol. 48, No. 4, pp. 396-409, 1009.

[60] David.E.Goldberg, john H.Holland, on genetic algorithms and machine learning, machine

learning, N0.3, 95-99, (1988).

[61] Karaboga. D., Basturk. B., Artificial bee colony (ABC) optimization algorithm for solving

constrained optimization Problems, LNCS: Advances in Soft Computing: Foundations of

Fuzzy Logic and Soft Computing, pp.789-798 (1007).

[62] Passino, K.M., Bacterial foraging optimization, International Journal of Swarm Intelligence

Research, 1(1), 1-16, (1010).

[63] James McCaffrey, http://msdn.microsoft.com/en-us/maPSOzine/hh335067.aspx.

CHAPTER-2

REAL CODED GENETIC ALGORITHM

BASED ADAPTIVE PID CONTROLLER

 Genetic algorithm based APID controller

19

2.1 Introduction

God is the creator of the whole universe. Ever since its creation evolution has been a part and

parcel of its functioning. New organisms have evolved from their ancestors; and this

evolution is governed by a simple law which Charles Darwin named as –“Survival of the

Fittest“.

Genetic Algorithms [1] are search algorithms based on natural selection and natural

genetics. They combine survival of fittest among structures with structured yet

randomized information exchange to form a search algorithm. Genetic Algorithm has been

developed by John Holland [1, 2] and his co-workers in the University of Michigan in

the early s06 ′ . Genetic algorithms are theoretically and empirically proved to provide

robust search in complex spaces. Its validity in–Function Optimization and Control

Applications is well established.

Genetic Algorithms (GA) provide a general approach for searching for global minima

or maxima within a bounded, quantized search space. Since GA only requires a way to

evaluate the performance of its solution guesses without any prior information, they can

be applied generally to nearly any optimization problem. GA does not guarantee convergence

nor that the optimal solution will be found, but do provide, on average, a “good”

solution. GA is usually extensively modified to suit a particular application. As a result, it is

hard to classify a “generic” or “traditional” GA, since there are so many variants. However,

by studying the original ideas involved with the early GA and studying other variants, one can

isolate the main operations and compose a “traditional” GA. An improvement to the

“traditional” GA to provide faster and more efficient searches for GAS that does not rely

on average chromosome convergence (i.e. applications which are only interested in the best

solution).

The “traditional” GA is composed of a fitness function, a selection technique, and

crossover and mutation operators which are governed by fixed probabilities. These operations

form a genetic loop as shown in Figure. Since the probabilities are constant, the average

number of local and global searches in each generation is fixed. In this sense, the GA exhibits

a fixed convergence rate and therefore will be referred to as the fixed-rate

 Genetic algorithm based APID controller

20

Fig. 2.1 Genetic loop

2.2 Real Coded Genetic Algorithm [2]

The concept of the genetic algorithm was first formalized by Holland and extended to

functional optimization by DeJong [4] .It imitates the mechanism of the natural selection

and evolution and aims to solve an optimization problem with object function f(x) where

x=[x1 x2 ……. xN] is the N-dimensional vector of optimization parameters. It has proved to

be an effective and powerful global optimization algorithm forms any combinatorial

optimization problems, especially for those problems with discrete optimization

parameters, no differentiable and/or discontinuous object function. Genes and chromosomes

are the basic building blocks of the real coded GA. The real coded binary GA encodes the

optimization parameters into decimal number.

 The binary GA [5] does not operate directly on the optimization parameters but on

a discretisized representation of them. Discretization error will inevitably be introduced when

encoding a real number. The encoding and decoding operations also make the algorithm more

computationally expensive for problems with real optimization parameters. It is therefore

worth developing a novel GA which works directly on the real optimization

parameters. The real-coded GA is consequently developed. Both theoretical proof and

practical experiences show that RGA usually works better than binary GA, especially for

problems with real optimization parameters. The RCGA operates on a population of

chromosomes (or individuals, creatures, etc) simultaneously. It starts from an initial

population, generated randomly within the search space.

OLD GENERATION

SELECTION

FITNESS

NEW

GENERATION

MUTATION

CROSSOVER

 Genetic algorithm based APID controller

21

 Once the initialization is completed, the population enters the main RCGA loop and

performs a global optimization for searching the optimum solution of the problem. In a

RCGA loop, Preprocessing, three genetic operations, and post processing are carried out in

turn. The RCGA loop continues until the termination conditions are fulfilled.

 In our case we have decided to use the optimal power of Genetic algorithm

(GA) to design our proposed Adaptive PID (GA-APID) [7, 8] controllers. Here, all the above

said designs including two steps- first, we define the structure of the adaptive PID controller

and then the algorithms are used to find their best set of parameters with respect to an

objective function. In our experimental purpose we have studied the performances of the

developed adaptive controllers based on GA algorithms over PID & APID controllers for

different processes with dead time.

2.3 Objective Function of the Genetic Algorithm

The function to be optimized is known as objective function. Here, minimization of the

integral-absolute-error (IAE) [9] or integral-time-absolute-error (ITAE) or combination of

both i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness

function). The IAE and ITAE are calculated as:

∫=
t

dtteIAE
0

|)(| (2.1)

∫ ∫+=+
t t

dttetdtteITAEIAE
0 0

|)(||)(| (2.2)

2.4. Genetic Algorithm Parameters

Table 2.1 Genetic algorithm parameters

Population size 10

Selection

probability

50%(single point crossover)

Crossover

probability

50%

Mutation

probability

≈ 1.78

Variables
4321 ,,,,,, kkkkKKK dip

Range of variables
dip KKK ,, , are ±20% of their respective

Conventional PID, K1, [0.5],K2[0,5],,K3[0,30], K4[0,1]

 Genetic algorithm based APID controller

22

2.5 Different Operations Used in Genetic Algorithm

 Encoding – In order to use GA to solve the maximization or minimization problem,

unknown variables are first coded in some string structures. It is important to mention that

coding of variables is not necessary. There exist some studies where GAs are directly used on

the variables themselves, Binary- coded strings having 1s and 0s are mostly used. The length

of the string is usually determined according to the desired solution accuracy. In Real Coded

Genetic Algorithm does not work on the encoding of a parameter set as real valued

individuals are directly used.

Selection – It is the usually the first operator applied on population. Chromosomes are

selected from the population to be parents to be crossover and produce offspring. According

to Darwin’s evolution theory of survival of the fittest, the best one should survive and create

new offspring. It is also known as reproduction operator. There exist a number of

reproduction operators in GA literature but the essential idea in all of them is that the above

average strings are picked from the current population and their multiple copies are inserted

in the mating pool in a probabilistic manner.

Various methods of selecting chromosomes for parents to crossover are [2]:

i. Roulette-wheel selection

ii. Tournament selection

iii. Boltzmann selection

iv. Rank selection

In spite of various selection methods as given above, We have used simple MATLAB

command for the selection purpose because of its simplicity. We sort the values of IAE or

IAE+ITAE in ascending order and select the 50% fittest roots (best solutions) from the top

for the next stage, i.e., Crossover.

Crossover – After the selection phase is over, the population is enriched with better

individuals. Selection makes clones of good strings, but does not create new ones. Cross over

operator is applied to the mating pool with a hope that it would create a better string.

The aim of crossover operator is to search the parameter space. In addition, search is to be

made in a way that the information stored in the present string is maximally preserved

because these parent strings are instances of good string selected during reproduction

(selection).It is a recombination operator. This is mainly responsible for search of new strings.

Since selection rate is 50%, therefore 50% chromosomes will go for crossover. These

chromosomes are known as parent. The crossover operator produces two children for each

parent pair. Therefore, after crossover total population will again be 100% = 50% (parents) +

50% (children).

 Genetic algorithm based APID controller

23

Note that because I have 10 chromosomes. So selection gives the 5 chromosomes.

These 5 chromosomes known as parents they go for crossover to produce children. Here we

will get
5
C2, i.e., 10 no of children but we consider only 5 children. Thus total population will

again be 10 (i.e., 5 as parents and 5 as children).

Let binary value of each variable is 0000 and 1111. I want to retain 50% information

for each variable then new binary value of the variables will be 0011 and 1100 (here LSB is

changing). We can also understand this idea by observing the picture form of crossover which

is given below.

Picture form of crossover -

Thus by changing the cross over point we can change the % of information exchange.

In my MATLAB program I have taken cross over point at the middle so that 50% information

will exchange.

In GA literature, the term crossover rate is usually denoted as Pc, the probability of

crossover. The probability varies from 0 to 1. After the crossover, with cross over probability

Pc, Pc percentage of information will exchange and (1-Pc) percentage of information will

remain same for each variable which will go through this operation. Cross over operator is

mainly responsible for the search of new string.

There exist many types of cross over operations in the genetic algorithm which are given

below:

Single - point cross over.

Two - point crossover.

Multi - point cross over.

Mutation – To avoid local optima we mutate the strings. The mutation probability

(percentage of bits in a population mutated in each iteration) is generally kept low for steady

convergence (here it is ≈ 1.78%). It is considered a background operator in GA. Once a string

is selected for mutation, a randomly chosen element of the string is changed. For example If

GA chooses bit position 1
th
 (from MSB side) for mutation in the binary string, the resulting

string is 1000 (picture form is also given below).

Picture form of mutation -

 Genetic algorithm based APID controller

24

.

2.6 Steps of Genetic Algorithm Based Optimization

1. Generate the initial population.

2. Fitness evaluation.

2. Selection.

4. New population generation by crossover and mutation.

5. Fitness evaluation.

6. Repeat step 2-5 until stopping criteria is reached.

2.7 Results

For simulation study, we consider the following systems with dead-time (L)

2)1/()(+=
−

sesG
Ls

p , L=0.2s, and 0.3s (2.3)

)1(/)(+=
−

ssesG
Ls

p , L=0.2s, and 0.3s (2.4)

3)1/()1()(ssβsG p +−= , β = 0.1s, and 0.2s (2.5)

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s (2.6)

PH model- 2)11.0)(1/()(++=
−

ssesG
Ls

p , L=0.01s, and 0.02s (2.7)

For each process model we have used four different types of controller.

(a) PID

(b) GA-PID –
dip KKK ,, are ±20% of their respective Conventional PID and these are

calculated by genetic algorithm.

(c) APID.

(d) GA-APID - In this all seven parameters are varying within the defined range and these

are calculated by genetic algorithm.

We have calculated the close loop response characteristics for above process model by using

different controllers. For detailed comparison, in addition to the response characteristics,

several performance indices, such as percentage overshoot (%OS), rise time (rt), settling time

(st), integral absolute error (IAE) and integral time absolute error (ITAE) are calculated for

each controller. Performance of our GA-APID is compared with PID, GA-PID, and APID.

Fourth-order Range - Kutta method is used for numeric integration. The detailed performance

analysis for various types of process is discussed below.

 Genetic algorithm based APID controller

25

2.7.1 Second Order Linear Process

Transfer function of the process is given by

2)1/()(+=
−

sesG
Ls

p (2.8)

Response of second order linear process in (2.8) with L=0.2s, and L=0.3s under PID, GA-

PID, APID, and GA-APID is shown in Fig. 2.2. Performance indices of the process in (2.8)

for different controllers are given in Table 2.2. (a) and Table 2.2. (b). Though the controller

are tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers

settings (for PID and APID). Performance analysis reveals that unlike PID, GA-PID, and

APID, GA-APID is capable of providing acceptable and remarkably improved performance

during both set point change and load disturbance.

Table 2.2 (a) -Performance analysis of second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 60.30 0.90 4.40 2.08 9.29

GA-PID 44.07 0.80 2.20 1.58 6.14

APID 5.37 1.40 4.20 1.36 6.26

GA-APID 0.85 2.10 1.90 1.36 4.64

L=0.3s
PID 93.95 0.90 7.90 4.08 23.11

GA-PID 78.68 0.90 7.20 2.77 14.00

APID 15.58 1.00 5.70 1.81 9.63

GA-APID 1.54 2.50 6.10 1.79 7.59

 Genetic algorithm based APID controller

26

Table 2.2 (b) -Performance analysis of second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 60.30 0.90 4.40 2.08 9.29

GA-PID 34.36 0.90 2.80 1.58 6.35

APID 5.37 1.40 4.20 1.36 6.26

GA-APID 0.00 9.10 7.90 1.63 5.99

L=0.3s
PID 93.95 0.90 7.90 4.08 23.11

GA-PID 65.81 0.90 6.90 2.88 12.34

APID 15.58 1.00 5.70 1.81 9.63

GA-APID 0.00 9.20 7.90 2.03 9.69

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

R
es
p
o
n
se
 y

 exp(-0.2s) /(s+1)
2

PID

GA-PID

APID

GA-APID

Fig. 2.2 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE

 Genetic algorithm based APID controller

27

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time t

R
es
p
o
n
se
 y

 TF =exp(-0.3s) /(s+1)2

PID

GA-PID

APID

GA-APID

Fig. 2.2(b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

R
es

p
o
n
se

 y

 exp(-0.2s) /(s+1)
2

PID

GA-PID

APID

GA-APID

Fig. 2.2(c) Response of second order linear process for L=0.2s, minimization of IAE

 Genetic algorithm based APID controller

28

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time t

R
es

p
o
n
se

 y

 exp(-0.3s) /(s+1)
2

PID

GA-PID

APID

GA-APID

Fig. 2.2(d) Response of second order linear process for L=0.3s, minimization of IAE

2.7.2 First Order with Integrating Process

Transfer function of the process is given by

)1(/)(+=
−

ssesG
Ls

p (2.9)

Response of first order integrating process in (2.9) with L=0.2s and L=0.3s under PID, GA-

PID, APID, and GA-APID is shown in Fig. 2.3 Performance indices of the process in (2.9) for

different controllers are shown in Table 2.2(a) and Table 2.2(b). Though the controller are

tuned for L=0.2s a higher value i.e., L=0.3s is also tested without changing controllers

settings (for PID and APID).

Unlike PID, GA-PID, and APID, GA-APID is capable of providing acceptable and

remarkably improved performance during both set point change and load disturbance but not

to the same extent as that of the previous case.

 Genetic algorithm based APID controller

29

Table 2.3 (a) -Performance analysis of first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 77.50 1.10 10.20 2.44 27.19

GA-PID 54.41 1.00 5.40 1.92 12.09

APID 28.75 1.40 11.00 2.46 19.44

GA-APID 8.35 1.10 17.40 1.79 17.99

L=0.3s

PID 102.2 1.20 17.10 5.70 54.79

GA-PID 83.02 1.00 9.70 2.15 24.13

APID 33.80 1.30 11.00 2.68 22.02

GA-APID 29.43 1.10 17.40 2.47 21.56

Table 2.3(b) -Performance analysis of first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 77.50 1.10 10.20 2.44 27.19

GA-PID 51.47 1.00 5.60 1.92 12.27

APID 28.75 1.40 11.00 2.46 19.44

GA-APID 6.31 1.20 17.40 1.81 18.42

L=0.3s PID 102.2 1.20 17.10 5.70 54.79

GA-PID 79.48 1.00 9.70 2.02 22.88

APID 33.80 1.30 11.00 2.68 22.02

GA-APID 26.02 1.10 17.40 2.49 25.81

 Genetic algorithm based APID controller

30

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

R
es

p
o
n
se

 y

 exp(-0.2s)/s(s+1)

PID

GA-PID

APID

GA-APID

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time t

R
es

p
o
n
se

 y

 exp(-0.3s)/s(s+1)

PID

GA-PID

APID

GA-APID

Fig. 2.3 (a) Response of first order integrating process for L=0.2s, minimization of IAE+ITAE

Fig. 2.3 (b) Response of first order integrating process for L=0.3s, minimization of IAE+ITAE

 Genetic algorithm based APID controller

31

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time t

R
es

p
o
n
se

 y

 exp(-0.3s)/s(s+1)

PID

GA-PID

APID

GA-APID

Fig. 2.3 (d) Response of first order integrating process for L=0.3s, minimization of IAE

2.7.2 Third Order Linear Process

Transfer function of the process is given by

3)1/()1()(ssβsG p +−= (2.10)

Response of third order linear process in (2.10) with L=0.1s and L=0.2s under PID, GA-PID,

APID, and GA-APID is shown in Fig. 2.4 Performance indices of the process in (2.10) for

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

R
es

p
o
n
se

 y

 exp(-0.2s)/s(s+1)

PID

GA-PID

APID

GA-APID

Fig. 2.3 (c) Response of firstorder integrating process for L=0.2s, minimization of IAE

 Genetic algorithm based APID controller

32

different controllers are recorded in Table 2.4(a) and Table 2.4(b). Though the controller are

tuned for L=0.1s, a higher value i.e., L=0.2s is also tested without changing controllers

settings (for PID and APID). Performance analysis reveals that unlike PID, GA-PID, and

APID, GA-APID is capable of providing acceptable and remarkably improved performance

during both set point change and load disturbance. For all conditions (i.e., different L and

different objective) response of GA-APID is very much improved..

Table 2.4 (a) -Performance analysis of third order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.1s

IAE+ITAE

PID 46.47 1.80 9.60 2.29 30.63

GA-PID 29.85 1.70 7.00 2.42 20.09

APID 2.44 2.40 10.30 2.67 26.14

GA-APID 1.48 2.30 4.40 2.03 18.70

L=0.2s PID 58.30 1.80 12.30 4.29 44.44

GA-PID 40.73 1.70 10.00 2.00 27.26

APID 7.91 2.20 9.70 2.90 29.62

GA-APID 6.42 2.00 7.40 2.39 23.25

Table 2.4 (b) -Performance analysis of third order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.1s

IAE

PID 46.47 1.80 9.60 2.29 30.63

GA-PID 29.58 1.70 7.00 2.42 20.09

APID 2.44 2.40 10.30 2.67 26.14

GA-APID 1.48 2.30 4.60 2.13 20.14

L=0.2s PID 58.30 1.80 12.30 4.29 44.44

GA-PID 40.73 1.70 10.10 2.14 29.53

APID 7.91 2.20 9.70 2.90 29.62

GA-APID 4.01 2.20 8.10 2.51 24.21

 Genetic algorithm based APID controller

33

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time t

R
es

p
o
n
se

 y

TF = exp(1-0.2s)/(s+1)
3

PID

GA-PID

APID

GA-APID

Fig. 2.4 (b) Response of third order linear process for L=0.2s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time t

R
es

p
o
n
se

 y

TF = exp(1-0.1s)/(s+1)
3

PID

GA-PID

APID

GA-APID

Fig. 2.4 (a) Response of third order linear process for L=0.1s, minimization of IAE+ITAE

 Genetic algorithm based APID controller

34

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time t

R
es

p
o
n
se

 y

TF = exp(1-0.1s)/(s+1)
3

PID

GA-PID

APID

GA-APID

Fig. 2.4(c) Response of third order linear process for L=0.1s, minimization of IAE

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time t

R
es

p
o
n
se

 y

TF = exp(1-0.2s)/(s+1)
3

PID

GA-PID

APID

GA-APID

Fig. 2.4(d) Response of third order linear process for L=0.2s, minimization of IAE

2.7.4 Second Order Nonlinear Process

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++ (2.11)

Response of second order non linear process in (2.11) with L=0.3s and L=0.4s under PID,

GA-PID, APID, and GA-APID is shown in Fig. 2.5. Performance indices of the process in

(2.11) for different controllers are given in Tables 2.5(a) and 2.5(b). Though the controller are

tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers

 Genetic algorithm based APID controller

35

settings (for PID and APID). We can conclude that unlike PID, GA-PID, and APID, GA-

APID is capable of providing acceptable and remarkably improved performance during both

set point change and load disturbance.

Table 2.5 (a) -Performance analysis of second order non linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE+ITAE

PID 66.10 1.40 9.30 4.13 46.60

GA-PID 50.28 1.30 6.20 2.80 28.25

APID 19.18 1.70 10.60 2.95 34.88

GA-APID 0.78 2.20 2.90 2.12 16.17

L=0.4s PID 83.11 1.50 13.30 5.78 72.4

GA-PID 70.77 1.30 9.80 4.07 46.03

APID 25.15 1.70 10.80 2.26 39.45

GA-APID 5.54 2.30 5.70 2.74 27.89

Table 2.5 (b) -Performance analysis of second order non linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE

PID 66.10 1.40 9.30 4.13 46.60

GA-PID 45.75 1.40 6.40 2.99 29.87

APID 19.18 1.70 10.60 2.95 34.88

GA-APID 0.78 2.20 2.90 2.12 16.17

L=0.4s PID 83.11 1.50 13.30 5.78 72.4

GA-PID 61.20 1.40 6.50 2.41 35.42

APID 25.15 1.70 10.80 2.26 39.45

GA-APID 5.54 2.30 5.70 2.74 27.89

 Genetic algorithm based APID controller

36

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

R
es

p
o
n
se

 y

 (d
2
y/dt

2
) + dy/dt + 0.2*y = u(t-0.3)

PID

GA-PID

APID

GA-APID

Fig. 2.5 (a) Response of second order non linear process for L=0.3s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

 (d
2
y/dt

2
) + dy/dt + 0.2*y = u(t-0.4)

PID

GA-PID

APID

GA-APID

Fig. 2.5 (b) Response of second order non linear process for L=0.4s, minimization of IAE+ITAE

 Genetic algorithm based APID controller

37

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
es

p
o
n
se

 y

 (d
2
y/dt

2
) + dy/dt + 0.2*y = u(t-0.3)

PID

GA-PID

APID

GA-APID

Fig. 2.5 (c) Response of second order non linear process for L=0.3s, minimization of IAE

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
es

p
o
n
se

 y

 (d
2
y/dt

2
) + dy/dt + 0.2*y = u(t-0.4)

PID

GA-PID

APID

GA-APID

 Fig. 2.5 (d) Response of second order non linear process for L=0.4s, minimization of IAE

2.7.5 pH-Neutralization Process

For pH-neutralization process we consider following linear model

2)11.0)(1/()(++=
−

ssesG
Ls

p (2.12)

Response of pH-neutralization process in (2.12) with L=0.01s and L=0.02s under PID, GA-

PID, APID, and GA-APID is shown in Fig. 2.6. Performance indices of the process in (2.12)

for different controllers are provided in Tables 2.6(a) and 2.6(b). Though the controller are

 Genetic algorithm based APID controller

38

tuned for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers

settings (for PID and APID). We can conclude that unlike PID, GA-PID, and APID, GA-

APID is capable of providing acceptable and remarkably improved performance during both

set point change and load disturbance

Table 2.6 (a) -Performance analysis of for pH neutralization process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.01s

IAE+ITAE

PID 64.21 0.26 1.69 0.72 1.40

GA-PID 44.48 0.23 1.14 0.47 0.62

APID 23.94 0.30 1.77 0.52 0.84

GA-APID 0.49 0.36 1.19 0.33 0.41

L=0.02s PID 72.34 0.27 1.78 0.84 1.33

GA-PID 52.86 0.24 1.59 0.54 0.75

APID 28.49 0.2 1.84 0.56 0.88

GA-APID 2.17 0.32 1.22 0.37 0.48

Table 2.6 (b) -Performance analysis of for pH neutralization process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.01s

IAE

PID 64.21 0.26 1.69 0.72 1.09

GA-PID 43.79 0.23 1.49 0.46 0.62

APID 23.94 0.30 1.77 0.52 0.84

GA-APID 0.31 0.38 0.75 0.33 0.41

L=0.02s PID 72.34 0.27 1.78 0.84 1.33

GA-PID 52.35 0.23 1.59 0.54 0.76

APID 28.49 0.2 1.84 0.56 0.88

GA-APID 1.72 0.33 1.20 0.37 0.48

 Genetic algorithm based APID controller

39

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time t

R
es

p
o
n
se

 y

PH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)]

PID

GA-PID

APID

GA-APID

Fig. 2.6(b) Response of pH neutralization process for L=0.02s, minimization of IAE+ITAE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o
n
se

 y
PH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)]

PID

GA-PID

APID

GA-APID

Fig. 2.6 (a) Response of pH neutralization process for L=0.01s, minimization of IAE+ITAE

 Genetic algorithm based APID controller

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o
n
se

 y

PH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)]

PID

GA-PID

APID

GA-APID

Fig. 2.6 (c) Response of pH neutralization process for L=0.01s, minimization of IAE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o
n
se

 y

PH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)]

PID

GA-PID

APID

GA-APID

Fig. 2.6 (d) Response of pH neutralization process for L=0.02s, minimization of IAE

2.8 Conclusion

In this study we have explored the possibility of performance enhancement of Adaptive PID

controller (APID) through real coded Genetic algorithm optimization technique. From the

experimental results we observed that both GA-APID provided remarkably enhanced

performance over Adaptive PID controller (APID) due to set point changes as well as load

 Genetic algorithm based APID controller

41

disturbances. We also observed that genetic algorithm based Adaptive PID controller (GA-

APID) exhibited comparatively better performance over GA optimized PID controller (GA-

PID) for all the systems taken above. GA-APID provided minimum overshoot as well as

minimum IAE & ITAE. Initially we have used IAE+ITAE as objective function in order to

obtain both load disturbances and set point tracking satisfactorily i.e. overall improved

performance with a dead time. After that we increased the dead time in order to see the

robustness of the controller and we still found that the proposed GA-APID maintained overall

improved performances. We also observed the similar enhanced performance with the

objective function IAE.

References

[1] D.E. Goldberg, Genetic algorithm in search optimization and machine learning. Addison-

Wesley Publishing Co., Inc.(1989).

[2] David. E. Goldberg, john H .Holland, on genetic algorithms and machine learning, machine

learning, N0.2, 95-99, (1988).

[3] Randy L. Haupt, and Sue Ellen Haupt, Practical Genetic Algorithms, Wiley publishing Co.

Second edition (2004).

[4] J. Bala, J. Huang, H. Vafaie, K. DeJong and H. Wechsler, on Hybrid learning using Genetic

algorithms and decision trees for pattern classification, IJCAI conference, Montreal, August

19-25, (1995).

[5] S.Rajasekaran, and G.A.Vijaylaxmi Pai, Neutral Networks, Fuzzy logic, and Genetic

Algorithms, PHI publishing co., sixth edition (2003).

[6] James McCaffrey, http://msdn.microsoft.com/en-us/magazine/hh335067.aspx

[7] C.Dey and R.K. Mudi, An improved auto-tuning scheme for PID controllers. ISA Trans.

48(4), 396–409(2009).

[8] S. Verma and R.K. Mudi, Genetic algorithm based adaptive PID controller, Proc. International

Conference on Intelligent Computing, Communication and Devices (ICCD-2014), ASIC

2014, April 18 -19, 2014.

[9] Seborg, D.E., Edgar. T.F.,; Adaptive control strategies for process control: A survey. AICHE

J. 32(6), 881–913 (1986).

CHAPTER-3

BACTERIAL FORAGING OPTIMIZATION

ALGORITHM BASED ADAPTIVE PID

CONTROLLER

Bacterial foraging optimization based APID controller

42

3.1 Introduction

The bacterial foraging optimization (BFO) [1] algorithm mimics how bacteria forage over a

landscape of nutrients to perform parallel non-gradient optimization which has been widely

accepted as a global optimization algorithm of current interest for distributed optimization

and control. Since its inception, BFOA has drawn the attention of researchers from diverse

fields of knowledge especially due to its biological motivation and graceful structure. It has

already been applied to many real world problems and proved its effectiveness over many

variants of BFO and PSO.[2, 3] Applications to fuzzy controller construction/tuning, neural

network training, job-shop scheduling, electromagnetic, stock market predication, optimal

power flow, motor control, temperature control, system identification, and others have not

received as much attention to-date. On the other hand, additional applications and studies of

the method still holds potential. There is still a wide variety of domains in which BFO could

be useful for. This fact motivated us to design this adaptive PID controller (APID) [4, 5] by

using BFO algorithm.

3.2 E. Coli. Bacteria

Escherichia coli [2, 3] are single-celled bacteria that live in our gut. The E. coli cell only

weights about 1 picogram, and is composed of about 70% water. It is equipped with a set of

rotary motors only 45 nm in diameter. Each motor drives a long, thin, helical filament that

extends several cell body lengths out into the external medium. The assemblage of motor and

filament is called a flagellum. [6] The concerted motion of several flagella - decision-making

sensors- enables a cell to swim. A cell can move toward regions that it deems more favorable

by measuring changes in the concentrations of certain chemicals in its environment (mostly

nutrients), deciding whether life is getting better or worse, and then modulating the direction

of rotation of its flagella, i.e., control system of E. coli bacterium enables it to search for food

and try to avoid noxious substances. Such motions of E. coli are called taxes where motile

behavior depends on the flagella (the actuator).

3.3 Bacterial Foraging Optimization Algorithm

The bacterial foraging [7, 8] system consists of four principal mechanisms, namely chemo

taxis, swarming, reproduction, and elimination dispersal; and it works on the assumption that

animal search for and obtain nutrients in a way that maximizes their energy intake E per unit

time T spent foraging, i.e., animal search for and obtain nutrients in a way that maximizes the

ratio E/Tor maximizes the long-term average rate of energy intake. Clearly, evolution

optimizes the foraging strategies, since animals that have poor foraging performance do not

survive.

Bacterial foraging optimization based APID controller

43

 As nutrients are distributed in patches, sequence of foraging strategy consists of

finding a patch of food (e.g., group of bushes with barriers), deciding whether to enter it and

search for food and when to leave the patch. During foraging there can be risks due to

predators, the prey may be mobile so it must be chased, and the physiological characteristics

of the forager constrain its capabilities and ultimately success. Generally, patches are

encountered sequentially, and sometime great effort and risk are needed to travel from one

patch to another. If an animal encounters a nutrient-poor patch but based on past experience it

expects that there should be a better patch elsewhere, then it will consider risks and efforts to

find another patch. For an animal there is optimal time to leave the patch and venture out to

try to find a richer one since it does not wants to waste resources that are readily available as

well as it also does not want to waste time in the face of diminishing energy returns.

 Basically optimal foraging theory formulates the foraging scenarios as an

optimization problem where via computation or analytical methods are provided as an

optimal foraging policy that specifies how foraging decisions are made, for instance, dynamic

programming. Search and optimal foraging decision-making of animals can be broken into

three basic types: cruise (e.g. tuna fish, hawks), salutatory (e.g. birds, fish, lizards and

insects), and ambush (e.g. snakes, lions), and since no animal can make optimal decisions this

is why we can say that the optimal foraging formulation is only meant to be a model that

explains what optimal behavior would be like.

3.4 Optimal Foraging Formulation

Suppose that we want to find the minimum of (J) θ, ∈ R
P
, where we do not have

measurements or an analytical description of the gradient ∇ (J) θ. To solve this non gradient

optimization problem, here, we use bacterial foraging concept. If θ is the position of a

bacterium and (J) θ represents the combined effects of attractants and repellants from the

environment, then (J) θ < 0, (J) θ = 0, and (J) θ > 0 representing that the bacterium at

location θ is in nutrient-rich, neutral, and noxious environments, respectively. Basically,

chemotaxis is a one of the principal mechanisms of bacterial foraging system which is

implemented to a type of optimization where bacteria try to climb up the nutrient

concentration (find lower and lower values of (J) θ), avoid noxious substances, and search for

ways out of neutral media (avoid being at positions θ where)(θJ ≥0). Actually the concept

based on biased random walk.

Chemotaxis- It is the tendency of a bacterium to move toward distant sources of nutrients.

Biologically an E .coli bacterium can move in two different ways. In this process, the

bacterium alternates between tumbling (changing direction) and swimming behaviors. Let j

Bacterial foraging optimization based APID controller

44

be the index for the chemo tactic step. Let k be the index for the reproduction step. Let l be

the index of the elimination-dispersal event. Let P(j ,k ,l)= {
iθ (j ,k ,l) |i=

1,2,........,S}.represent the position of each member in the population of the S bacteria at the j
th

chemotactic step, k
th
 reproduction step, and l

th
 elimination-dispersal event. Here, a tumble is

represented by a unit walk with random direction φ (j) ∈ R
p
. The unit length random direction

may be represented as φ (j) =
)()(

)(

ii

i

T
∆∆

∆
 , where ∆(i) is a vector with each element a

random number on [-1,1] A swim is indicated as movement in the same direction as the

previous tumble. Here, let (lkji ,,,) denote the cost at the location of the i
th
 bacterium.

 Suppose
iθ (j, k, l) represents the bacterium at j

th
 chemo tactic, k

th
 reproductive and l

th

elimination-dispersal step. C (i) is the size of the step taken in the random direction specified

by the tumble (run length unit). Then in computational chemotaxis the movement of the

bacterium may be represented by

)()(),,(),,1(jφiClkjθlkjθ ii
+=+ (3.1)

If),,1(lkjθ i
+ the cost of the i

th
 bacterium J(I, j+1, k, l) is better (lower) than at),,(lkjθ i ,

then another step size C(i) in this same direction will be taken. If that step resulted in a

position with a better cost value than at the previous step, another step is taken. This swim is

continued as long as it continues to reduce the cost, but only up to a maximum number of

steps, Ns, where Ns number of swimming length. This represents that the cell will tend to

keep moving if it is headed in the direction of increasingly favorable environments. With the

activity of run or tumble taken at each step of the chemotaxis process, a step fitness, denoted

as J (i, j, k, l), will be evaluated. In order to construct algorithm we introduce another

chemotaxis related parameter which is the length of the lifetime of the bacteria as measured

by the number of chemotactic steps they take during their life. We must note that in computer

simulations, we will use much smaller population sizes and will keep the population size

fixed. We will all allow, p>3 so we can apply the method to higher dimensional optimization

problems.

Swarming- During foraging an interesting group behavior of E. coli bacteria as well as of

other several motile species has been observed in order to examine the intricate and stable

spatio-temporal patterns (swarms) formation in semisolid nutrient medium. If a group of E.

coli cells is placed in the center of a chemotactic media with a single nutrient chemo effecter

(sensor), they move out from the center in a traveling ring of cells by moving up the nutrient

gradient to consume nutrient. Moreover the cells release attractant aspertate and congregate

into groups with high density if high levels of the nutrient called succinate are used as the

Bacterial foraging optimization based APID controller

45

nutrient. The cells provide an attraction signal to each other as a result they swarm together.

Mathematically this swarming effect can be represented with

∑
=

=

S

i

ii
cccc lkjθθJlkjpθJ

1

)),,(,()),,((,(

∑ ∑ ∑ ∑
= = = =

−−−+−−−=

S

i

P

m

S

i

P

i

i
mmrepellentrepellent

i
mmattractattract θθwhθθwd

1 1 1 1

22
)])(exp([)])(exp([

Where, ccJ (P (j, k, l)) is the objective valued function to be added to the actual objective

function (to be minimized) to present a time varying objective function, S is the total number

of bacteria, p is the number of variables to be optimized, which are present in each bacterium

and θ = [1θ , 2θ ,…. pθ] is a point in the p-dimensional search domain. The different

coefficients dattractant, wattractant, hrepellent, wrepellent, should be chosen properly. The values for these

parameters are simply chosen to illustrate general bacterial behaviors, not to represent a

particular bacterial chemical signaling scheme. The particular values of the parameters are

chosen with the nutrient profile in mind.

Reproduction- The health status of each bacterium is calculated as the sum of the step fitness

during its life, i.e., ∑
=

cN

j

lkjiJ

1

),,,(where
cN is the maximum step in a chemotaxis process. All

bacteria are sorted in reverse order according to health status. The least healthy bacteria

eventually die while each of the healthier bacteria (those yielding lower value of the objective

function) asexually split into two bacteria, which are then placed in the same location, which

are then placed in the same locations. Thus, the population of bacteria keeps constant.

Basically after

cN is the number of chemotactic steps, a reproduction step is taken. Let Nre be the number of

reproduction steps to be taken and assume that S is a positive even integer and also let

rS =S/2 be the number of population members who have had sufficient nutrients so that they

will reproduce (split in two) with no mutations. For reproduction, the population is sorted in

order of ascending accumulated cost and then the rS least healthy bacteria die and the other

rS healthy bacteria each split into two bacteria, which are placed at the same location. This

keeps swarm size constant.

Elimination and Dispersal- The chemotaxis provides a basis for local search, and the

reproduction process speeds up the convergence which has been simulated by the BFOA.

While to a large extent, only chemotaxis and reproduction are not enough for global optima

searching.

Bacterial foraging optimization based APID controller

46

Since bacteria may get stuck around the initial positions or local optima, it is possible for the

diversity of BFO algorithm to change either gradually or suddenly to eliminate the accidents

of being trapped into the local optima. Gradual or sudden changes in the local environment

where a bacterium population lives may occur due to various reasons e.g. a significant local

rise of temperature may kill a group of bacteria that are currently in a region with a high

concentration of nutrient gradients. In BFO algorithm, the dispersion event happens after a

certain number of reproduction processes. Then some bacteria are chosen, according to a

preset probability P, to be killed and moved to another position within the environment.

 In our case we have decided to use the optimal power of Bacterial foraging

optimization algorithm (BFO) to design our proposed Adaptive PID (BFO-APID) [3]

controllers. Here, all the above said designs including two steps- first, we define the structure

of the adaptive PID controller and then the algorithms are used to find their best set of

parameters with respect to an objective function. In our experimental purpose we have studied

the performances of the developed adaptive controllers based on BFO algorithms over PID &

APID controllers for different processes with dead time.

3.5 Simple steps of Bacteria foraging Optimization Algorithm

1. Initialize the population size.

2. Elimination-dispersal loop: l = l+1

3. Reproduction loop: k = k+1

4. Chemotaxis loop: j = j+1

a. For i = 1, 2...S take a chemotactic step for bacterium i as follows.

b. Compute fitness function J (i, j, k, l).

c. Save the best fitness function.

d. Tumble: generate a random vector between [-1, 1].

e. Compute the fitness function again and save the best one.

5. If j< cN (no. of bacteria in the population) go to step 3. Since the life of the bacteria is

not over.

6. Reproduction.

7. If k< Nre (no. of reproduction steps) go to step 3. In this case we have not reached the

number of specified reproduction steps. So we start the next generation of the

chemotaxis step.

Elimination-dispersal loop with probability Ped (elimination-dispersal probability). To do this,

if a bacterium is eliminated, simply disperse another one to a random location on the

Bacterial foraging optimization based APID controller

47

quantization domain. If l< Ned (no. of elimination-dispersal events), then go to step 2;

otherwise end.

3.6 Objective Function of the Bacteria foraging Optimization Algorithm

The function to be optimized is known as objective function. Here, minimization of the

integral-absolute-error (IAE) [9] or integral-time-absolute-error (ITAE) or combination of

both i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness

function). The IAE and ITAE are calculated as:

∫=
t

dtteIAE
0

|)(| (3.2)

∫ ∫+=+
t t

dttetdtteITAEIAE
0 0

|)(||)(| (3.3)

3.7 Results

For simulation study, we consider the following systems with dead-time (L)

2)1/()(+=
− sesG Ls

p , L=0.2s, and 0.3s (3.4)

)1(/)(+=
−

ssesG
Ls

p , L=0.2s, and 0.3s. (3.5)

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s. (3.6)

PH model- 2)11.0)(1/()(++=
− ssesG Ls

p , L=0.01s, and 0.02s. (3.7)

For each process model we have used four different types of controller.

(a) PID

(b) BFO-PID – dip KKK ,, are ±20% of their respective Conventional PID and these are

calculated by BFO algorithm.

(c) APID.

(d) BFO-APID - In this all seven parameters are varying within the defined range and these

are calculated by BFO algorithm.

We have calculated the close loop response characteristics for above process model by using

different controllers. For detailed comparison, in addition to the response characteristics,

several performance indices, such as percentage overshoot (%OS), rise time (rt), settling time

(st), integral absolute error (IAE) and integral time absolute error (ITAE) are calculated for

each controller. Performance of our BFO-APID is compared with Conventional PID, BFO-

Bacterial foraging optimization based APID controller

48

PID, and APID. Fourth-order Range-Kutta method is used for numeric integration. The

detailed performance analysis for various types of process is discussed below.

3.7.1 Second Order Linear Process

Transfer function of the process is given by

2)1/()(+=
− sesG Ls

p (3.8)

Response of second order linear process in (3.8) with L=0.2s, and L=0.3s under PID, BFO-

PID, APID, and BFO-APID is shown in Fig. 3.1. Performance indices of the process in (3.8)

for different controllers are given in Table 3.1(a) and Table 3.1(b). Though the controller are

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers

settings (for PID and APID). Performance analysis reveals that unlike PID, BFO-PID, and

APID, BFO-APID is capable of providing acceptable and remarkably improved performance

during both set point change and load disturbance.

Table 3.1 (a) -Performance analysis of second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 60.30 0.90 3.40 2.08 9.29

BFO-PID 24.84 0.90 2.80 1.51 7.03

APID 5.37 1.40 3.20 1.36 6.26

BFO -APID 1.04 2.10 3.30 1.30 3.68

L=0.3s
PID 93.95 0.90 7.90 3.08 23.11

BFO -PID 48.64 1.00 7.00 2.55 13.37

APID 15.58 1.00 5.70 1.81 9.63

BFO -APID 3.92 2.40 3.30 1.30 3.68

Bacterial foraging optimization based APID controller

49

Table 3.1 (b) -Performance analysis of second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 60.30 0.90 3.40 2.08 9.29

BFO-PID 14.47 1.00 3.40 1.46 7.07

APID 5.37 1.40 3.20 1.36 6.26

BFO -APID 0.30 2.20 1.90 1.38 3.56

L=0.3s
PID 93.95 0.90 7.90 3.08 23.11

BFO -PID 34.89 1.00 5.50 1.95 9.49

APID 15.58 1.00 5.70 1.81 9.63

BFO -APID 14.45 2.20 5.40 2.14 10.73

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

 exp(-0.2s) /(s+1)2

PID

BFO-PID

APID

BFO-APID

Fig. 3.1 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE

Bacterial foraging optimization based APID controller

50

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

R
e
sp

o
n
se

 y

 exp(-0.3s) /(s+1)2

PID

BFO-PID

APID

BFO-APID

Fig. 3.1 (b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

 exp(-0.2s) /(s+1)2

PID

BFO-PID

APID

BFO-APID

Fig. 3.1 (c) Response of second order linear process for L=0.2s, minimization of IAE

Bacterial foraging optimization based APID controller

51

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

 exp(-0.3s) /(s+1)2

PID

BFO-PID

APID

BFO-APID

Fig. 3.1 (d) Response of second order linear process for L=0.3s, minimization of IAE

3.7.2 First Order with Integrating Process

Transfer function of the process is given by

)1(/)(+=
−

ssesG
Ls

p (3.9)

Response of first order integrating process in (3.9) with L=0.2s and L=0.3s under PID, BFO-

PID, APID, and BFO-APID is shown in Fig. 3.2 Performance indices of the process in (3.9)

for different controllers are shown in Table 3.2(a) and Table 3.2(b). Though the controller are

tuned for L=0.2s a higher value i.e., L=0.3s is also tested without changing controllers

settings (for PID and APID).

Unlike PID, BFO-PID, and APID, BFO-APID is capable of providing acceptable and

remarkably improved performance during both set point change and load disturbance but not

to the same extent as that of the previous case.

Bacterial foraging optimization based APID controller

52

Table 3.2 (a) -Performance analysis of first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 77.50 1.10 10.2 3.44 27.19

BFO-PID 65.91 1.10 6.40 2.63 18.86

APID 28.75 1.40 11.00 2.46 19.44

BFO -APID 25.67 1.90 12.80 2.66 19.87

L=0.3s
PID 102.20 1.20 17.10 5.70 54.79

BFO -PID 89.31 1.20 12.30 3.07 34.52

APID 33.80 1.30 11.00 2.68 22.02

BFO -APID 29.55 2.10 13.10 2.80 21.73

Table 3.2 (b) -Performance analysis of first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 77.50 1.10 10.20 3.44 27.19

BFO-PID 65.91 1.10 6.40 2.63 18.86

APID 28.75 1.40 11.00 2.46 19.44

BFO -APID 25.67 1.90 12.80 2.66 19.87

L=0.3s
PID 102.20 1.20 17.10 5.70 54.79

BFO -PID 89.31 1.20 12.30 3.07 34.52

APID 33.80 1.30 11.00 2.68 22.02

BFO -APID 29.55 2.10 13.10 2.80 21.73

Bacterial foraging optimization based APID controller

53

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

 exp(-0.2s)/s(s+1)

PID

BFO-PID

APID

BFO-APID

Fig. 3.2 (a) Response of first order integrating process for L=0.2s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time t

R
e
sp

o
n

se
 y

 exp(-0.3s)/s(s+1)

PID

BFO-PID

APID

BFO-APID

Fig. 3.2 (b) Response of first order integrating process for L=0.3s, minimization of IAE+ITAE

Bacterial foraging optimization based APID controller

54

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time t

R
e
sp

o
n
se

 y

 exp(-0.2s)/s(s+1)

PID

BFO-PID

APID

BFO-APID

Fig. 3.2 (c) Response of first order integrating process for L=0.2s, minimization of IAE

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time t

R
es

p
o

n
se

 y

 exp(-0.3s)/s(s+1)

PID

BFO-PID

APID

BFO-APID

Fig. 3.2 (d) Response of first order integrating process for L=0.2s, minimization of IAE

3.7.3 Second Order Nonlinear Process

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++ (3.10)

Response of second order non linear process in (3.10) with L=0.3s and L=0.4s under PID,

BFO-PID, APID, and BFO-APID is shown in Fig. 3.3. Performance indices of the process in

(3.10) for different controllers are given in Tables 3.3(a) and 3.3(b). Though the controller are

tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers

settings (for PID and APID). We can conclude that unlike PID, BFO-PID, and APID, BFO-

Bacterial foraging optimization based APID controller

55

APID is capable of providing acceptable and remarkably improved performance during both

set point change and load disturbance.

Table 3.3 (a) -Performance analysis of second order non-linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE+ITAE

PID 66.10 1.40 9.30 3.13 46.60

BFO-PID 54.2 1.50 6.80 3.54 36.48

APID 19.18 1.70 10.60 2.95 34.88

BFO -APID 9.74 1.90 8.90 2.71 30.98

L=0.4s
PID 83.11 1.50 13.30 5.78 72.40

BFO -PID 67.15 1.50 6.10 3.92 41.28

APID 25.15 1.70 10.80 3.26 39.45

BFO -APID 16.46 1.90 8.90 3.04 35.48

Table 3.3 (b) -Performance analysis of second order non-linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE

PID 66.10 1.40 9.30 3.13 46.60

BFO-PID 52.48 1.40 6.90 3.16 33.31

APID 19.18 1.70 10.60 2.95 34.88

BFO -APID 11.37 2.00 11.30 2.81 32.51

L=0.4s
PID 83.11 1.50 13.30 5.78 72.40

BFO -PID 69.67 1.40 9.90 3.32 49.81

APID 25.15 1.70 10.80 3.26 39.45

BFO -APID 12.02 1.8 11.80 3.03 35.83

Bacterial foraging optimization based APID controller

56

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

 (d2y/dt2) + dy/dt + 0.2*y = u(t-0.3)

PID

BFO-PID

APID

BFO-APID

Fig. 3.3 (a) Response of second order integrating process for L=0.3s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n
se

 y

 (d2y/dt2) + dy/dt + 0.2*y = u(t-0.4)

PID

BFO-PID

APID

BFO-APID

Fig. 3.3 (b) Response of second order integrating process for L=0.4s, minimization of IAE+ITAE

Bacterial foraging optimization based APID controller

57

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n
se

 y

 (d2y/dt2) + dy/dt + 0.2*y = u(t-0.3)

PID

BFO-PID

APID

BFO-APID

Fig. 3.3 (c) Response of second order integrating process for L=0.3s, minimization of IAE

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

 (d2y/dt2) + dy/dt + 0.2*y = u(t-0.4)

PID

BFO-PID

APID

BFO-APID

Fig. 3.3 (d) Response of second order integrating process for L=0.4s, minimization of IAE

3.7.4 pH-Neutralization Process

For pH-neutralization process we consider following linear model

2)11.0)(1/()(++=
−

ssesG
Ls

p (3.11)

Response of pH neutarlization process in (3.11) with L=0.01s and L=0.02s under PID, BFO-

PID, APID, and BFO-APID is shown in Fig. 3.3. Performance indices of the process in (3.11)

Bacterial foraging optimization based APID controller

58

for different controllers are given in Tables 3.3(a) and 3.3(b). Though the controller are tuned

for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers settings

(for PID and APID). We can conclude that unlike PID, BFO-PID, and APID, BFO-APID is

capable of providing acceptable and remarkably improved performance during both set point

change and load disturbance.

Table 3.4 (a) -Performance analysis of pH-neutralization process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.01s

IAE+ITAE

PID 64.21 0.26 1.69 0.72 1.09

BFO-PID 52.56 0.26 1.29 0.65 0.92

APID 23.94 0.30 1.77 0.52 0.84

BFO -APID 4.02 0.38 0.86 0.41 0.60

L=0.02s
PID 72.34 0.27 1.78 0.84 1.33

BFO -PID 58.46 0.28 1.24 0.69 0.99

APID 28.49 0.30 1.84 0.56 0.88

BFO -APID 6.40 0.36 0.88 0.43 0.63

Table 3.4 (b) -Performance analysis of pH-neutralization process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.01s

IAE

PID 64.21 0.26 1.69 0.72 1.09

BFO-PID 52.56 0.26 1.29 0.65 0.92

APID 23.94 0.30 1.77 0.52 0.84

BFO -APID 3.02 0.38 0.86 0.41 0.60

L=0.02s
PID 72.34 0.27 1.78 0.84 1.33

BFO -PID 58.46 0.28 1.24 0.69 0.99

APID 28.49 0.30 1.84 0.56 0.88

BFO -APID 6.40 0.36 0.88 0.43 0.63

Bacterial foraging optimization based APID controller

59

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

PH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)]

CPID

BFO-CPID

APID

BFO-APID

Fig. 3.4 (a) Response of pH neutralization process for L=0.01s, minimization of IAE+ITAE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

PH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)]

PID

BFO-PID

APID

BFO-APID

Fig. 3.4 (b) Response of pH neutralization process for L=0.02s, minimization of IAE+ITAE

Bacterial foraging optimization based APID controller

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

PH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)]

CPID

BFO-CPID

APID

BFO-APID

Fig. 3.4 (c) Response of pH neutralization process for L=0.01s, minimization of IAE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

PH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)]

CPID

BFO-CPID

APID

BFO-APID

Fig. 3.4 (d) Response of pH neutralization process for L=0.02s, minimization of IAE

3.8 Conclusion

In this study we have exhibited how the performance of adaptive PID (APID) controllers is

enhanced when it is used with the optimal power of bio-inspired algorithms. Here, BFO are

said to be bio-inspired because of the fact that they depicts how E. coli bacteria are sustained

Bacterial foraging optimization based APID controller

61

biologically. When the conventional controller with the optimal power of BFO are not able to

provide the satisfactory performances over APID controller, we decided to develop the BFO-

APID in order to get overall improved performance for both set point change as well as load

disturbances. We also observed that BFO-APID provides improved performance as it

provides minimum overshoot & improved rise time & settling time. It also provides lower

value of IAE & ITAE which indicates that it can track set point and reject load disturbance

properly. Initially we have used IAE+ITAE as objective function with a dead time. After that

the dead time is improved in order to see the robustness of the controller & we found the

performance is still satisfactory for BFO-APID. We also get the similar enhanced

performance when we use only IAE as an objective function.

References

[1] Passino, K.M., Biomimicry of bacterial foraging for distributed optimization and control,

IEEEControl System, vol. 22, no.3, pp.55-67, (2002).

[2] Passino, K.M., Bacterial foraging optimization, International Journal of Swarm Intelligence

Research, 1(1), 1-16, (2010).

[3] Alavandar, S., Jain, T, NIBFOM, M. J., Bacterial foraging of optimized hybrid pre

compensated PD control of two link rigid-flexible manipulator, Personal E- collection.

[4] Dey, C., Mudi, R.K., ; An improved auto-tuning scheme for PID controllers. ISA Trans.

48(3), 396–409 (2009).

[5] Dey, C., Mudi, R.K., Lee. T.T., ; An improved auto-tuning scheme for PI controllers. ISA

Transactions. 47, 45- 52 (2008).

[6] Berg, H.C., Biological and Medical Physics Biomedical Engineering , Springer, Netherlands,

2005

[7] Chen, H., Zhu, Y., Hu, K., Cooperative Bacterial Foraging Optimization, Hindawi Publishing

Corporation Discrete Dynamics in Nature and Society,10.1155,815247,2009

[8] Das, S., Biswas, A., Dasgupta, S, Abraham, A., and Bacterial Foraging Optimization

Algorithm: Theoretical Foundations, Analysis, and Applications, Personal E-collection.

[9] Seborg, D.E., Edgar. T.F.,; Adaptive control strategies for process control: A survey. AICHE J.

32(6), 881–913 (1986).

CHAPTER-4

PARTICLE SWARM OPTIMIZATION

ALGORITHM BASED ADAPTIVE PID

CONTROLLER

Particle swarm optimization based APID controllers

62

4.1 Introduction

In this chapter we will vary all the seven parameters, i.e., 4321 ,,,,, andkkkkKKK dip of APID

[1] within a defined range. Particle swarm optimization (PSO) is used to find out best set of

solution which will optimize the given objective function. In 1995, Edward and Kennedy [2-

4] first introduced the PSO method motivated by social behavior of organisms such as fish

schooling and bird flocking. It is also a population based search technique. PSO can be easily

implemented and usually results in faster convergence rates than other techniques. Unlike the

PSO, PSO has no evolution operators such as crossover and mutation.

4.2 Particle Swarm Optimization (PSO)

Particle swarm optimization [2-4] is an artificial intelligence (AI) technique which can be is

used to find approximate solutions to extremely difficult or impossible numeric maximization

and minimization problems. The idea behind the algorithm was inspired by social behavior of

animals such as bird flocking and fish schooling. This theory can be understood by the

concept of techniques used by birds or fishes for searching the food in wide area. Suppose the

following scenario, a group of birds or fishes are randomly searching for food in a wide area.

There is only one piece of food in the area being searched. All the birds/fishes do not know

the exact location where the food is. In that condition, they travel in search space according to

the own experience as well as neighbour’s experience. That mean, in each iteration, they

compare the distance between its own location and the target with respect to its previous

experience as well as the best position of neighbor which is closest to the target. After that

they modify its own speed for the best strategy to find the food. This is the basic principle of

Particle Swarm Optimization (PSO).

 In technical term, each bird or fish is called “Particle” and its flock is called “Particle

Population”. All the particles have own fitness or objective value which is calculated by the

objective function. For the optimization of objective function, particles positions are updated

by velocity vector which depends on its personal influence as well as social influence.

Technically in other words PSO starts with random set of solutions that is called the

particles. Each particle has positions (value of the variables) and velocities. The particles

update their velocities and positions based on the local best solution (best solution associated

with current population) and global best solution (best solution associated with population

found so far).

Particle swarm optimization based APID controllers

63

To avoid confusion I am giving some nomenclature which is used in PSO.

Table 4.1 Parameters of PSO algorithm

Term Explanation

Particle One set of solution, i.e., one set of value of variables.

Position Value of individual variable.

velocity Corresponding to each variable there is a velocity. It is a vector quantity.

Population It is the no of particle in a swarm, i.e., set of solutions

fitness f (particle)

Variables Define all the independent variables

Range of variables Define the range of all independent variables

Velocity range [-|(span of the variable)| , |(span of the variable)|]

Where span is the difference between largest and smallest value of that

variable.

Local _best

_particle

It is the best solution associated with minimum fitness of the current

population.

Global _best

_particle

It is the best solution associated with minimum fitness of the population

found so far.

4.3 Objective Function of Particle Swarm Optimization

The function to be optimized is known as objective function. Here, minimization of the

integral-absolute-error (IAE) or integral-time-absolute-error (ITAE) or combination of both

i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness function).

The IAE and ITAE are calculated as:

 ∫=

t

dtteIAE
0

|)(|

(4.1)

∫∫ +=+

t
t

dttetdtteITAEIAE

0
0

|)(||)(| (4.2)

Particle swarm optimization based APID controllers

64

4.4 Initial Settings of Particle Swarm Optimization -

Table 4.2 Initial settings of the algorithm

Population 10

Variables
4321 ,,,,, andkkkkKKK dip

Range of variables
dip KKK ,, are ±20% of their respective PID,

nd .

Velocity range [-|(span of the variable)| , |(span of the variable)|]

Where span is the difference between largest and

smallest value of that variable.

4.5 Different Operations Used in Particle Swarm Optimization

Population

Here, the population size is 10. We have 7 variables 4321 ,,,,, andkkkkKKK dip . We generate

random set of solution by MATLAB-command random (population size, variables), i.e.,

random (10, 7). All the values are lying between 0 and 1 and matrix size is 10*7.

Bring the particle’s positions (variables) in range

Since value of the variables is not in the defined range therefore we bring it in a defined range

to get the real value of the optimization variable. The following linear mapping is used for

this purpose.

Let i denotes the particles so i=1, 2, 3...10

And let j denotes the variables so j=1, 2, 3…7

}0001.0),({
)()(

)(),(minmax
min −×

−
+= jiuedecimalval

span

jXjX
jXjiparticle (4.3)

Where, particle (i, j) = real value of variable

)(max jX = Maximum value of jth variable of any set of solutions

)(min jX = Minimum value of jth variable of any set of solutions

Span of decimal no = 0.9999 – 0.0001

Particle swarm optimization based APID controllers

65

Velocity and velocity range

Each variable has velocity which is a vector quantity. To generate velocity the same

MATLAB command is used as we have used to generate population, i.e., random (10, 7).

Now we bring the decimal value of velocity in a defined range to get the real value of

velocity. The following linear mapping is used for this purpose.

}0001.0),({
)()(

)(),(minmax
min −×

−
+= jiuedecimalval

span

jXjX
jVjivelocity (4.4)

Where, velocity (i,j) is the real value of velocity.

Velocity range is defined as:

|)()((|)(minmaxmax jXjXjV −+= is the maximum velocity of j
th
 variable of any set of

solution.

|)()((|)(minmaxmax jXjXjV −+= is the minimum velocity of j
th
 variable of any set of

solution.

Other unknowns are same as previous case.

Particle’s velocity update, particle’s position update and inertia weight (w)

We update particle’s velocity first then we update particle’s position by the following method.

Update particle’s velocity by

+−+=)),(),(__(*),(*),(_ 11 jiparticlejiparticlebestlocalrcjivelocitywjivelocityNew

)),(),(__(* 22 jipjiparticlebestglobalrc − (4.5)

Update particle’s position by

),(_),(),(jivelocitynewjiparticlejipartcle += (4.6)

Where i=1, 2, 3…10 is the particles and j=1, 2, 3…7 is the variables. i and j is used to

indicate the coordinate of the particle. Here w is the inertia weight. It is used to control the

search. At the starting phase of search inertia weight is almost equal to 0.99 and search is in

exploration mode. At the end phase of search inertia weight is very low (almost equal to 0.01)

and search is in exploitation mode. Thus at the starting phase of search change in particle’s

velocity and position are very high compared to end phase of search where change in

particle’s velocity and position are very small.

Note- if the exploration mode is very high (w >1) then you jump from one solution to

another solution with much gap (span) because of the high velocity of the particle. You may

over jump best solution. And if exploitation mode is very high (w 0.01) then program will

Particle swarm optimization based APID controllers

66

take too much time to converge. Because w affects our results drastically therefore you cannot

give importance to anyone of the modes. I have made w as a time varying quantity (dynamic

nature) to control the both modes, i.e., w gradually decreases from 0.99 to 0.01 as the no of

iteration increases.

Local weight and global weight

1c and 2c are constant. 1c is called the cognitive or personal or local weight. 2c is called the

social or global weight. 1c =2 and 2c =2. r1 and r2 are the random number and both are in

range of (0,1).

Surety that you are at global optima

From the second term in the velocity update equation (4.4), we can say that particles always

try to move towards Local_best_particle, i.e., local minimum and from the third term we can

say particles always try to move towards Global_best_particle, i.e., global minimum.

If the Global_best_particle is too far from the Local_best_particle, then Global_best_particle

has huge impact on the velocities and positions of the particles which are nearer to

Local_best_particle. It means that for those particles high change in velocities and positions

occur. Therefore particles finally move towards Global_best_particle. Also the random

variables r1 and r2 add a random component to the particles movement and help to prevent

particles from getting stuck at a non-optimal local minimum solution.

4.6 Steps of Particle Swarm Optimization Algorithm

(1) Generate population with uniform random number and bring it within the define range.

(2) Generate velocity with uniform random number and bring it within the define range.

(3) For each particles, i.e., i=1, 2, 3…10

 Evaluate the fitness, i.e., objective function, i.e., f (particle (i))

(4) Find out the particle associated with minimum fitness. Let for ith particle we are getting

minimum fitness then

Local_best_particle =)(
th

iparticle

Global_best_particle =)(
th

iparticle

Start of PSO loop: repeat until slope of objective is almost zero or until maximum no of

iteration is reached.

(i) For each particles, i.e., i=1, 2, 3...10

 For each variables, i.e., j=1, 2, 3…7

 {Generate the random number r1, r2.

Particle swarm optimization based APID controllers

67

Update the velocity by

+−+=)),(),(__(*),(*),(_ 11 jiparticlejiparticlebestlocalrcjivelocitywjivelocityNew

)),(),(__(* 22 jipjiparticlebestglobalrc − (4.7)

Check the velocity limit and if it is out of range, bring it in range.

If),(_ jivelocitynew >)(max jV then),(_ jivelocitynew =)(max jV

Else if),(_ jivelocitynew <)(min jV then),(_ jivelocitynew =)(min jV

(ii) For each particles, i.e., i=1, 2, 3...10

For each variables, i.e., j=1, 2, 3…7

{Update the position by),(_),(),(jivelocitynewjiparticlejipartcle += (4.8)

Check the particle’s position limit and if it is out of range bring it in range.

If)(),(max jXjiparticle > then)(),(max jXjiparticle >

Else if)(),(max jXjiparticle < then particle)(),(max jXjiparticle <

(iii) For each particles, i.e., i=1, 2, 3…10

Evaluate the fitness, i.e., objective function i.e. f (particle (i))

(iv) Find out the particle associated with minimum fitness in the current population. Let for

i
th
 particle we are getting minimum fitness.

Local_best_particle=particle (i
th
)

If)__(__(particlebestglobalfparticlebestlocalf <

)__(__(particlebestglobalparticlebestlocal =

End

Hence Global_best_particle is our solution for which fitness is minimum.

4.7 RESULTS

For simulation study, we consider the following systems with dead-time (L)

2)1/()(+=
−

sesG
Ls

p , L=0.2s, and 0.3s (4.9)

)1(/)(+=
−

ssesG
Ls

p , L=0.2s, and 0.3s. (4.10)

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s. (4.11)

PH model- 2)11.0)(1/()(++=
−

ssesG
Ls

p , L=0.01s, and 0.02s. (4.12)

For each process model we have used four different types of controller.

(a) PID.

(b) PSO-PID – dip KKK ,, are ±20% of their respective PID and these are calculated by

genetic algorithm.

Particle swarm optimization based APID controllers

68

(c) APID.

(d) PSO-APID - In this all seven parameters are varying within the defined range and these

are calculated by PSO algorithm.

We have calculated the close loop response characteristics for different controllers. For

detailed comparison, in addition to the response characteristics, several performance indices,

such as percentage overshoot (%OS), rise time (rt), settling time (st), integral absolute error

(IAE) and integral time absolute error (ITAE) are calculated for each controller. Performance

of our PSO-APID is compared with PID, PSO-PID, and APID. Fourth-order Range-Kutta

method is used for numeric integration. The detailed performance analysis for various types

of process is discussed below.

4.7.1 Second Order Linear Process

Transfer function of the process is given by

2)1/()(+=
−

sesG
Ls

p (4.13)

Response of second order linear process in (4.13) with L=0.2s, and L=0.3s under PID, PSO-

PID, APID, and PSO-APID is shown in Fig. 4.1. Performance indices of the process in (4.13)

for different controllers are given in Table 4.3 (a) and Table 4.3 (b). Though the controller are

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers

settings (for PID and APID). Performance analysis reveals that unlike PID, PSO-PID, and

APID, PSO-APID is capable of providing acceptable and remarkably improved performance

during both set point change and load disturbance.

Table 4.3 (a) -Performance analysis second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 60.30 0.90 4.40 2.08 9.29

PSO-PID 44.49 0.80 3.80 1.60 6.65

APID 5.37 1.40 4.20 1.36 6.26

PSO -APID 0.57 1.00 6.30 1.23 4.94

L=0.3s
PID 93.93 0.90 12.20 4.41 35.28

PSO -PID 61.81 1.00 3.50 2.27 10.04

APID 15.58 1.00 4.70 1.85 14.10

PSO -APID 0.40 2.60 7.90 1.98 8.75

Particle swarm optimization based APID controllers

69

Table 4.3 (b) -Performance analysis second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 60.30 0.90 4.40 2.08 9.29

PSO-PID 44.49 0.80 3.80 1.60 6.65

APID 5.37 1.40 4.20 1.36 6.26

PSO -APID 2.95 2.10 3.10 1.47 4.49

L=0.3s
PID 93.93 0.90 12.20 4.41 35.28

PSO -PID 61.81 1.00 3.50 2.27 13.98

APID 15.58 1.00 4.70 1.85 14.10

PSO -APID 4.24 2.30 4.80 1.94 8.69

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

 exp(-0.2s) /(s+1)2

PID

PSO-PID

APID

PSO-APID

Fig. 4.1 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE

Particle swarm optimization based APID controllers

70

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

 exp(-0.2s) /(s+1)2

PID

PSO-PID

APID

PSO-APID

Fig. 4.1 (c) Response of second order linear process for L=0.2s, minimization of IAE

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

 exp(-0.3s) /(s+1)2

PID

PSO-PID

APID

PSO-APID

Fig. 4.1 (b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE

Particle swarm optimization based APID controllers

71

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

 exp(-0.3s) /(s+1)2

PID

PSO-PID

APID

PSO-APID

Fig. 4.1 (d) Response of second order linear process for L=0.3s, minimization of IAE

4.7.2 First Order with Integrating Process

Transfer function of the process is given by

)1(/)(+=
−

ssesG
Ls

p (4.14)

Response of first order integrating process in (4.14) with L=0.2s, and L=0.3s under PID,

PSO-PID, APID, and PSO-APID is shown in Fig. 4.2. Performance indices of the process in

(4.14) for different controllers are given in Table 4.4 (a) and Table 4.4 (b). Though the

controller are tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing

controllers settings (for PID and APID). Performance analysis reveals that unlike PID, PSO-

PID, and APID, PSO-APID is capable of providing acceptable and remarkably improved

performance during both set point change and load disturbance.

Particle swarm optimization based APID controllers

72

Table 4.4 (a) -Performance analysis first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 77.50 1.10 10.20 3.44 27.19

PSO-PID 59.02 1.10 6.00 2.22 14.88

APID 28.75 1.40 11.00 2.46 19.44

PSO -APID 24.56 1.70 11.70 2.30 16.52

L=0.3s
PID 93.93 0.90 12.20 4.41 35.28

PSO -PID 58.59 1.20 6.40 2.45 16.79

APID 15.58 1.00 4.70 1.85 14.10

PSO -APID 19.79 1.50 13.10 2.42 19.72

Table 4.4 (b) -Performance analysis first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 77.50 1.10 10.20 3.44 27.19

PSO-PID 59.02 1.10 6.00 2.22 14.88

APID 28.75 1.40 11.00 2.46 19.44

PSO -APID 13.88 1.50 17.40 2.15 21.76

L=0.3s
PID 93.93 0.90 12.20 4.41 35.28

PSO -PID 83.06 1.10 9.60 3.35 26.13

APID 15.58 1.00 4.70 1.85 14.10

PSO -APID 12.65 2.50 17.40 2.47 25.45

Particle swarm optimization based APID controllers

73

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

 exp(-0.2s)/s(s+1)

PID

PSO-PID

APID

PSO-APID

Fig.4.2 (a) Response of first order integrating process for L = 0.2s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time t

R
e

sp
o

n
se

 y

 exp(-0.3s)/s(s+1)

PID

PSO-PID

APID

PSO-APID

Fig.4.2 (b) Response of first order integrating process for L = 0.3s, minimization of IAE+ITAE

Particle swarm optimization based APID controllers

74

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

 exp(-0.2s)/s(s+1)

PID

PSO-PID

APID

PSO-APID

Fig.4.2 (c) Response of first order integrating process for L = 0.3s, minimization of IAE

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

T ime t

R
es

p
o
n
se

 y

 exp(-0.3s)/s(s+1)

PID

PSO-PID

APID

PSO-APID

Fig.4.2 (d) Response of first order integrating process for L = 0.3s, minimization of IAE

4.7.3 Second Order Nonlinear Process

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++ (4.15)

Response of second order non linear process in (4.15) with L=0.3s and L=0.4s under PID,

PSO-PID, APID, and PSO-APID is shown in Fig. 4.3. Performance indices of the process in

(4.15) for different controllers are given in Tables 4.4(a) and 4.4(b). Though the controller are

Particle swarm optimization based APID controllers

75

tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers

settings (for PID and APID). We can conclude that unlike PID, PSO-PID, and APID, PSO-

APID is capable of providing acceptable and remarkably improved performance during both

set point change and load disturbance.

Table 4.5 (a) -Performance analysis second order non-linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE+ITAE

PID 66.10 1.40 9.30 4.13 46.60

PSO-PID 51.59 1.40 6.80 3.10 32.76

APID 19.18 1.70 10.60 2.95 34.88

PSO -APID 4.34 2.80 4.00 2.01 18.84

L=0.4s
PID 83.11 1.50 13.30 4.78 72.40

PSO -PID 60.12 1.60 7.40 3.82 41.28

APID 25.15 1.70 10.80 3.26 39.45

PSO -APID 3.93 3.60 4.80 2.47 29.98

Table 4.5 (b) -Performance analysis second order non-linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE

PID 66.10 1.40 9.30 4.13 46.60

PSO-PID 51.59 1.40 6.80 3.10 32.76

APID 19.18 1.70 10.60 2.95 34.88

PSO -APID 2.75 2.70 3.60 1.97 19.75

L=0.4s
PID 83.11 1.50 13.30 4.78 72.40

PSO -PID 69.18 1.40 9.80 4.30 49.67

APID 25.15 1.70 10.80 3.26 39.45

PSO -APID 3.93 3.60 4.80 2.47 29.98

Particle swarm optimization based APID controllers

76

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

(d2y/dt2) + dy/dt + 0.2*y2 = u(t-0.3)

PID

PSO-PID

APID

PSO-APID

Fig.4.3 (a) Response of second order nonlinear process for L = 0.3s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

(d2y/dt2) + dy/dt + 0.2*y2 = u(t-0.4)

PID

PSO-PID

APID

PSO-APID

Fig.4.3 (b) Response of second order nonlinear process for L = 0.4s, minimization of IAE+ITAE

Particle swarm optimization based APID controllers

77

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

(d2y/dt2) + dy/dt + 0.2*y2 = u(t-0.3)

PID

PSO-PID

APID

PSO-APID

Fig.4.3 (c) Response of second order nonlinear process for L = 0.3s, minimization of IAE

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

(d2y/dt2) + dy/dt + 0.2*y2 = u(t-0.4)

PID

PSO-PID

APID

PSO-APID

Fig.4.3 (d) Response of second order nonlinear process for L = 0.4s, minimization of IAE

4.7.4 pH-Neutralization Process

For pH-neutralization process we consider following linear model

2)11.0)(1/()(++=
−

ssesG
Ls

p (4.16)

Response of pH neutralization process in (4.16) with L=0.01s and L=0.02s under PID, PSO-

PID, APID, and PSO-APID is shown in Fig. 4.4. Performance indices of the process in (4.16)

for different controllers are given in Tables 4.6(a) and 4.6(b). Though the controller are tuned

for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers settings

Particle swarm optimization based APID controllers

78

(for PID and APID). We can conclude that unlike PID, PSO-PID, and APID, PSO-APID is

capable of providing acceptable and remarkably improved performance during both set point

change and load disturbance.

Table 4.6 (a) -Performance analysis pH-neutralization process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.01s

IAE+ITAE

PID 64.21 0.26 1.69 0.72 1.40

PSO-PID 48.43 0.25 1.23 0.52 0.94

APID 23.94 0.3 1.77 0.52 0.84

PSO -APID 9.75 0.31 0.81 0.39 0.79

L=0.02s PID 72.34 0.27 1.78 0.84 1.33

PSO -PID 53.55 0.27 1.27 0.59 1.07

APID 28.49 0.30 1.84 0.56 0.88

PSO -APID 6.28 0.33 1.49 0.4 0.73

Table 4.6 (b) -Performance analysis pH-neutralization process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.01s

IAE

PID 64.21 0.26 1.69 0.72 1.40

PSO -PID 48.43 0.25 1.23 0.52 0.94

APID 23.94 0.3 1.77 0.52 0.84

PSO -APID 10.49 0.31 0.79 0.39 0.82

L=0.02s PID 72.34 0.27 1.78 0.84 1.33

PSO -PID 56.14 0.25 1.23 0.60 1.12

APID 28.49 0.30 1.84 0.56 0.88

PSO -APID 14.27 0.30 1.03 0.43 0.90

Particle swarm optimization based APID controllers

79

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

pH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)2]

PID

PSO-PID

APID

PSO-APID

Fig.4.4(b) Response of pH neutralization process for L = 0.02s, minimization of IAE+ITAE

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

Time t

pH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)2]

PID

PSO-PID

APID

PSO-APID

Fig.4.4(a) Response of pH neutralization process for L = 0.01s, minimization of IAE+ITAE

Particle swarm optimization based APID controllers

80

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

T ime t

R
es

p
o

n
se

 y
pH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)2]

PID

PSO-PID

APID

PSO-APID

Fig.4.4(c) Response of pH neutralization process for L = 0.01s, minimization of IAE

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

pH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)2]

PID

PSO-PID

APID

PSO-APID

Fig.4.4(d) Response of pH neutralization process for L = 0.02s, minimization of IAE

4.8 Conclusion

In this study we have explored the possibility of performance enhancement of Adaptive PID

controller (APID) through Particle Swarm algorithm optimization technique. From the

experimental results we observed that both PSO-APID provided remarkably enhanced

performance over Adaptive PID controller (APID) due to set point changes as well as load

disturbances. We also observed that genetic algorithm based Adaptive PID controller (PSO-

Particle swarm optimization based APID controllers

81

APID) exhibited comparatively better performance over PSO optimized conventional PID

controller (PSO-CPID) for all the systems taken above. PSO-APID provided minimum

overshoot as well as minimum IAE & ITAE. Initially we have used IAE+ITAE as objective

function in order to obtain both load disturbances and set point tracking satisfactorily i.e.

overall improved performance with a dead time. After that we increased the dead time in

order to see the robustness of the controller and we still found that the proposed PSO-APID

maintained overall improved performances. We also observed the similar enhanced

performance when IAE is used an objective function.

References

[1] C. Dey, and R.K. Mudi, An improved auto-tuning scheme for PID controllers. ISA Trans.

48(4), 396–409(2009).

[2] James McCaffrey, http://msdn.microsoft.com/en-us/maPSOzine/hh335067.aspx

[3] Microsoft, Msdn maPSOzine (august-2011), 86-91.

[4] Randy L. Haupt, and Sue Ellen Haupt, Practical Genetic Algorithms, Wiley publishing Co.

Second edition (2004).

CHAPTER-5

ARTIFICIAL BEE COLONY ALGORITHM

BASED ADAPTIVE PID CONTROLLER

Artificial bee colony based APID controllers

82

5.1 Introduction

Artificial Bee Colony (ABC) algorithm [1] which is one of the most recently introduced

optimization algorithms simulates the intelligent foraging behavior of a honey bee swarm.

Artificial Bee Colony (ABC) algorithm was proposed by Karaboga [2, 3] for optimizing

numerical problems. The algorithm simulates the intelligent foraging behavior of honey bee

swarms. It is a very simple, robust and population based stochastic optimization algorithm. In

ABC algorithm, the colony of artificial bees contains three groups of bees: employed bees,

onlookers and scouts. A bee waiting on the dance area for making a decision to choose a food

source is called onlooker and one going to the food source visited by it before is named

employed bee. The other kind of bee is scout bee that carries out random search for

discovering new sources. The employed bee whose food source has been exhausted by the

bees becomes a scout. The position of a food source represents a possible solution to the

optimization problem and the nectar amount of a food source corresponds to the quality

(fitness) of the associated solution. In ABC system, artificial bees fly around in a

multidimensional search space and some (employed and onlooker bees) choose food sources

depending on the experience of themselves and their nest mates, and adjust their positions.

Some (scouts) fly and choose the food sources randomly without using experience. If the

nectar amount of a new source is higher than that of the previous one in their memory, they

memorize the new position and forget the previous one. Thus, ABC system combines local

search methods, carried out by employed and onlooker bees, with global search methods,

managed by onlookers and scouts, attempting to balance exploration and exploitation process.

5.2 Behavior of Honey Bee swarm [3]

The minimal model of forage selection that leads to the emergence of collective intelligence

of honey bee swarms [4] consists of three essential components: food sources, employed

foragers and unemployed foragers and the model defines two leading modes of the behavior:

the recruitment to a nectar source and the abandonment of a source.

Food source: The value of a food source depends on many factors such as its proximity to the

nest, its richness or concentration of its energy, and the ease of extracting this energy. For the

sake of simplicity, the “profitability” of a food source can be represented with a single

quantity.

Employed foragers: They are associated with a particular food source which they are

currently exploiting or are “employed” at. They carry with them information about this

particular source, its distance and direction from the nest, the profitability of the source and

share this information with a certain probability.

Artificial bee colony based APID controllers

83

Unemployed foragers: They are continually at look out for a food source to exploit. There

are two types of unemployed foragers: scouts, searching the environment surrounding the nest

for new food sources and onlookers waiting in the nest and establishing a food source through

the information shared by employed foragers. The mean number of scouts averaged over

conditions is about 5-10%.

The exchange of information among bees is the most important occurrence in the

formation of the collective knowledge. While examining the entire hive it is possible to

distinguish between some parts that commonly exist in all hives. The most important part of

the hive with respect to exchanging information is the dancing area. Communication among

bees related to the quality of food sources takes place in the dancing area. This dance is called

a waggle dance.

Since information about all the current rich sources is available to an onlooker on the

dance floor, probably she can watch numerous dances and decides to employ herself at the

most profitable source. There is a greater probability of onlookers choosing more profitable

sources since more information is circulated about the more profitable sources. Employed

foragers share their information with a probability proportional to the profitability of the food

source, and the sharing of this information through waggle dancing is longer in duration.

Hence, the recruitment is proportional to the profitability of the food source.

5.3 Proposed Approach

In this work, a particular intelligent behavior of a honey bee swarm, foraging behavior, is

considered and a new artificial bee colony (ABC) algorithm simulating this behavior of real

honey bees is described for solving multidimensional and multimodal optimization problems.

The main steps of the algorithm are given below:

1 .Initialize the solution population

2 .Evaluate populations

3 .Generate new solutions for the employed bees and keep the best solution

4. Select the visited solution for onlooker bees by their fitness

5 .Generate new solutions for the onlooker bees and keep the best solution

5. Determine if exist an abandoned food source and replace it using a scout bee

7. Save in memory the best solution so far

8. Repeat steps 2-7 until stopping criteria is reached.

Each cycle of the search consists of three steps: moving the employed and onlooker

bees onto the food sources and calculating their nectar amounts; and determining the scout

Artificial bee colony based APID controllers

84

bees and directing them onto possible food sources. A food source position represents a

possible solution to the problem to be optimized. The amount of nectar of a food source

corresponds to the quality of the solution represented by that food source. Onlookers are

placed on the food sources by using a probability based selection process. As the nectar

amount of a food source increases, the probability value with which the food source is

preferred by onlookers increases, too. Every bee colony has scouts that are the colony’s

explorers. The explorers do not have any guidance while looking for food. They are primarily

concerned with finding any kind of food source. As a result of such behavior, the scouts are

characterized by low search costs and a low average in food source quality. Occasionally, the

scouts can accidentally discover rich, entirely unknown food sources. In the case of artificial

bees, the artificial scouts could have the fast discovery of the group of feasible solutions as a

task. In this work, one of the employed bees is selected and classified as the scout bee. The

selection is controlled by a control parameter called "limit". If a solution representing a food

source is not improved by a predetermined number of trials, then that food source is

abandoned by its employed bee and the employed bee is converted to a scout. The number of

trials for releasing a food source is equal to the value of "limit" which is an important control

parameter of ABC.

In a robust search process exploration and exploitation processes must be carried out

together. In the ABC algorithm, while onlookers and employed bees carry out the exploitation

process in the search space, the scouts control the exploration process. In the case of real

honey bees, the recruitment rate represents a “measure” of how quickly the bee swarm locates

and exploits the newly discovered food source. Artificial recruiting process could similarly

represent the “measurement” of the speed with which the feasible solutions or the optimal

solutions of the difficult optimization problems can be discovered. The survival and progress

of the real bee swarm depended upon the rapid discovery and efficient utilization of the best

food resources. Similarly the optimal solution of difficult engineering problems is connected

to the relatively fast discovery of “good solutions” especially for the problems that need to be

solved in real time.

In our case we have decided to use the optimal power of artificial bee colony

algorithm (ABC) to design our proposed Adaptive PID (ABC-APID) [5, 5] controllers. Here,

all the above said designs including two steps- first, we define the structure of the adaptive

PID controller and then the algorithms are used to find their best set of parameters with

respect to an objective function. In our experimental purpose we have studied the

performances of the developed adaptive controllers based on ABC algorithms over PID &

APID controllers for different processes with dead time.

Artificial bee colony based APID controllers

85

5.4 Objective function of ABC algorithm

The function to be optimized is known as objective function. Here, minimization of the

integral-absolute-error (IAE) [7] or integral-time-absolute-error (ITAE) or combination of

both i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness

function). The IAE and ITAE are calculated as:

∫=
t

dtteIAE
0

|)(| (5.1)

∫∫ +=+

t
t

dttetdtteITAEIAE

0
0

|)(||)(| (5.2)

5.5 Initial Settings of Artificial Bee Colony Algorithm

Table 5.1 Initial settings of the algorithm

5.6 Results

For simulation study, we consider the following systems with dead-time (L)

2)1/()(+=
−

sesG
Ls

p , L=0.2s, and 0.3s (5.3)

)1(/)(+=
−

ssesG
Ls

p , L=0.2s, and 0.3s. (5.4)

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s. (5.5)

PH model- 2)11.0)(1/()(++=
−

ssesG
Ls

p , L=0.01s, and 0.02s. (5.6)

For each process model we have used four different types of controller.

(a) PID.

(b) ABC-PID – dip KKK ,, are ±20% of their respective Conventional PID and these are

calculated by ABC algorithm.

(c) APID.

Population 10

Variables
4321 ,,,,,, kkkkKKK dip

Range of variables dip KKK ,, , are ±20% of their respective Conventional PID, K1,

[0.5],K2[0,5],,K3[0,30], K4[0,1]

Limit (population*dimension)/2

Artificial bee colony based APID controllers

86

(d) ABC-APID - In this all seven parameters are varying within the defined range and these

are calculated by ABC algorithm.

We have calculated the close loop response characteristics for above process model by using

different controllers. For detailed comparison, in addition to the response characteristics,

several performance indices, such as percentage overshoot (%OS), rise time (rt), settling time

(st), integral absolute error (IAE) and integral time absolute error (ITAE) are calculated for

each controller. Performance of our ABC-APID is compared with PID, ABC-PID, and APID.

Fourth-order Range-Kutta method is used for numeric integration. The detailed performance

analysis for various types of process is discussed below.

5.6.1 Second Order Linear Process

Transfer function of the process is given by

2)1/()(+=
−

sesG
Ls

p (5.7)

Response of second order linear process in (5.7) with L=0.2s, and L=0.3s under PID, ABC-

PID, APID, and ABC-APID is shown in Fig. 5.1. Performance indices of the process in (5.7)

for different controllers are given in Table 5.2 (a) and Table 5.2 (b). Though the controller are

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers

settings (for PID and APID). Performance analysis reveals that unlike PID, ABC-PID, and

APID, ABC-APID is capable of providing acceptable and remarkably improved performance

during both set point change and load disturbance.

Table 5.2 (a) -Performance analysis second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 60.30 0.90 4.40 2.08 9.29

ABC-PID 27.90 0.90 3.40 1.44 5.56

APID 5.37 1.40 4.20 1.36 5.26

ABC -APID 2.08 2.10 2.30 1.31 4.78

L=0.3s PID 93.93 0.90 12.20 4.41 35.28

ABC -PID 55.25 0.90 7.50 2.78 15.12

APID 15.58 1.00 5.70 1.85 14.10

ABC -APID 3.67 2.10 2.80 1.45 5.22

Artificial bee colony based APID controllers

87

Table 5.2 (b) -Performance analysis second order linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 60.30 0.90 4.40 2.08 9.29

ABC -PID 21.12 1.00 3.50 1.45 5.84

APID 5.37 1.40 4.20 1.36 5.26

ABC -APID 0.00 9.10 2.10 1.43 4.81

L=0.3s PID 93.93 0.90 12.20 4.41 35.28

ABC -PID 44.87 1.00 7.50 2.78 15.12

APID 15.58 1.00 5.70 1.85 14.10

ABC -APID 0.17 2.50 2.10 1.47 5.22

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

time t

R
e
sp

o
n

se
 y

 exp(-0.2s) /(s+1)2

PID

ABC-PID

APID

ABC-APID

Fig. 5.1 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE

Artificial bee colony based APID controllers

88

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

time t

R
es

p
o

n
se

 y
 exp(-0.3s) /(s+1)2

PID

ABC-PID

APID

ABC-APID

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

t ime t

R
es

p
o

n
se

 y

 exp(-0.2s) /(s+1)2

PID

ABC-PID

APID

ABC-APID

Fig. 5.1 (b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE

Fig. 5.1 (c) Response of second order linear process for L=0.2s, minimization of IAE

Artificial bee colony based APID controllers

89

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

t ime t

R
e
sp

o
n

se
 y

 exp(-0.3s) /(s+1)2

PID

ABC-PID

APID

ABC-APID

Fig. 5.1 (d) Response of second order linear process for L=0.3s, minimization of IAE

5.6.2 First Order with Integrating Process

Transfer function of the process is given by

)1(/)(+=
−

ssesG
Ls

p (5.8)

Response of first order integrating process in (5.8) with L=0.2s, and L=0.3s under PID, ABC-

PID, APID, and ABC-APID is shown in Fig. 5.2. Performance indices of the process in (5.8)

for different controllers are given in Table 5.3 (a) and Table 5.3 (b). Though the controller are

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers

settings (for PID and APID). Performance analysis reveals that unlike PID, ABC-PID, and

APID, ABC-APID is capable of providing acceptable and remarkably improved performance

during both set point change and load disturbance.

Table 5.3 (a) -Performance analysis first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE+ITAE

PID 77.50 1.10 10.20 3.44 27.19

ABC-PID 60.01 1.10 5.10 2.30 15.44

APID 28.75 1.40 11.00 2.46 19.44

ABC -APID 20.83 1.30 13.10 2.25 18.51

L=0.3s

PID 102.2 1.20 17.10 5.70 54.79

ABC -PID 83.44 1.10 8.80 3.35 25.90

APID 33.80 1.30 11.00 2.68 22.02

ABC-APID 27.55 1.20 13.40 2.51 21.67

Artificial bee colony based APID controllers

90

Table 5.3(b) -Performance analysis first order integrating process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.2s

IAE

PID 77.50 1.10 10.20 3.44 27.19

ABC -PID 59.74 1.10 5.00 2.26 15.44

APID 28.75 1.40 11.00 2.46 19.44

ABC-APID 18.84 1.30 17.40 2.25 21.82

L=0.3s

PID 102.2 1.20 17.10 5.70 54.79

ABC -PID 83.44 1.10 9.80 3.35 26.58

APID 33.80 1.30 11.00 2.68 22.02

ABC -APID 27.55 1.20 13.40 2.51 21.67

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

 exp(-0.2s)/s(s+1)

PID

ABC-PID

APID

ABC-APID

Fig. 5.2 (a) Response of first order integrating process for L=0.2s, minimization of IAE+ITAE

Artificial bee colony based APID controllers

91

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time t

R
e
sp

o
n
se

 y

 exp(-0.3s)/s(s+1)

PID

ABC-PID

APID

ABC-APID

Fig. 5.2 (b) Response of first order integrating process for L=0.3s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

 exp(-0.2s)/s(s+1)

PID

ABC-PID

APID

ABC-APID

Fig. 5.2 (c) Response of first order integrating process for L=0.2s, minimization of IAE

Artificial bee colony based APID controllers

92

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

T ime t

R
e

sp
o

n
se

 y

 exp(-0.3s)/s(s+1)

PID

ABC-PID

APID

ABC-APID

Fig. 5.2 (d) Response of first order integrating process for L=0.3s, minimization of IAE

5.6.3 Second Order Nonlinear Process

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++ (5.9)

Response of second order non linear process in (5.9) with L=0.3s and L=0.4s under PID,

ABC-PID, APID, and ABC-APID is shown in Fig. 5.3. Performance indices of the process in

(5.9) for different controllers are given in Tables 5.4(a) and 5.4(b). Though the controller are

tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers

settings (for PID and APID). We can conclude that unlike PID, ABC-PID, and APID, ABC-

APID is capable of providing acceptable and remarkably improved performance during both

set point change and load disturbance.

Artificial bee colony based APID controllers

93

Table 5.4 (a) -Performance analysis of second order non-linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE+ITAE

PID 66.10 1.40 9.30 4.13 46.60

ABC-PID 51.96 1.40 5.90 3.14 32.98

APID 19.18 1.70 10.60 2.95 34.88

ABC -APID 9.82 1.80 10.40 2.54 29.18

L=0.4s PID 83.11 1.50 13.30 5.78 72.4

ABC - PID 68.82 1.40 9.90 4.22 48.25

APID 25.15 1.70 10.80 3.26 39.45

ABC-APID 1.20 3.10 2.40 2.50 30.01

Table 5.4 (b) -Performance analysis of second order non-linear process

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.3s

IAE

PID 66.10 1.40 9.30 4.13 46.60

ABC-PID 51.93 1.50 7.50 3.39 35.93

APID 19.18 1.70 10.60 2.95 34.88

ABC-APID 2.69 2.90 5.60 2.37 27.31

L=0.4s
PID 83.11 1.50 13.30 5.78 72.4

ABC -PID 65.59 1.50 7.50 4.13 46.24

APID 25.15 1.70 10.80 3.26 39.45

ABC-APID 4.29 3.40 5.20 2.54 26.07

Artificial bee colony based APID controllers

94

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

d2y/dt2+dy/dt+y=u(t-0.3)

PID

ABC-PID

APID

ABC-APID

Fig. 5.3 (a) Response of second order non-linear process for L=0.3s, minimization of IAE+ITAE

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e
sp

o
n

se
 y

d2/dt2+dy/dt+y=u(t-0.4)

PID

ABC-PID

APID

ABC-APID

Fig. 5.3 (b) Response of second order non-linear process for L=0.4s, minimization of IAE+ITAE

Artificial bee colony based APID controllers

95

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

d2y/dt2+dy/dt+y=u(t-0.4)

PID

ABC-PID

APID

ABC-APID

Fig. 5.3 (d) Response of second order non-linear process for L=0.4s, minimization of IAE

5.6.4 pH-Neutralization Process

For pH-neutralization process we consider following linear model

2)11.0)(1/()(++=
−

ssesG
Ls

p (5.10)

Response of pH neutralization process in (5.10) with L=0.01s and L=0.02s under PID, ABC-

PID, APID, and ABC-APID is shown in Fig. 5.4. Performance indices of the process in (5.10)

for different controllers are given in Tables 5.5(a) and 5.5(b). Though the controller are tuned

for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers settings

(for PID and APID). We can conclude that unlike PID, ABC-PID, and APID, ABC-APID is

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t

R
e

sp
o

n
se

 y
d2y/dt2+dy/dt+y=u(t-0.3)

PID

ABC-PID

APID

ABC-APID

Fig. 5.3 (c) Response of second order non-linear process for L=0.3s, minimization of IAE

Artificial bee colony based APID controllers

96

capable of providing acceptable and remarkably improved performance during both set point

change and load disturbance.

Table 5.5(a)- Performance analysis for pH-neutralization process

Dead time(s) Objective Controllers %OS Tr(s) Ts(s) IAE ITAE

L=0.001

IAE+ITAE

PID 64.21 0.26 1.69 0.72 1.40

ABC-PID 49.54 0.26 1.25 0.54 0.97

APID 23.94 0.30 1.77 0.53 1.13

ABC-APID 8.59 0.33 0.59 0.41 0.89

L=0.002

PID 72.33 0.26 1.78 0.84 1.70

ABC-PID 56.70 0.26 1.27 0.61 1.12

APID 28.49 0.30 1.84 0.56 1.18

ABC-APID 11.74 0.32 1.06 0.44 0.95

Table 5.5(b) -Performance analysis for pH-neutralization process

Dead time(s) Objective function Controllers %OS Tr (s) Ts(s) IAE ITAE

L=0.01

IAE

PID
64.21 0.26 1.69 0.72 1.40

ABC-PID
49.53 0.25 1.25 0.54 0.97

APID
23.94 0.30 1.77 0.53 1.13

ABC-APID
8.59 0.33 0.59 0.41 0.89

L=0.02

PID
72.33 0.26 1.78 0.84 1.70

ABC-PID
56.7 0.26 1.27 0.61 1.12

APID
28.49 0.30 1.84 0.56 1.18

ABC-APID
11.74 0.32 1.06 0.44 0.95

Artificial bee colony based APID controllers

97

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

PH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)2]

PID

ABC-PID

APID

ABC-APID

Fig. 5.4 (b) Response of pH neutralization process for L=0.02s, minimization of IAE+ITAE

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

Time t

R
e
sp

o
n
se

 y
PH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)2]

PID

ABC-PID

APID

ABC-APID

Fig. 5.4 (a) Response of pH neutralization process for L=0.01s, minimization of IAE+ITAE

Artificial bee colony based APID controllers

98

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

PH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)2]

PID

ABC-PID

APID

ABC-APID

Fig. 5.4 (c) Response of pH neutralization process for L=0.01s, minimization of IAE

0 1 2 3 4 5 6 7
-0.5

0

0.5

1

1.5

2

Time t

R
es

p
o

n
se

 y

PH MODEL TF=exp(-0.02s / [(1+s)(0.1s+1)2]

PID

ABC-PID

APID

ABC-APID

Fig. 5.4 (d) Response of pH neutralization process for L=0.02s, minimization of IAE

5.7 Conclusion

In this study we have exhibited how the performance of adaptive PID (APID) controllers is

enhanced when it is used with the optimal power of bio-inspired algorithm. Here, ABC is said

to be bio-inspired because of the fact that they depicts how the honey bees are sustained

biologically. When the conventional controller with the optimal power of ABC are not able to

provide the satisfactory performances over APID controller, we decided to develop the ABC-

APID respectively in order to get overall improved performance for both set point change as

Artificial bee colony based APID controllers

99

well as load disturbances. We also observed that ABC-APID provides improved performance

as it provides minimum overshoot & improved rise time & settling time. It also provides

lower value of IAE & ITAE which indicates that it can track set point and reject load

disturbance properly. Initially we have used IAE+ITAE as objective function with a dead

time. After that the dead time is improved in order to see the robustness of the controller &

we found the performance is still satisfactory for ABC-APID. We also get the similar

enhanced performance when we use only IAE as an objective function.

References

[1] Karaboga. D., Basturk. B.,; Artificial bee colony (ABC) optimization algorithm for

solving constrained optimization Problems, LNCS: Advances in Soft Computing:

Foundations of Fuzzy Logic and Soft Computing, pp.789-798 (2007).

[2] Akay. B., Karaboga. D.,; Parameter Tuning for the Artificial Bee Colony Algorithm,

Lecture Notes in Artificial Intelligence, pp.608-619 (2007).

[3] Karaboga, D., An idea based on honey bee swarm for numerical optimization, Technical

Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering

Department, 2005.

[4] B. Basturk, Dervis Karaboga, An Artificial Bee Colony (ABC) Algorithm for Numeric

function optimization, IEEE Swarm Intelligence Symposium 2006, May 12-14, 2006,

Indianapolis, Indiana, USA.

[5] Dey, C., Mudi, R.K., ; An improved auto-tuning scheme for PID controllers. ISA Trans.

48(4), 396–409 (2009).

[6] Dey, C., Mudi, R.K., Lee. T.T.,; An improved auto-tuning scheme for PI controllers. ISA

Transactions. 47, 45- 52 (2008).

[7] Seborg, D.E., Edgar. T.F.,; Adaptive control strategies for process control: A survey.

AICHE J. 32(5), 881–913 (1986).

CHAPTER-6

CONCLUSION & FUTURE SCOPE

Conclusion & future scope

100

6.1 Conclusion

In this study, we have incorporated four optimization techniques - Genetic algorithm (GA),

Bacterial foraging optimization (BFO) Particle swarm optimization algorithm (PSO) and

Artificial bee colony algorithm (ABC) on an already developed adaptive PID (APID)

controller with a view to (i) overcome its empirical and trial method of choosing appropriate

tunable parameters, and (ii) achieving its optimal performance. Here, all the seven tunable

parameters of the APID controller have been optimized by GA, BFO, PSO or ABC algorithm

for various types of processes. The derived optimal controllers, GA-APID, BFO-APID, PSO-

APID and ABC-APID are tested through extensive simulation experiments, even with

increased dead-time for checking robustness. Performances of the optimal controllers (GA-

APID, BFO-APID, PSO-APID and ABC-APID) have been compared with PID, optimized

PID (GA-PID, BFO-PID, PSO-PID and ABC-PID), and APID. Detailed performance analysis

revealed that all the GA-APID, BFO-APID, PSO-APID and BFO-APID provide significantly

improved performances over others, justifying the usefulness of this study.

6.2 Future Scope

In this study we have used four different optimization algorithms to optimize the parameters

of the both PID & adaptive PID (APID) controllers for different transfer functions. These

algorithms are taken on the basis of their convergence rate & runtime. Initially we used

Ziegler-Nichols (ZN) method to tune the parameters i.e., dip KKK ,, of the PID controller.

Now, this tuning can be done by using relay feedback method or Cohen-Coon method instead

of ZN method which may give improved performance of the controller parameters.

 While developing GA-APID, PSO-APID, BFO-APID & ABC-APID respectively, we

have considered range of variables i.e., dip KKK ,, are ±20% of their respective Conventional

PID, and for the four constants are [] [] []30,0,5,0,5,0 321 kkk and []1,04k . Therefore, by increasing

the range of the variables, we may further improve the performance.

 Here, we consider only IAE & IAE+ITAE as objective functions with single

weightage. The performance of the controller may be improved if we increase the weight of

objective functions. Moreover, when a multivariable process comes into consideration the

behavior of the controller should changes & then how the algorithms optimize the parameter

of the controllers is an important phenomenon to observe. Hence, we can modify this study by

using multivariable process instead of single variable process.

Conclusion & future scope

101

 For future aspect we may study the stability of the process when the controller is

optimized by the algorithm used. This stability analysis can be done by using Bode plot,

Nyquist criteria etc.

 We have studied the robustness of the controller by increasing the dead time for each

transfer function. Now, this robustness can be observed by using Kharitonov polynomials

which can specific the dead time up to which the controller can show its robustness

specifically. Finally the performance can be improved by using different optimization

algorithms.

	Title
	CERTIFICATE_OF_RECOMMENDATION
	Certificate_of_Approval
	Declaration_of_Originality_and_Compliance_of_Academic_Ethics
	ACKNOWLEDEMENT
	CONTENTS
	LIST_OF_FIGURES
	LIST_OF_TABLES
	CHAPTER2
	CHAPTER3
	CHAPTER4
	CHAPTER5
	CHAPTER6
	CHAPTER7

