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1.1 Introduction 

For industrial processes, Proportional, Integral, and Derivative (PID) controllers are mostly 

used by process engineers [1]. In spite of considerable advances in process control over the 

past half century, till today PID controllers / regulators are the backbone for the most 

industrial control systems [1]. Even if more sophisticated control techniques are developed, it 

is a common practice to have a hierarchical structure with PID control at the lowest level [3, 

4]. According to a survey for process control systems in refinery, chemical, and paper 

industries, more than 95% of the control loops are found to be of PID type [8]. With its three 

term functionality covering control of both transient and steady-state responses, the PID 

controller offers the simplest and yet most efficient solution for many real world control 

problems [5, 6]. At present, the developments of PID controllers are mostly software based, 

so as to get the best out of PID control [5]. A number of software based techniques have also 

been realized in hardware modules while search still goes on to find the next key technology 

for PID tuning [7].  

1.2 Close-loop Control with Three-term Controller 

PID controllers are quite adequate for many control problems where there are modest 

performance requirements. Controllers used in the process industries are mainly concerned in 

maintaining the process variables-level, flow temperature, pressure, pH etc. at the desired 

operating value [8]. As these processes become large and / or more complex, the role of 

controller becomes more crucial [9]. In a close-loop feedback control, PID controller provides 

distinctive features for its three terms (P, I, and D). Depending on the instantaneous process 

error, necessary action is taken by the P term it provides an overall control action proportional 

to the error signal similar to all pass filters. I term has the ability to eliminate steady- state–

error (offset) and it behaves like a low pass filter, where as anticipatory corrective measure is 

taken by D term and its behavior is identical to a high pass filter.  

1.3 Conventional PID Controller 

 

Fig. 1.1 Block diagram of a close loop control with PID controller 
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Standard nomenclature for different symbols used in Fig. 1.1 

r =set point (the desired value of a controlled variable is referred to as its set point) 

y=process output (controlled variables) 

e=error signal 

u=controller output 

d=disturbance 

Here, our objective is to make the controlled variable y equal to its set point r [10, 11].  

Through decades, various methods have been developed for the tuning PID 

parameters. Among them Ziegler-Nichols (ZN) [6, 11] continuous cycling method is most 

widely used by practicing engineers for the initial settings of PID parameters.  

If iT =∞ and dT =0 then controller turns out to be a proportional controller only. In 

proportional mode, controller fails to bring the process output to its desired value r, which 

results in an offset. 

The introduction of integral action facilitates the achievement of equality between 

measured value and desired value, as a constant error produces an increasing controller output 

until the error becomes zero.  

On the other hand, the introduction of derivative action facilitates that any change in 

the process value can be anticipated, and thus an appropriate correction may be added prior to 

the actual change. So the PID controller takes the corrective measure depending on the 

present, past, and future status of the error signal. 

 

 

Fig. 1.2 Parallel form of PID controller and process 
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The conventional PID controller can be modeled by eq. 1.1 
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Where pK = proportional gain, )/( ipi TtKK ∆= integral gain, )/( tTKK dpi ∆= derivative gain, 

iT = integral time, dT = derivative time and t∆  is the sampling time. Proper selection of these 

tuning parameters is a critical task to attain the desired close-loop performance. Though 

decades, various methods have been developed for the tuning of PID parameters [3]. Among 

them Ziegler-nichols method (ZN) continuous cycling method [11] is most widely used. In 

this study also, we have used ZN continuous cycling method [1] for the initial settings of the 

PID parameters, i.e., up KK 6.0= , ui tT 5.0= and ud tT 125.0= where uK is the ultimate gain and 

ut  is the ultimate period.  

 

1.4 Method Based on Performance Criteria 

It is based on minimizing an appropriate performance criterion, either for optimum regulatory 

or for optimum servo performance. Based on the minimum IAE, ITAE or IAE+ITAE value, 

settings for PI and PID controllers are derived [11]. These settings are expected to provide 

desirable performance for time delay to time constant ratio from 0.1 to 1. Other tuning 

relations for PI controller for achieving minimum IAE value are suggested by Shinskey [8], 

Marlin [13], Edgar [10] etc. In 1993, Zhuang and Atherton suggested PI and PID settings 

based on the minimization of ISE, ISTE, and IST
1
E [14]. For the FOPTD process model, 

repeated optimization is carried out for different values of time delay to time constant ratio. 

Using least square fit technique, simple relations for PID parameters are obtained from 

graphical results. For a given range of gain margin and phase margin values, the setting for a 

PID controller is given by Ho [15] with ISE minimization.  

The ISE criterion penalizes large errors, while the ITAE criterion penalizes error that 

persists for longer periods of time. In general, the ITAE criterion is the preferred criterion in 

practice, because it usually results in the most conservative controller settings [15]. By 

contrast, the ISE criterion provides the most aggressive settings, while the IAE criterion tends 

to produce controller settings that are between those for the ITAE and ISE criteria. Based on 

ITAE minimization, different settings for PI and PID controllers are provided by Zhuang [16], 

Luyben [17] and many other researchers. PI and PID tuning relations based on ITAE 
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performance index are also developed for the FOPTD process model by Smith et al. [15].  

In all the above tuning rules, the optimal controller settings are different for set-point 

changes in comparison to those for step load disturbances. In general, the controller settings 

for set-point changes are more conservative. Next, we provide a brief review on PID design 

and tuning methods proposed by various researchers.  

 

1.5 PID Tuning Methods 

Till today more than two hundred PID tuning rules have been proposed by the researchers 

[14], but none of them is suitable for all possible applications. Almost every tuning rule has 

some special feature for a specific class of processes hence before selecting the tuning rule we 

must know the nature of the process where it is to be applied.  

An extensive list of tuning rules from the mid of twentieth century to the beginning of 

the twenty first century is given in [14]. Depending on the nature of these tuning relations 

they may be broadly classified into different categories, some of them are briefly described 

below. 

 1.5.1 Step Response / Process Reaction Curve Method [10] 

The process reaction curve methods works by generating a process reaction curve (below) in 

response to a disturbance.  Controller gain, integral time and derivative time can be calculated 

using this curve.  The process reaction curve is identified by performing in an open loop step 

test of the process and finding model parameters for initial step disturbance P (%).  These 

parameters are as follows: lag time L (min), change in PV in response to step disturbance 

K∆MV (%), reaction rate N (% min
-1

), lag ratio R (dimensionless). A typical process reaction 

curve is generated using the following method: 

 

1. Put the controller in manual mode 

2. Wait until the process value reaches steady state or as close as possible (stable and 

not changing) 

3. Introduce a small disturbance (step the output of the PID controller) - The step must 

be big enough to see a significant change in the process value. A rule of thumb is the 

signal to noise ratio should be greater than 5. 

4. Collect data and plot  

5. Repeat: making the step in the opposite direction. 

K = the process gain 
MV

PV
K

∆

∆
=                   (1.2) 

\
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Fig. 1.3 Process response Curve 

 

1.5.1 Ultimate Cycle Method [6] 

Ziegler-Nichols method known as continuous cycling refers to sustained oscillation with 

constant amplitude. In this method, integration and derivative terms of the controller are 

disabled and the proportional gain is increased until a continuous oscillation occurs at gain 

(Ku) for the closed loop system. Considering gain and its related oscillating period (Tu), the 

PID parameters can be calculated from the following equations:  

 

up KK 6.0=                      (1.3) 

ui tT 5.0=                             (1.4) 

ud tT 125.0=                      (1.5) 

The main drawback of ultimate cycle based tuning method [11] is that the process is 

to be operated in continuous cycling situation and it may cause any type of mechanical failure 

of the actuator parts. But the most important feature of this tuning technique is its model free 

approach, i.e., prior to the tuning no model is required for the process for which the controller 

is to be tuned.  Procedure of ultimate cycle method is given below: 

Step-1 

After the process has reached steady state (at least approximately), eliminate the integral and 

derivative action by setting dT =0 and iT  to the largest possible value. 

 Step –1 

 Set pK  equal to a small value (e.g., 0.5). 
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Step -3  

Introduce a small, momentary set-point change so that the controlled variable moves away 

from the set point. Gradually increase pK  in small increments until continuous cycle occurs. 

The term continuous cycling refers to a sustained oscillation with constant amplitude. The 

numerical value of pK  that produces continuous cycling (for proportional-only control) is 

called the ultimate gain cuK . The period of corresponding sustained oscillation is referred to 

as ultimate period uT . 

Step-4 

Calculate the PID controller settings using Ziegler-Nichols (Z-N) tuning relations in Table 1.1 

  

Table 1.1 Controller setting based on the continuous cycling method 

Ziegler-Nichols 

(Z-N) 

Kp Ti Td 

P 0.5 Kcu - - 

PI 0.45 Kcu Tu/1.1 - 

PID 0.6 Kcu Tu/1 Tu/8 

 

1.6 Design of the Adaptive-PID Controller [10, 11] 

Most of the conventional controllers (PID) are tuned based on Ziegler Nichols (ZN) [1, 1] 

tuning method for its simple tuning structure. But sometimes its performance is not 

satisfactory for higher order processes due to large non-linearity. In order to achieve 

satisfactory performances the parameters of conventional controllers (PID) are modified by an 

online gain updating factor (α), known as Adaptive PID controllers (APID) [10-11]. This 

online gain is updated by some heuristic relations. Each of such ZN [11, 13] tuned parameters 

of APID (i.e., proportional, integral and derivative gains) is updated online by the single 

modifying factor α through some simple relations. This online gain updating factor is function 

of )(ke and )(ke∆ . 

Here e (k) and ∆e (k) are expressed as 

 

)(kyre(k) −=                      (1.6)  

)1()()( −−=∆ kekeke                     (1.7) 
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Where r (k) is the set point and y (k) is the process output. The proposed gain updating factor 

α is defined by 

)()()( kekek NN ∆×=α                     (1.8) 

||)()( rkekeN ÷=                     (1.9) 

)1()()(eN −−=∆ kekek NN                  (1.10) 

Variables in Eq. (1.9) and Eq. (1.10) are the normalized value of )(ke  and )(ke∆ respectively. 

From Eq. (1.11), without loss of generality it may be assumed that the possible variation of α 

will lie in the range [−1, 1] for all close-loop stable processes. In APID dip KKK ,,  will be 

continuously modified by the gain updating factor α with the following simple heuristic 

relations. 

 

Fig.1.4 Adaptive form of PID controller (APID) 

 

              |))(|1()( 1 kKKkK p
m
p α+=                               (1.11) 

 ))(()( 24 kKKKkK i
m
i α+=                           (1.12) 

            |))(|1()( 3 kKKkK d
m
d α+=                           (1.13) 

Thus from Eqs.(1) and (7)-(9), APID can be expressed as  

      

)()()()()()()(
0

kekKiekKkekKku
m
d

k

i

m
i

m
pm ∆++= Σ

=

                                                                  (1.14)                                                                          

In Eqn. (1.14), )(kK
m
p , )(kK

m
i and )(kK

m
d are the modified proportional, integral and 

derivative gains respectively at th
k instant and )(kum is the corresponding control action. 

4321 ,,, KKKK are the four additional positive constants. However, out of seven parameters of 

[3], i.e., 4321 ,,,,,, KKKKKKK dip , the first three constants, i.e., dip andKKK , are selected 

based on ZN ultimate cycle method, where as the remaining four constants, i.e., 

4321 ,, andKKKK
 
are chosen by trial. The objective behind such online gain adjustments is 
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that, when the process is moving towards the set point, control action will be less aggressive 

to avoid possible large overshoots and/or undershoots, and when the process is moving away 

from the set point, control action will be more aggressive to make a rapid convergence of the 

system. Following this gain adaptive technique, in a significantly improved performance of 

APID is found for high-order and nonlinear systems both in set-point and load disturbance 

responses. 

1.7 Tuning Strategy of APID Controller  

While designing APID [10, 11], the following major points are taken into consideration to 

provide the appropriate control action in different operating phases. For a better 

understanding, typical close-loop response of an under-damped second-order process is 

illustrated in Fig.1.5 

 

 

Fig. 1.5 close loop response of second order process 

 

While the process is far from the set-point and moving fast towards it (e.g., points A, C, or F 

in Fig. 1.5), proportional gain should be reasonably large to reach the set-point quickly but the 

integral gain should be small enough to prevent the large accumulation of control action, 

which may result in a large overshoot or undershoot in future. At the same time, to reduce 

oscillations derivative gain should be increased for higher damping. Observe that, in such 

transient phase e and ∆e are of opposite signs. Therefore, α becomes negative according to 

eqs (1.4) which will make both the proportional and derivatives gain higher, and integral gain 

lower than their corresponding initial values (i.e., i
m
id

m
dp

m
p KKKKKK 3.0,, <>> ) as 

indicated by eqs. (1.11) - (1.13).Thus, the gain adaptive rules (eqs.(1.11)-(1.13)) try to adjust 
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the parameters of APID towards reducing the overshoot and/or undershoot, and oscillation in 

the process response. 

When the process is moving further away from the set-point (e.g., points B, D, or E in 

Fig.1.5), increased proportional, and derivative as well as integral gains are expected to bring 

back the process variable to its desired value quickly. Under such situations both e and ∆e 

will have the same sign, thereby making α positive (eqs (1.8)) which in turn makes all gain 

parameters of APID (i.e., dip KKK ,, ) larger than their respective initial values according to 

eqs (1.11) - (1.13). As a result the control action becomes more aggressive (i.e., ca
uu > ) 

which will try to restrict further deterioration of such situations. Therefore, APID satisfies the 

need for a relatively strong control action to improve process recovery. 

 

From the above discussion it is evident that the proposed auto-tuning scheme always 

attempt to modify APID parameters (proportional, integral, and derivative gains) in the right 

directions to generate required control action in different transient phases for providing 

improved performance under both set-point change and load disturbance. Of course, 

depending on the type of response desired to achieve, suitable value of 321 ,, KKK  are to be 

selected by the designer either from the knowledge about the process to be controlled or 

through trial and error.  

1.8 Literature Review 

Automatic control is the application of control theory for regulation of processes without 

direct human intervention. In the simplest type of an automatic control loop, 

a controller compares a measured value of a process with a desired set value, and processes 

the resulting error signal to change some input to the process, in such a way that the process 

stays at its set-point despite of the disturbances [38]. Designing a system with features of 

automatic control generally requires the feeding of electrical or mechanical energy to enhance 

the dynamic features of an otherwise sluggish or variant, even errant system. This closed-loop 

control is an application of negative feedback to a system. An everyday example of a 

feedback control system is an automobile speed control, which uses the difference between 

the actual and the desired speed to vary the fuel rate. Since the system output is used to 

regulate its input, such a device is said to be a closed-loop control system. Practically every 

aspect of our day-to-day activities is affected by some type of control system. Control systems 

are found in abundance in all sectors of industry, such as quality control of manufactured 

products, automatic assembly lines, machine-tool control, space technology and weapon 

systems, computer control, transportation systems, power systems, robotics, Micro Electro 

Mechanical Systems (MEMS), nanotechnology, and many others [39].  
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There have been many developments in automatic control theory during recent years. 

It is difficult to provide an impartial analysis of an area while it is still developing; however, 

looking back on the progress of feedback control theory it is by now possible to distinguish 

some main trends. In about 170 BC the Greek Ctesibius invented a float regulator for a water 

clock, a device not unlike the ball and cock in a modern flush toilet. The invention of the 

mechanical clock in the 14
th
 century made the water clock and its feedback control system 

obsolete. The float regulator does not appear again until its use in the Industrial Revolution. In 

[40] steam engine is invented in 1713, and this date marks the accepted beginning of the 

industrial revolution; however, its roots can be traced back into the 17
th
 century.  

The introduction of prime movers, or self-driven machines like advanced grain mills, 

furnaces, boilers, and the steam engine created a new requirement for automatic control 

systems including temperature regulators (1614), pressure regulators (1681), float 

regulators (1700) and speed control devices [41]. The design of feedback control systems up 

through the industrial revolution was by trial-and-error, together with a great deal of 

engineering intuition. Thus, it was more of an art than a science. In the mid-19
th
 century, 

control theory began to acquire its written language, the language of mathematics. In 1868 the 

first rigorous mathematical analysis of a feedback control system was provided by J.C. 

Maxwell [41]. Thus, relative to this written language, we could call the period before about 

1868 the prehistory of automatic control. The First and Second World Wars saw major 

advancements in the field of mass communication and signal processing. Other key advances 

in automatic controls include differential equations, stability theory and system 

theory (1938), frequency domain analysis (1940), and stochastic analysis (1941) [43]. With 

the advent of the space age in 1957, controls design, particularly in the United States, turned 

away from the frequency domain techniques of classical control theory and backed into the 

differential equation techniques of the late 19th century, which were contained in the time 

domain. The modern era saw time-domain design for navigation (1960), optimal 

control and estimation theory (1961), nonlinear control theory (1969), digital 

control and filtering theory (1974), and the personal computer (1983) [44]. As per  Fridland in 

[45], we may call the period from 1868 to the early 1900’s the primitive period of automatic 

control, the period from then until 1960 the classical period, and the period from 1960 

through present times the modern period.  

Today, a number of different controllers are used in industry and in many other fields. 

In quite general way those controllers can be divided into two main groups: unconventional 

controller [46] and conventional controller. Unconventional controllers utilize a new approach 

to the controller design in which knowledge of mathematical model of a process generally is 

not required. Examples of unconventional controllers are fuzzy controller and neuro or neuro-
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fuzzy controller. As conventional controllers we can count proportional-integral-derivative 

(PID) controllers and other types such as optimal, adaptive, robust controller. It is a 

characteristic of all conventional controllers that one has to know a mathematical model of 

the process in order to design a controller.  PID controller contains proportional (P), integral 

(I) and derivative (D) term. P term helps the process to reach its desired value quickly, but 

produces offset. To remove offset I term is included. I term eliminates offset but produce 

overshoot. Overshoot may not occur if D term is used because it provides damping and 

improves the dynamic characteristics of the process. The three terms can be used in various 

combinations to achieve good response in controlling purpose. The PID controller has been 

used successfully for regulating processes in industry for more than 60 years and used till 

today. A survey of Desborough and Miller in [47] indicates that more than 97% of regulatory 

controllers utilize the PID algorithm. 

 Although, a PID controller has only three adjustable parameters, finding appropriate 

settings is not simple which results in controller having poor tuning parameter and it becomes 

unable to provide satisfactory performance. Many researchers have attempted to develop the 

design methods for the PID controller in [48]. Ziegler-Nichols in [49] and Cohen-Coon in 

[50] provide tuning methods for PID controller in closed loop and open-loop respectively. 

Apart from open-loop and closed-loop tuning method, PID controller can be designed using 

gain and phase margin specification [51] and using optimization technique [51]. In ref [53, 

54] PID controllers for integral with dead time process is discussed. However, both of the 

approaches required    open-loop process model first. Process model can be obtained using 

step test in open-loop which is very time-consuming and may result in undesirable output 

changes. Then process parameters-time delay (θ), process gain (K), time constant (τ) are 

estimated from experimental data obtained using step test [55].  

The main alternative is to use closed-loop experiment, one proposed by Ziegler-

Nichols in [48]. This approach of classical method require very little information about the 

process i.e. ultimate gain (Ku) and ultimate period of oscillation ( uT ) which can be obtained 

using single experiment. The recommended setting for a proportional-integral (PI) controller 

are uc KK 45.0= and uI P83.0=τ . In general there are some disadvantages of closed-loop 

experimentation method. First, this is essentially trial and error method, since several values 

of gain must be tested before the ultimate gain (or the gain to give ¼ 
th
 decay ratio) is 

determined. Second, while one loop is being tested in this manner its output may affect 

several other loops, thus possibly upsetting an entire unit. Third, it can only be used on 

processes for which the phase lag exceeds -180 degrees at high frequencies. For example, it 

does not work on a simple second-order process. This problem can be circumvented by 
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introducing sustained oscillations with an on-off controller using the relay method in [56], but 

the system should be capable to withstand the oscillation resulting from on-off action. The 

work reported in [56] was further extended using proportional controller by Yuwana and 

Seborg [47]. Their work mainly concerned with first-order with delay model (FOPTD) where 

through pade’s approximation the response seems to be second-order response. 

 Shamsuzzoha and Skogestad in [48] proposed guidelines for a PI/PID controller of 

an unidentified process models using closed-loop experiments. It requires one closed loop 

step set-point response experiment using a proportional only controller, and mainly uses 

information about the first peak (overshoot), which is easily identified. The set-point 

experiment is similar to that of Ziegler-Nichols (1941) but the controller gain is typically 

about one half, so the system is not at the verge of stability with sustained oscillations. The 

recommended controller in [48] suggests the value of gain change is a function of the height 

of the first peak (overshoot); the controller integral time is mainly a function of peak time.  

At present a new set point weighting technique known as dynamic set point weighting 

[57] is proposed to improve the set point response and load rejection characteristics of 

Ziegler-Nichols tuned PID controllers when their responses of are not satisfactory. Instead of 

a fixed (single or multi-valued) set point weighting factor, here dynamic set point weighting is 

suggested based on the change of error (∆ e) of the controlled variable and normalized dead 

time of the process under control. 

 

Finally when the controller response tuned by ZN method is found to be 

unsatisfactory in some cases for higher order & non-linear processes,  then an improved auto-

tuning scheme is proposed [58, 59] to overcome the disadvantages of ZN tuned PID 

controllers (ZNPID). The ZNPIDs are upgraded by some easily interpretable heuristic rules 

through an online gain modifying factor defined on the instantaneous process states is known 

as adaptive PID controller (APID). This study thereby making the scheme suitable for a wide 

range of processes and more generalized too. 

 

It might be possible that their performances are not optimal for some cases. To 

achieve optimal performances now a day optimization techniques are used severely to find the 

optimal settings of the APID controller. To design our controller, initially the parameters of 

the conventional PID controller are obtained using ZN method and after that an adaptation 

scheme is incorporated to get enhanced performance. Finally, we optimize various tuning 

parameters by the optimization algorithm for various processes. These optimization 

algorithms are based on the minimization of objective functions such as Integral-absolute-

error [IAE] [39], Integral time & absolute error [ITAE] or integral square error [ISE] etc. 
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Performances of the optimized PID are not found to be satisfactory. Experimental results 

exhibit remarkably improved performance of the optimal APID when compared with ZN 

tuned PID, optimized PID and APID. This fact justifies our present study, i.e., incorporation 

of optimization techniques in APID rather than PID. 

 

In this leading literature we attempt to develop the optimized APID controllers with 

respect to an objective function based on different optimization algorithms such as Genetic 

algorithm, [60] Artificial bee colony algorithm (ABC) [61], Bacterial foraging optimization 

algorithm [62] and Particle swarm optimization algorithm [63] to develop GA-APID,BFO-

APID,PSO-APID and ABC-APID respectively. Finally, we compare the performances of 

optimized APID based on different algorithms stated above and compare with other 

controllers with other controllers. Experimental results exhibit remarkably improved 

performance of the optimal APID (GA-APID, BFO-APID, PSO-APID or BFO-APID) when 

compared with PID, optimized PID (GA-APID, BFO-APID, PSO-APID or BFO-APID), and 

APID. 

 

1.9 Scope of the Thesis 

Our literature survey reveals that a lot of works has been done towards improving the 

performance of PID controllers with increased robustness. In a broad sense, such 

development works on controller tuning are mostly dependent on the process model. 

However, for a practical process it is very difficult to find its exact model, as a result, most of 

the theoretical developments have limitation from practical implementation point of view. 

Along with mathematical complexity in finding out the appropriate process model, there is 

always a certain amount of uncertainty in model parameters. Model parameters are also 

changing with time due to natural phenomena like aging, scaling, erosion etc. So obtaining 

the desired performance from a PID controller is not only goal. Additionally it has to be 

robust enough to withstand the model uncertainties as well as process nonlinearities. At the 

same time, it is found that an optimally tuned controller is more prone to fragile. So 

depending on the area of application, there should be a compromise between optimality and 

robustness of selected parameters. 

Soft-computing tools like fuzzy logics, neural networks and different optimization 

techniques are also used by the researchers to obtain optimal settings of PID parameters. In 

such cases the engineers have tried to incorporate the human intelligence in the controller 

behavior. Certain improvements are found in the controller performances on making them 

more intelligent but at the higher computational complexity. A controller designed to reduce 

the initial overshoot during set-point change usually fails to offer good load rejection 



 Introduction 

   14 

 

behavior. On the other hand, a controller with better load capability cannot restrict the 

overshoot in the set-point response. Although in some cases improvements in the process 

behavior are observed during both set-point and load disturbance responses. In case of APID 

controller the gain is online updated continuously by an online updating factor through some 

heuristic relations. It might possible that their performances are not optimal in some cases. 

We can solve this type of problems by using optimization algorithms. In our case, we have 

decided to explore the optimal power of different optimization algorithms to design our 

proposed Adaptive PID (APID) controllers. Here, all the above said designs including two 

steps- first, we define the structure of the adaptive PID controller and then the algorithms are 

used to find their best set of parameters with respect to an objective function. In our 

experimental purpose we have studied the performances of the developed adaptive controllers 

based on different optimization algorithms over PID & APID controllers for various types of 

process with dead time. 

 

 For the optimization purpose we have chosen IAE and IAE+ITAE as objective 

functions, because they provide the overall improved performance, as we know, lower values 

of IAE & ITAE indicates improved set point response and good load rejection respectively. 

 

In chapter-2, we have presented the detailed description of the Genetic algorithm based 

APID controllers with respect to two objective functions (IAE+ITAE, IAE). Initially we have 

optimized the conventional PID controllers & compare it with PID controller. In this case we 

found that the result is not very encouraging. So, we followed the same procedure on APID 

controllers and found that it provides the best performance when compared with others. 

 

 

In chapter-3, we have presented the detailed description of the Bacterial foraging 

optimization (BFO) based APID controllers with respect to two objective functions 

(IAE+ITAE, IAE). Initially we have optimized the conventional PID controllers and compared 

it with PID controller. In this case also we found that the result is not quite satisfactory. Like 

previous case, then we applied BFO on APID controllers. The resulting optimal APID (BFO-

APID) compared to PID, APID and BFO-PID controllers.  

 

 

In chapter-4, we have explored the overall performance of the Particle swarm optimization 

based APID controllers with respect to two objective functions (IAE+ITAE, IAE). Initially the 

PID and APID controllers are tuned by ZN method. In case of APID controller the value of 

the four variables are taken as constant based on trial and error method. After that the optimal 
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PID (PSO-PID) is designed and found that the overall performance is not quite satisfactory. 

This fact motivated us to apply the same technique on APID controller with seven tunable 

parameters ( 4321, ,,,,, kkkkKKK dip ), which provides an improved performance over other 

controllers. The same impressive performance is obtained with increased dead time also.  

 

In chapter-5, we have observed the overall performance of the Artificial bee colony 

algorithm based APID controllers with respect to two objective functions (IAE+ITAE, IAE). 

Initially the PID and APID controllers are tuned by ZN method. In case of APID controller 

the value of the four variables are chosen by trial and error method. After that the optimal PID 

(ABC-PID) is designed and found that the overall performance is not quite satisfactory. This 

fact motivated us to apply the same technique on APID controller with seven tunable 

parameters ( 4321, ,,,,, kkkkKKK dip ). This simulation study reveals that ABC-APID 

provides significantly improved performance, even with increased dead time.  

 

In Chapter-6, first we have provided a brief summary of the present study. Then we have 

discussed the implementation issues of the four optimization techniques, genetic algorithm, 

particle swarm optimization, bacterial foraging and artificial bee colony based optimization 

while designing optimal PID controllers in Chapters 2, 3, 4, 5. Lastly, we also try to point out 

future scopes for further improvement. 
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2.1 Introduction 

God is the creator of the whole universe. Ever since its creation evolution has been a part and 

parcel of its functioning. New organisms have evolved from their ancestors; and this 

evolution is governed by a simple law which Charles Darwin named as –“Survival of the 

Fittest“. 

Genetic Algorithms [1] are search algorithms based on natural selection and natural 

genetics. They combine  survival  of  fittest  among  structures  with  structured  yet  

randomized  information exchange to form a search algorithm. Genetic Algorithm has been 

developed by John Holland [1, 2] and  his  co-workers  in  the  University  of  Michigan  in  

the  early  s06 ′ . Genetic algorithms are theoretically and empirically proved to provide 

robust search in complex spaces. Its validity in–Function Optimization and Control 

Applications is well established. 

Genetic Algorithms (GA) provide a general approach for searching for global minima 

or maxima within a bounded, quantized search space. Since GA only requires a way to 

evaluate the performance  of  its  solution  guesses  without  any  prior  information,  they  can  

be  applied generally to nearly any optimization problem. GA does not guarantee convergence 

nor that the optimal  solution  will  be  found,  but  do  provide,  on  average,  a  “good”  

solution. GA is usually extensively modified to suit a particular application. As a result, it is 

hard to classify a “generic” or “traditional” GA, since there are so many variants. However, 

by studying the original ideas involved with the early GA and studying other variants, one can 

isolate the main operations and compose a “traditional” GA. An improvement to the 

“traditional” GA to provide faster and more efficient  searches  for  GAS  that  does  not  rely  

on  average  chromosome  convergence  (i.e. applications which are only interested in the best 

solution). 

The “traditional” GA is composed of a fitness function, a selection technique, and 

crossover and mutation operators which are governed by fixed probabilities. These operations 

form a genetic loop as shown in Figure. Since the probabilities are constant, the average 

number of local and global searches in each generation is fixed. In this sense, the GA exhibits 

a fixed convergence rate and therefore will be referred to as the fixed-rate  
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Fig. 2.1 Genetic loop 

 

 

2.2 Real Coded Genetic Algorithm [2] 

The concept of the genetic algorithm was first formalized by Holland and extended to 

functional optimization by DeJong [4]  .It  imitates  the  mechanism  of  the  natural  selection  

and  evolution  and aims to solve an optimization problem with object function f(x) where 

x=[x1 x2 ……. xN] is the N-dimensional vector of optimization parameters. It has proved to 

be an effective and powerful global  optimization  algorithm  forms  any  combinatorial  

optimization  problems,  especially  for those  problems  with  discrete  optimization  

parameters,  no differentiable  and/or  discontinuous object function. Genes and chromosomes 

are the basic building blocks of the real coded GA. The real coded binary GA encodes the 

optimization parameters into decimal number.  

     The  binary  GA [5]  does  not  operate  directly  on  the  optimization  parameters  but  on  

a discretisized representation of them. Discretization error will inevitably be introduced when 

encoding a real number. The encoding and decoding operations also make the algorithm more 

computationally expensive for problems with real optimization parameters. It  is  therefore  

worth  developing  a  novel  GA  which  works  directly  on  the  real  optimization  

parameters.  The real-coded GA is consequently developed. Both theoretical proof and 

practical experiences show that RGA usually works better than binary GA, especially for 

problems with real optimization parameters. The RCGA operates on a population of 

chromosomes (or individuals, creatures, etc) simultaneously. It starts from an initial 

population, generated randomly within the search space.  

OLD GENERATION 

SELECTION 

FITNESS 

NEW 

GENERATION

MUTATION 

CROSSOVER 
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         Once the initialization is completed, the population enters the main RCGA loop and 

performs a global optimization for searching the optimum solution of the problem.  In a 

RCGA loop, Preprocessing, three genetic operations, and post processing are carried out in 

turn. The RCGA loop continues until the termination conditions are fulfilled. 

 In our case we have decided to use the optimal power of Genetic algorithm 

(GA) to design our proposed Adaptive PID (GA-APID) [7, 8] controllers. Here, all the above 

said designs including two steps- first, we define the structure of the adaptive PID controller 

and then the algorithms are used to find their best set of parameters with respect to an 

objective function. In our experimental purpose we have studied the performances of the 

developed adaptive controllers based on GA algorithms over PID & APID controllers for 

different processes with dead time. 

 

2.3 Objective Function of the Genetic Algorithm 

The function to be optimized is known as objective function. Here, minimization of the 

integral-absolute-error (IAE) [9] or integral-time-absolute-error (ITAE) or combination of 

both i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness 

function). The IAE and ITAE are calculated as: 

 

∫=
t

dtteIAE
0

|)(|           (2.1) 

∫ ∫+=+
t t

dttetdtteITAEIAE
0 0

|)(||)(|           (2.2) 

 

2.4. Genetic Algorithm Parameters 

Table 2.1 Genetic algorithm parameters 

Population size 10 

Selection 

probability 

50%(single point crossover) 

Crossover 

probability 

50% 

Mutation 

probability 

≈ 1.78 

Variables 
4321 ,,,,,, kkkkKKK dip

 

Range of variables 
dip KKK ,, ,   are ±20% of their respective 

Conventional PID, K1, [0.5],K2[0,5],,K3[0,30], K4[0,1] 
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2.5 Different Operations Used in Genetic Algorithm 

 Encoding – In order to use GA to solve the maximization or minimization problem, 

unknown variables are first coded in some string structures. It is important to mention that 

coding of variables is not necessary. There exist some studies where GAs are directly used on 

the variables themselves, Binary- coded strings having 1s and 0s are mostly used. The length 

of the string is usually determined according to the desired solution accuracy. In Real Coded 

Genetic Algorithm does not work on the encoding of a parameter set as real valued 

individuals are directly used. 

Selection – It is the usually the first operator applied on population. Chromosomes are 

selected from the population to be parents to be crossover and produce offspring. According 

to Darwin’s evolution theory of survival of the fittest, the best one should survive and create 

new offspring. It is also known as reproduction operator. There exist a number of 

reproduction operators in GA literature but the essential idea in all of them is that the above 

average strings are picked from the current population and their multiple copies are inserted 

in the mating pool in a probabilistic manner. 

Various methods of selecting chromosomes for parents to crossover are [2]: 

i. Roulette-wheel selection 

ii. Tournament selection  

iii. Boltzmann selection 

iv. Rank selection 

In spite of various selection methods as given above, We have used simple MATLAB 

command for the selection purpose because of its simplicity. We sort the values of IAE or 

IAE+ITAE in ascending order and select the 50% fittest roots (best solutions) from the top 

for the next stage, i.e., Crossover. 

Crossover – After the selection phase is over, the population is enriched with better 

individuals. Selection makes clones of good strings, but does not create new ones. Cross over 

operator is applied to the mating pool with a hope that it would create a better string.  

The aim of crossover operator is to search the parameter space. In addition, search is to be 

made in a way that the information stored in the present string is maximally preserved 

because these parent strings are instances of good string selected during reproduction 

(selection).It is a recombination operator. This is mainly responsible for search of new strings. 

Since selection rate is 50%, therefore 50% chromosomes will go for crossover. These 

chromosomes are known as parent. The crossover operator produces two children for each 

parent pair. Therefore, after crossover total population will again be 100% = 50% (parents) + 

50% (children). 
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Note that because I have 10 chromosomes. So selection gives the 5 chromosomes. 

These 5 chromosomes known as parents they go for crossover to produce children. Here we 

will get 
5
C2, i.e., 10 no of children but we consider only 5 children. Thus total population will 

again be 10 (i.e., 5 as parents and 5 as children). 

Let binary value of each variable is 0000 and 1111. I want to retain 50% information 

for each variable then new binary value of the variables will be 0011 and 1100 (here LSB is 

changing). We can also understand this idea by observing the picture form of crossover which 

is given below. 

 

Picture form of crossover - 

 

  

 

 

 

Thus by changing the cross over point we can change the % of information exchange. 

In my MATLAB program I have taken cross over point at the middle so that 50% information 

will exchange.  

In GA literature, the term crossover rate is usually denoted as Pc, the probability of 

crossover. The probability varies from 0 to 1. After the crossover, with cross over probability 

Pc, Pc percentage of information will exchange and (1-Pc) percentage of information will 

remain same for each variable which will go through this operation. Cross over operator is 

mainly responsible for the search of new string. 

There exist many types of cross over operations in the genetic algorithm which are given 

below: 

Single - point cross over. 

Two - point crossover. 

Multi - point cross over. 

Mutation – To avoid local optima we mutate the strings. The mutation probability 

(percentage of bits in a population mutated in each iteration) is generally kept low for steady 

convergence (here it is ≈ 1.78%). It is considered a background operator in GA. Once a string 

is selected for mutation, a randomly chosen element of the string is changed. For example If 

GA chooses bit position 1
th
 (from MSB side) for mutation in the binary string, the resulting 

string is 1000 (picture form is also given below). 

Picture form of mutation - 
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.  

2.6 Steps of Genetic Algorithm Based Optimization 

1. Generate the initial population. 

2. Fitness evaluation. 

2. Selection. 

4. New population generation by crossover and mutation. 

5. Fitness evaluation. 

6. Repeat step 2-5 until stopping criteria is reached. 

2.7 Results 

For simulation study, we consider the following systems with dead-time (L) 

2)1/()( +=
−

sesG
Ls

p , L=0.2s, and 0.3s                  (2.3)
  

)1(/)( +=
−

ssesG
Ls

p , L=0.2s, and 0.3s                  (2.4) 

3)1/()1()( ssβsG p +−= , β = 0.1s, and 0.2s                 (2.5) 

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s                 (2.6) 

PH model- 2)11.0)(1/()( ++=
−

ssesG
Ls

p , L=0.01s, and 0.02s               (2.7) 

For each process model we have used four different types of controller. 

(a)  PID 

(b) GA-PID –
dip KKK ,, are ±20% of their respective Conventional PID and these are 

calculated by genetic algorithm. 

(c) APID. 

(d) GA-APID - In this all seven parameters are varying within the defined range and these 

are calculated by genetic algorithm. 

We have calculated the close loop response characteristics for above process model by using 

different controllers. For detailed comparison, in addition to the response characteristics, 

several performance indices, such as percentage overshoot (%OS), rise time ( rt ), settling time 

( st ), integral absolute error (IAE) and integral time absolute error (ITAE) are calculated for 

each controller. Performance of our GA-APID is compared with PID, GA-PID, and APID. 

Fourth-order Range - Kutta method is used for numeric integration. The detailed performance 

analysis for various types of process is discussed below. 
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2.7.1 Second Order Linear Process 

Transfer function of the process is given by 

2)1/()( +=
−

sesG
Ls

p  (2.8) 

Response of second order linear process in (2.8) with L=0.2s, and L=0.3s under PID, GA-

PID, APID, and GA-APID is shown in Fig. 2.2. Performance indices of the process in (2.8) 

for different controllers are given in Table 2.2. (a) and Table 2.2. (b). Though the controller 

are tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers 

settings (for PID and APID). Performance analysis reveals that unlike PID, GA-PID, and 

APID, GA-APID is capable of providing acceptable and remarkably improved performance 

during both set point change and load disturbance. 

 

 

 

Table 2.2 (a) -Performance analysis of second order linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE+ITAE 

PID 60.30 0.90 4.40 2.08 9.29 

GA-PID 44.07 0.80 2.20 1.58 6.14 

APID 5.37 1.40 4.20 1.36 6.26 

GA-APID 0.85 2.10 1.90 1.36 4.64 

L=0.3s 
PID 93.95 0.90 7.90 4.08 23.11 

GA-PID 78.68 0.90 7.20 2.77 14.00 

APID 15.58 1.00 5.70 1.81 9.63 

GA-APID 1.54 2.50 6.10 1.79 7.59 
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Table 2.2 (b) -Performance analysis of second order linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE 

PID 60.30 0.90 4.40 2.08 9.29 

GA-PID 34.36 0.90 2.80 1.58 6.35 

APID 5.37 1.40 4.20 1.36 6.26 

GA-APID 0.00 9.10 7.90 1.63 5.99 

L=0.3s 
PID 93.95 0.90 7.90 4.08 23.11 

GA-PID 65.81 0.90 6.90 2.88 12.34 

APID 15.58 1.00 5.70 1.81 9.63 

GA-APID 0.00 9.20 7.90 2.03 9.69 
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Fig. 2.2 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE 
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Fig. 2.2(b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE 
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Fig. 2.2(c) Response of second order linear process for L=0.2s, minimization of IAE 
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Fig. 2.2(d) Response of second order linear process for L=0.3s, minimization of IAE 

 

 

2.7.2 First Order with Integrating Process  

Transfer function of the process is given by 

)1(/)( +=
−

ssesG
Ls

p                 (2.9) 

Response of first order integrating process in (2.9) with L=0.2s and L=0.3s under PID, GA-

PID, APID, and GA-APID is shown in Fig. 2.3 Performance indices of the process in (2.9) for 

different controllers are shown in Table 2.2(a) and Table 2.2(b). Though the controller are 

tuned for L=0.2s a higher value i.e., L=0.3s is also tested without changing controllers 

settings (for PID and APID).  

Unlike PID, GA-PID, and APID, GA-APID is capable of providing acceptable and 

remarkably improved performance during both set point change and load disturbance but not 

to the same extent as that of the previous case. 
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Table 2.3 (a) -Performance analysis of first order integrating process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE+ITAE 

PID 77.50 1.10 10.20 2.44 27.19 

GA-PID 54.41 1.00 5.40 1.92 12.09 

APID 28.75 1.40 11.00 2.46 19.44 

GA-APID 8.35 1.10 17.40 1.79 17.99 

L=0.3s 

PID 102.2 1.20 17.10 5.70 54.79 

GA-PID 83.02 1.00 9.70 2.15 24.13 

APID 33.80 1.30 11.00 2.68 22.02 

GA-APID 29.43 1.10 17.40 2.47 21.56 

 

 

 

 

 

Table 2.3(b) -Performance analysis of first order integrating process 

 

 

 

 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE 

PID 77.50 1.10 10.20 2.44 27.19 

GA-PID 51.47 1.00 5.60 1.92 12.27 

APID 28.75 1.40 11.00 2.46 19.44 

GA-APID 6.31 1.20 17.40 1.81 18.42 

L=0.3s PID 102.2 1.20 17.10 5.70 54.79 

GA-PID 79.48 1.00 9.70 2.02 22.88 

APID 33.80 1.30 11.00 2.68 22.02 

GA-APID 26.02 1.10 17.40 2.49 25.81 
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Fig. 2.3 (a) Response of first order integrating process for L=0.2s, minimization of IAE+ITAE 

 

 

 

 

 

 

 

 

 

Fig. 2.3 (b) Response of first order integrating process for L=0.3s, minimization of IAE+ITAE 
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Fig. 2.3 (d) Response of first order integrating process for L=0.3s, minimization of IAE 

 

2.7.2 Third Order Linear Process 

Transfer function of the process is given by 

3)1/()1()( ssβsG p +−=                   (2.10) 

Response of third order linear process in (2.10) with L=0.1s and L=0.2s under PID, GA-PID, 

APID, and GA-APID is shown in Fig. 2.4 Performance indices of the process in (2.10) for 
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Fig. 2.3 (c) Response of firstorder integrating process for L=0.2s, minimization of IAE 
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different controllers are recorded in Table 2.4(a) and Table 2.4(b). Though the controller are 

tuned for L=0.1s, a higher value i.e., L=0.2s is also tested without changing controllers 

settings (for PID and APID). Performance analysis reveals that unlike PID, GA-PID, and 

APID, GA-APID is capable of providing acceptable and remarkably improved performance 

during both set point change and load disturbance. For all conditions (i.e., different L and 

different objective) response of GA-APID is very much improved.. 

 

Table 2.4 (a) -Performance analysis of third order linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.1s  

 

IAE+ITAE 

PID 46.47 1.80 9.60 2.29 30.63 

GA-PID 29.85 1.70 7.00 2.42 20.09 

APID 2.44 2.40 10.30 2.67 26.14 

GA-APID 1.48 2.30 4.40 2.03 18.70 

L=0.2s PID 58.30 1.80 12.30 4.29 44.44 

GA-PID 40.73 1.70 10.00 2.00 27.26 

APID 7.91 2.20 9.70 2.90 29.62 

GA-APID 6.42 2.00 7.40 2.39 23.25 

 

 

 

Table 2.4 (b) -Performance analysis of third order linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.1s  

 

IAE 

PID 46.47 1.80 9.60 2.29 30.63 

GA-PID 29.58 1.70 7.00 2.42 20.09 

APID 2.44 2.40 10.30 2.67 26.14 

GA-APID 1.48 2.30 4.60 2.13 20.14 

L=0.2s PID 58.30 1.80 12.30 4.29 44.44 

GA-PID 40.73 1.70 10.10 2.14 29.53 

APID 7.91 2.20 9.70 2.90 29.62 

GA-APID 4.01 2.20 8.10 2.51 24.21 
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Fig. 2.4 (b) Response of third order linear process for L=0.2s, minimization of IAE+ITAE 
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Fig. 2.4 (a) Response of third order linear process for L=0.1s, minimization of IAE+ITAE 
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Fig. 2.4(c) Response of third order linear process for L=0.1s, minimization of IAE 
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Fig. 2.4(d) Response of third order linear process for L=0.2s, minimization of IAE 

 

2.7.4 Second Order Nonlinear Process 

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++                 (2.11) 

Response of second order non linear process in (2.11) with L=0.3s and L=0.4s under PID, 

GA-PID, APID, and GA-APID is shown in Fig. 2.5. Performance indices of the process in 

(2.11) for different controllers are given in Tables 2.5(a) and 2.5(b). Though the controller are 

tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers 
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settings (for PID and APID). We can conclude that unlike PID, GA-PID, and APID, GA-

APID is capable of providing acceptable and remarkably improved performance during both 

set point change and load disturbance. 

 

Table 2.5 (a) -Performance analysis of second order non linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

IAE+ITAE 

PID 66.10 1.40 9.30 4.13 46.60 

GA-PID 50.28 1.30 6.20 2.80 28.25 

APID 19.18 1.70 10.60 2.95 34.88 

GA-APID 0.78 2.20 2.90 2.12 16.17 

L=0.4s PID 83.11 1.50 13.30 5.78 72.4 

GA-PID 70.77 1.30 9.80 4.07 46.03 

APID 25.15 1.70 10.80 2.26 39.45 

GA-APID 5.54 2.30 5.70 2.74 27.89 

 

 

 

 

 

 

Table 2.5 (b) -Performance analysis of second order non linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

IAE 

PID 66.10 1.40 9.30 4.13 46.60 

GA-PID 45.75 1.40 6.40 2.99 29.87 

APID 19.18 1.70 10.60 2.95 34.88 

GA-APID 0.78 2.20 2.90 2.12 16.17 

L=0.4s PID 83.11 1.50 13.30 5.78 72.4 

GA-PID 61.20 1.40 6.50 2.41 35.42 

APID 25.15 1.70 10.80 2.26 39.45 

GA-APID 5.54 2.30 5.70 2.74 27.89 
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Fig. 2.5 (a) Response of second order non linear process for L=0.3s, minimization of IAE+ITAE 
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Fig. 2.5 (b) Response of second order non linear process for L=0.4s, minimization of IAE+ITAE 
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Fig. 2.5 (c) Response of second order non linear process for L=0.3s, minimization of IAE 
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               Fig. 2.5 (d) Response of second order non linear process for L=0.4s, minimization of IAE 

 

2.7.5 pH-Neutralization Process 

For pH-neutralization process we consider following linear model 

2)11.0)(1/()( ++=
−

ssesG
Ls

p                 (2.12) 

Response of pH-neutralization process in (2.12) with L=0.01s and L=0.02s under PID, GA- 

PID, APID, and GA-APID is shown in Fig. 2.6. Performance indices of the process in (2.12) 

for different controllers are provided in Tables 2.6(a) and 2.6(b). Though the controller are 
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tuned for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers 

settings (for PID and APID). We can conclude that unlike PID, GA-PID, and APID, GA-

APID is capable of providing acceptable and remarkably improved performance during both 

set point change and load disturbance   

Table 2.6 (a) -Performance analysis of for pH neutralization process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.01s  

 

IAE+ITAE 

PID 64.21 0.26 1.69 0.72 1.40 

GA-PID 44.48 0.23 1.14 0.47 0.62 

APID 23.94 0.30 1.77 0.52 0.84 

GA-APID 0.49 0.36 1.19 0.33 0.41 

L=0.02s PID 72.34 0.27 1.78 0.84 1.33 

GA-PID 52.86 0.24 1.59 0.54 0.75 

APID 28.49 0.2 1.84 0.56 0.88 

GA-APID 2.17 0.32 1.22 0.37 0.48 

 

 

Table 2.6 (b) -Performance analysis of for pH neutralization process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.01s  

 

 

IAE 

PID 64.21 0.26 1.69 0.72 1.09 

GA-PID 43.79 0.23 1.49 0.46 0.62 

APID 23.94 0.30 1.77 0.52 0.84 

GA-APID 0.31 0.38 0.75 0.33 0.41 

L=0.02s PID 72.34 0.27 1.78 0.84 1.33 

GA-PID 52.35 0.23 1.59 0.54 0.76 

APID 28.49 0.2 1.84 0.56 0.88 

GA-APID 1.72 0.33 1.20 0.37 0.48 
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Fig. 2.6(b) Response of pH neutralization process for L=0.02s, minimization of IAE+ITAE 
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Fig. 2.6 (a) Response of pH neutralization process for L=0.01s, minimization of IAE+ITAE 
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Fig. 2.6 (c) Response of pH neutralization process for L=0.01s, minimization of IAE 
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Fig. 2.6 (d) Response of pH neutralization process for L=0.02s, minimization of IAE 

 

2.8 Conclusion  

In this study we have explored the possibility of performance enhancement of Adaptive PID 

controller (APID) through real coded Genetic algorithm optimization technique. From the 

experimental results we observed that both GA-APID provided remarkably enhanced 

performance over Adaptive PID controller (APID) due to set point changes as well as load 
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disturbances. We also observed that genetic algorithm based Adaptive PID controller (GA-

APID) exhibited comparatively better performance over GA optimized PID controller (GA-

PID) for all the systems taken above. GA-APID provided minimum overshoot as well as 

minimum IAE & ITAE. Initially we have used IAE+ITAE as objective function in order to 

obtain both load disturbances and set point tracking satisfactorily i.e. overall improved 

performance with a dead time. After that we increased the dead time in order to see the 

robustness of the controller and we still found that the proposed GA-APID maintained overall 

improved performances. We also observed the similar enhanced performance with the 

objective function IAE. 
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3.1 Introduction 

The bacterial foraging optimization (BFO) [1] algorithm mimics how bacteria forage over a 

landscape of nutrients to perform parallel non-gradient optimization which has been widely 

accepted as a global optimization algorithm of current interest for distributed optimization 

and control. Since its inception, BFOA has drawn the attention of researchers from diverse 

fields of knowledge especially due to its biological motivation and graceful structure. It has 

already been applied to many real world problems and proved its effectiveness over many 

variants of BFO and PSO.[2, 3] Applications to fuzzy controller construction/tuning, neural 

network training, job-shop scheduling, electromagnetic, stock market predication, optimal 

power flow, motor control, temperature control, system identification, and others have not 

received as much attention to-date. On the other hand, additional applications and studies of 

the method still holds potential. There is still a wide variety of domains in which BFO could 

be useful for. This fact motivated us to design this adaptive PID controller (APID) [4, 5] by 

using BFO algorithm. 

3.2 E. Coli. Bacteria 

Escherichia coli [2, 3] are single-celled bacteria that live in our gut. The E. coli cell only 

weights about 1 picogram, and is composed of about 70% water. It is equipped with a set of 

rotary motors only 45 nm in diameter. Each motor drives a long, thin, helical filament that 

extends several cell body lengths out into the external medium. The assemblage of motor and 

filament is called a flagellum. [6] The concerted motion of several flagella - decision-making 

sensors- enables a cell to swim. A cell can move toward regions that it deems more favorable 

by measuring changes in the concentrations of certain chemicals in its environment (mostly 

nutrients), deciding whether life is getting better or worse, and then modulating the direction 

of rotation of its flagella, i.e., control system of E. coli bacterium enables it to search for food 

and try to avoid noxious substances. Such motions of E. coli are called taxes where motile 

behavior depends on the flagella (the actuator). 

3.3 Bacterial Foraging Optimization Algorithm 

The bacterial foraging [7, 8] system consists of four principal mechanisms, namely chemo 

taxis, swarming, reproduction, and elimination dispersal; and it works on the assumption that 

animal search for and obtain nutrients in a way that maximizes their energy intake E per unit 

time T spent foraging, i.e., animal search for and obtain nutrients in a way that maximizes the 

ratio E/Tor maximizes the long-term average rate of energy intake. Clearly, evolution 

optimizes the foraging strategies, since animals that have poor foraging performance do not 

survive. 
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 As nutrients are distributed in patches, sequence of foraging strategy consists of 

finding a patch of food (e.g., group of bushes with barriers), deciding whether to enter it and 

search for food and when to leave the patch. During foraging there can be risks due to 

predators, the prey may be mobile so it must be chased, and the physiological characteristics 

of the forager constrain its capabilities and ultimately success. Generally, patches are 

encountered sequentially, and sometime great effort and risk are needed to travel from one 

patch to another. If an animal encounters a nutrient-poor patch but based on past experience it 

expects that there should be a better patch elsewhere, then it will consider risks and efforts to 

find another patch. For an animal there is optimal time to leave the patch and venture out to 

try to find a richer one since it does not wants to waste resources that are readily available as 

well as it also does not want to waste time in the face of diminishing energy returns. 

 Basically optimal foraging theory formulates the foraging scenarios as an 

optimization problem where via computation or analytical methods are provided as an 

optimal foraging policy that specifies how foraging decisions are made, for instance, dynamic 

programming. Search and optimal foraging decision-making of animals can be broken into 

three basic types: cruise (e.g. tuna fish, hawks), salutatory (e.g. birds, fish, lizards and 

insects), and ambush (e.g. snakes, lions), and since no animal can make optimal decisions this 

is why we can say that the optimal foraging formulation is only meant to be a model that 

explains what optimal behavior would be like. 

 

3.4 Optimal Foraging Formulation 

Suppose that we want to find the minimum of (J) θ, ∈ R
P
, where we do not have 

measurements or an analytical description of the gradient ∇ (J) θ. To solve this non gradient 

optimization problem, here, we use bacterial foraging concept. If θ is the position of a 

bacterium and (J) θ represents the combined effects of attractants and repellants from the 

environment, then  (J) θ < 0,  (J) θ = 0, and  (J) θ > 0 representing that the bacterium at 

location θ is in nutrient-rich, neutral, and noxious environments, respectively. Basically, 

chemotaxis is a one of the principal mechanisms of bacterial foraging system which is 

implemented to a type of optimization where bacteria try to climb up the nutrient 

concentration (find lower and lower values of (J) θ), avoid noxious substances, and search for 

ways out of neutral media (avoid being at positions θ where )(θJ ≥0). Actually the concept 

based on biased random walk. 

Chemotaxis- It is the tendency of a bacterium to move toward distant sources of nutrients. 

Biologically an E .coli bacterium can move in two different ways. In this process, the 

bacterium alternates between tumbling (changing direction) and swimming behaviors. Let j 
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be the index for the chemo tactic step. Let k be the index for the reproduction step. Let l be 

the index of the elimination-dispersal event. Let P(j ,k ,l )= {
iθ  (j ,k ,l ) |i= 

1,2,........,S}.represent the position of each member in the population of the S bacteria at the j
th
 

chemotactic step, k
th
 reproduction step, and l

th
 elimination-dispersal event. Here, a tumble is 

represented by a unit walk with random direction φ (j) ∈ R
p
. The unit length random direction 

may be represented as φ (j) = 
)()(

)(

ii

i

T
∆∆

∆
 , where ∆(i) is a vector with each element a 

random number on [-1,1] A swim is indicated as movement in the same direction as the 

previous tumble. Here, let ( lkji ,,, ) denote the cost at the location of the i
th
 bacterium. 

 Suppose
iθ  (j, k, l) represents the bacterium at j

th
 chemo tactic, k

th
 reproductive and l

th
 

elimination-dispersal step. C (i) is the size of the step taken in the random direction specified 

by the tumble (run length unit). Then in computational chemotaxis the movement of the 

bacterium may be represented by 

)()(),,(),,1( jφiClkjθlkjθ ii
+=+                   (3.1) 

If ),,1( lkjθ i
+  the cost of the i

th
 bacterium J(I, j+1, k, l) is better (lower) than at ),,( lkjθ i , 

then another step size C(i) in this same direction will be taken. If that step resulted in a 

position with a better cost value than at the previous step, another step is taken. This swim is 

continued as long as it continues to reduce the cost, but only up to a maximum number of 

steps, Ns, where Ns   number of swimming length. This represents that the cell will tend to 

keep moving if it is headed in the direction of increasingly favorable environments. With the 

activity of run or tumble taken at each step of the chemotaxis process, a step fitness, denoted 

as J (i, j, k, l), will be evaluated. In order to construct algorithm we introduce another 

chemotaxis related parameter which is the length of the lifetime of the bacteria as measured 

by the number of chemotactic steps they take during their life. We must note that in computer 

simulations, we will use much smaller population sizes and will keep the population size 

fixed. We will all allow, p>3 so we can apply the method to higher dimensional optimization 

problems. 

Swarming- During foraging an interesting group behavior of E. coli bacteria as well as of 

other several motile species has been observed in order to examine the intricate and stable 

spatio-temporal patterns (swarms) formation in semisolid nutrient medium. If a group of E. 

coli cells is placed in the center of a chemotactic media with a single nutrient chemo effecter 

(sensor), they move out from the center in a traveling ring of cells by moving up the nutrient 

gradient to consume nutrient. Moreover the cells release attractant aspertate and congregate 

into groups with high density if high levels of the nutrient called succinate are used as the 
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nutrient. The cells provide an attraction signal to each other as a result they swarm together. 

Mathematically this swarming effect can be represented with 

∑
=

=

S

i

ii
cccc lkjθθJlkjpθJ

1

)),,(,()),,((,(  

∑ ∑ ∑ ∑
= = = =
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i
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1 1 1 1

22
)])(exp([)])(exp([  

Where, ccJ (P (j, k, l)) is the objective valued function to be added to the actual objective 

function (to be minimized) to present a time varying objective function, S is the total number 

of bacteria, p is the number of variables to be optimized, which are present in each bacterium 

and θ = [ 1θ , 2θ ,…. pθ ] is a point in the p-dimensional search domain. The different 

coefficients dattractant, wattractant, hrepellent, wrepellent, should be chosen properly. The values for these 

parameters are simply chosen to illustrate general bacterial behaviors, not to represent a 

particular bacterial chemical signaling scheme. The particular values of the parameters are 

chosen with the nutrient profile in mind. 

 

Reproduction- The health status of each bacterium is calculated as the sum of the step fitness 

during its life, i.e., ∑
=

cN

j

lkjiJ

1

),,,( where 
cN is the maximum step in a chemotaxis process. All 

bacteria are sorted in reverse order according to health status. The least healthy bacteria 

eventually die while each of the healthier bacteria (those yielding lower value of the objective 

function) asexually split into two bacteria, which are then placed in the same location, which 

are then placed in the same locations. Thus, the population of bacteria keeps constant. 

Basically after 

cN is the number of chemotactic steps, a reproduction step is taken. Let Nre be the number of 

reproduction steps to be taken and assume that S is a positive even integer and also let 

rS =S/2 be the number of population members who have had sufficient nutrients so that they 

will reproduce (split in two) with no mutations. For reproduction, the population is sorted in 

order of ascending accumulated cost and then the rS  least healthy bacteria die and the other 

rS  healthy bacteria each split into two bacteria, which are placed at the same location. This 

keeps swarm size constant. 

 

Elimination and Dispersal- The chemotaxis provides a basis for local search, and the 

reproduction process speeds up the convergence which has been simulated by the BFOA. 

While to a large extent, only chemotaxis and reproduction are not enough for global optima 

searching.  
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Since bacteria may get stuck around the initial positions or local optima, it is possible for the 

diversity of BFO algorithm to change either gradually or suddenly to eliminate the accidents 

of being trapped into the local optima. Gradual or sudden changes in the local environment 

where a bacterium population lives may occur due to various reasons e.g. a significant local 

rise of temperature may kill a group of bacteria that are currently in a region with a high 

concentration of nutrient gradients. In BFO algorithm, the dispersion event happens after a 

certain number of reproduction processes. Then some bacteria are chosen, according to a 

preset probability P, to be killed and moved to another position within the environment. 

 

 In our case we have decided to use the optimal power of Bacterial foraging 

optimization algorithm (BFO) to design our proposed Adaptive PID (BFO-APID) [3] 

controllers. Here, all the above said designs including two steps- first, we define the structure 

of the adaptive PID controller and then the algorithms are used to find their best set of 

parameters with respect to an objective function. In our experimental purpose we have studied 

the performances of the developed adaptive controllers based on BFO algorithms over PID & 

APID controllers for different processes with dead time. 

 

3.5 Simple steps of Bacteria foraging Optimization Algorithm 

1. Initialize the population size. 

2. Elimination-dispersal loop: l = l+1 

3. Reproduction loop: k = k+1 

4. Chemotaxis loop: j = j+1 

a. For i = 1, 2...S take a chemotactic step for bacterium i as follows.  

b. Compute fitness function J (i, j, k, l).  

c. Save the best fitness function. 

d. Tumble: generate a random vector between [-1, 1]. 

e. Compute the fitness function again and save the best one. 

5. If j< cN (no. of bacteria in the population) go to step 3. Since the life of the bacteria is 

not over. 

6. Reproduction. 

7. If k< Nre (no. of reproduction steps) go to step 3. In this case we have not reached the 

number of specified reproduction steps. So we start the next generation of the 

chemotaxis step. 

Elimination-dispersal loop with probability Ped (elimination-dispersal probability). To do this, 

if a bacterium is eliminated, simply disperse another one to a random location on the 
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quantization domain. If l< Ned (no. of elimination-dispersal events), then go to step 2; 

otherwise end. 

 

3.6 Objective Function of the Bacteria foraging Optimization Algorithm  

The function to be optimized is known as objective function. Here, minimization of the 

integral-absolute-error (IAE) [9] or integral-time-absolute-error (ITAE) or combination of 

both i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness 

function). The IAE and ITAE are calculated as: 

 

∫=
t

dtteIAE
0

|)(|            (3.2)                                                  

∫ ∫+=+
t t

dttetdtteITAEIAE
0 0

|)(||)(|             (3.3)                                                    

 

3.7 Results 

For simulation study, we consider the following systems with dead-time (L) 

2)1/()( +=
− sesG Ls

p , L=0.2s, and 0.3s                  (3.4)
  

)1(/)( +=
−

ssesG
Ls

p , L=0.2s, and 0.3s.                  (3.5) 

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s.                  (3.6) 

PH model- 2)11.0)(1/()( ++=
− ssesG Ls

p , L=0.01s, and 0.02s.               (3.7) 

For each process model we have used four different types of controller. 

(a)  PID 

(b) BFO-PID – dip KKK ,, are ±20% of their respective Conventional PID and these are 

calculated by BFO algorithm. 

(c) APID. 

(d) BFO-APID - In this all seven parameters are varying within the defined range and these 

are calculated by BFO algorithm. 

We have calculated the close loop response characteristics for above process model by using 

different controllers. For detailed comparison, in addition to the response characteristics, 

several performance indices, such as percentage overshoot (%OS), rise time ( rt ), settling time 

( st ), integral absolute error (IAE) and integral time absolute error (ITAE) are calculated for 

each controller. Performance of our BFO-APID is compared with Conventional PID, BFO-
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PID, and APID. Fourth-order Range-Kutta method is used for numeric integration. The 

detailed performance analysis for various types of process is discussed below. 

 

3.7.1 Second Order Linear Process 

Transfer function of the process is given by 

2)1/()( +=
− sesG Ls

p   (3.8) 

Response of second order linear process in (3.8) with L=0.2s, and L=0.3s under PID, BFO-

PID, APID, and BFO-APID is shown in Fig. 3.1. Performance indices of the process in (3.8) 

for different controllers are given in Table 3.1(a) and Table 3.1(b). Though the controller are 

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers 

settings (for PID and APID). Performance analysis reveals that unlike PID, BFO-PID, and 

APID, BFO-APID is capable of providing acceptable and remarkably improved performance 

during both set point change and load disturbance. 

 

 

 

 

Table 3.1 (a) -Performance analysis of second order linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE+ITAE

 

PID 60.30 0.90 3.40 2.08 9.29 

BFO-PID 24.84 0.90 2.80 1.51 7.03 

APID 5.37 1.40 3.20 1.36 6.26 

BFO -APID 1.04 2.10 3.30 1.30 3.68 

L=0.3s 
PID 93.95 0.90 7.90 3.08 23.11 

BFO -PID 48.64 1.00 7.00 2.55 13.37 

APID 15.58 1.00 5.70 1.81 9.63 

BFO -APID 3.92 2.40 3.30 1.30 3.68 
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Table 3.1 (b) -Performance analysis of second order linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE 

PID 60.30 0.90 3.40 2.08 9.29 

BFO-PID 14.47 1.00 3.40 1.46 7.07 

APID 5.37 1.40 3.20 1.36 6.26 

BFO -APID 0.30 2.20 1.90 1.38 3.56 

L=0.3s 
PID 93.95 0.90 7.90 3.08 23.11 

BFO -PID 34.89 1.00 5.50 1.95 9.49 

APID 15.58 1.00 5.70 1.81 9.63 

BFO -APID 14.45 2.20 5.40 2.14 10.73 
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Fig. 3.1 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE 
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Fig. 3.1 (b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE 
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Fig. 3.1 (c) Response of second order linear process for L=0.2s, minimization of IAE 
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Fig. 3.1 (d) Response of second order linear process for L=0.3s, minimization of IAE 

 

 

 

3.7.2 First Order with Integrating Process  

Transfer function of the process is given by 

)1(/)( +=
−

ssesG
Ls

p                   (3.9) 

Response of first order integrating process in (3.9) with L=0.2s and L=0.3s under PID, BFO-

PID, APID, and BFO-APID is shown in Fig. 3.2 Performance indices of the process in (3.9) 

for different controllers are shown in Table 3.2(a) and Table 3.2(b). Though the controller are 

tuned for L=0.2s a higher value i.e., L=0.3s is also tested without changing controllers 

settings (for PID and APID).  

Unlike PID, BFO-PID, and APID, BFO-APID is capable of providing acceptable and 

remarkably improved performance during both set point change and load disturbance but not 

to the same extent as that of the previous case. 
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Table 3.2 (a) -Performance analysis of first order integrating process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE+ITAE 

 

PID 77.50 1.10 10.2 3.44 27.19 

BFO-PID 65.91 1.10 6.40 2.63 18.86 

APID 28.75 1.40 11.00 2.46 19.44 

BFO -APID 25.67 1.90 12.80 2.66 19.87 

L=0.3s 
PID 102.20 1.20 17.10 5.70 54.79 

BFO -PID 89.31 1.20 12.30 3.07 34.52 

APID 33.80 1.30 11.00 2.68 22.02 

BFO -APID 29.55 2.10 13.10 2.80 21.73 

 

 

 

Table 3.2 (b) -Performance analysis of first order integrating process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE 

 

PID 77.50 1.10 10.20 3.44 27.19 

BFO-PID 65.91 1.10 6.40 2.63 18.86 

APID 28.75 1.40 11.00 2.46 19.44 

BFO -APID 25.67 1.90 12.80 2.66 19.87 

L=0.3s 
PID 102.20 1.20 17.10 5.70 54.79 

BFO -PID 89.31 1.20 12.30 3.07 34.52 

APID 33.80 1.30 11.00 2.68 22.02 

BFO -APID 29.55 2.10 13.10 2.80 21.73 
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Fig. 3.2 (a) Response of first order integrating process for L=0.2s, minimization of IAE+ITAE 
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Fig. 3.2 (b) Response of first order integrating process for L=0.3s, minimization of IAE+ITAE 
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Fig. 3.2 (c) Response of first order integrating process for L=0.2s, minimization of IAE 
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Fig. 3.2 (d) Response of first order integrating process for L=0.2s, minimization of IAE 

 

3.7.3 Second Order Nonlinear Process 

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++                  (3.10) 

Response of second order non linear process in (3.10) with L=0.3s and L=0.4s under PID, 

BFO-PID, APID, and BFO-APID is shown in Fig. 3.3. Performance indices of the process in 

(3.10) for different controllers are given in Tables 3.3(a) and 3.3(b). Though the controller are 

tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers 

settings (for PID and APID). We can conclude that unlike PID, BFO-PID, and APID, BFO-
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APID is capable of providing acceptable and remarkably improved performance during both 

set point change and load disturbance. 

 

 

Table 3.3 (a) -Performance analysis of second order non-linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

IAE+ITAE 

 

PID 66.10 1.40 9.30 3.13 46.60 

BFO-PID 54.2 1.50 6.80 3.54 36.48 

APID 19.18 1.70 10.60 2.95 34.88 

BFO -APID 9.74 1.90 8.90 2.71 30.98 

L=0.4s 
PID 83.11 1.50 13.30 5.78 72.40 

BFO -PID 67.15 1.50 6.10 3.92 41.28 

APID 25.15 1.70 10.80 3.26 39.45 

BFO -APID 16.46 1.90 8.90 3.04 35.48 

 

 

Table 3.3 (b) -Performance analysis of second order non-linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

IAE 

 

PID 66.10 1.40 9.30 3.13 46.60 

BFO-PID 52.48 1.40 6.90 3.16 33.31 

APID 19.18 1.70 10.60 2.95 34.88 

BFO -APID 11.37 2.00 11.30 2.81 32.51 

L=0.4s 
PID 83.11 1.50 13.30 5.78 72.40 

BFO -PID 69.67 1.40 9.90 3.32 49.81 

APID 25.15 1.70 10.80 3.26 39.45 

BFO -APID 12.02 1.8 11.80 3.03 35.83 
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Fig. 3.3 (a) Response of second order integrating process for L=0.3s, minimization of IAE+ITAE 
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Fig. 3.3 (b) Response of second order integrating process for L=0.4s, minimization of IAE+ITAE 
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Fig. 3.3 (c) Response of second order integrating process for L=0.3s, minimization of IAE 
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Fig. 3.3 (d) Response of second order integrating process for L=0.4s, minimization of IAE 

 

3.7.4 pH-Neutralization Process 

For pH-neutralization process we consider following linear model 

2)11.0)(1/()( ++=
−

ssesG
Ls

p                  (3.11) 

Response of pH neutarlization process in (3.11) with L=0.01s and L=0.02s under PID, BFO-

PID, APID, and BFO-APID is shown in Fig. 3.3. Performance indices of the process in (3.11) 
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for different controllers are given in Tables 3.3(a) and 3.3(b). Though the controller are tuned 

for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers settings 

(for PID and APID). We can conclude that unlike PID, BFO-PID, and APID, BFO-APID is 

capable of providing acceptable and remarkably improved performance during both set point 

change and load disturbance. 

Table 3.4 (a) -Performance analysis of pH-neutralization process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.01s  

 

IAE+ITAE 

 

PID 64.21 0.26 1.69 0.72 1.09 

BFO-PID 52.56 0.26 1.29 0.65 0.92 

APID 23.94 0.30 1.77 0.52 0.84 

BFO -APID 4.02 0.38 0.86 0.41 0.60 

L=0.02s 
PID 72.34 0.27 1.78 0.84 1.33 

BFO -PID 58.46 0.28 1.24 0.69 0.99 

APID 28.49 0.30 1.84 0.56 0.88 

BFO -APID 6.40 0.36 0.88 0.43 0.63 

 

 

Table 3.4 (b) -Performance analysis of pH-neutralization process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.01s  

 

IAE 

 

PID 64.21 0.26 1.69 0.72 1.09 

BFO-PID 52.56 0.26 1.29 0.65 0.92 

APID 23.94 0.30 1.77 0.52 0.84 

BFO -APID 3.02 0.38 0.86 0.41 0.60 

L=0.02s 
PID 72.34 0.27 1.78 0.84 1.33 

BFO -PID 58.46 0.28 1.24 0.69 0.99 

APID 28.49 0.30 1.84 0.56 0.88 

BFO -APID 6.40 0.36 0.88 0.43 0.63 



Bacterial foraging optimization based APID controller 

59 

 

 

 

 

 

 

 

 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

Time t 

R
es

p
o

n
se

 y

PH MODEL TF=exp(-0.01s / [(1+s)(0.1s+1)]

 

 
CPID

BFO-CPID

APID

BFO-APID

 

Fig. 3.4 (a) Response of pH neutralization process for L=0.01s, minimization of IAE+ITAE 
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Fig. 3.4 (b) Response of pH neutralization process for L=0.02s, minimization of IAE+ITAE 
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Fig. 3.4 (c) Response of pH neutralization process for  L=0.01s, minimization of IAE 
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Fig. 3.4 (d) Response of pH neutralization process for L=0.02s, minimization of IAE 

 

3.8 Conclusion  

In this study we have exhibited how the performance of adaptive PID (APID) controllers is 

enhanced when it is used with the optimal power of bio-inspired algorithms. Here, BFO are 

said to be bio-inspired because of the fact that they depicts how E. coli bacteria are sustained 
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biologically. When the conventional controller with the optimal power of  BFO are not able to 

provide the satisfactory performances over APID controller, we decided to develop the BFO-

APID in order to get overall improved performance for both set point change as well as load 

disturbances. We also observed that BFO-APID provides improved performance as it 

provides minimum overshoot & improved rise time & settling time. It also provides lower 

value of IAE & ITAE which indicates that it can track set point and reject load disturbance 

properly.  Initially we have used IAE+ITAE as objective function with a dead time. After that 

the dead time is improved in order to see the robustness of the controller & we found the 

performance is still satisfactory for BFO-APID. We also get the similar enhanced 

performance when we use only IAE as an objective function.  
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4.1 Introduction 

In this chapter we will vary all the seven parameters, i.e., 4321 ,,,,, andkkkkKKK dip of APID 

[1] within a defined range. Particle swarm optimization (PSO) is used to find out best set of 

solution which will optimize the given objective function.  In 1995, Edward and Kennedy [2-

4] first introduced the PSO method motivated by social behavior of organisms such as fish 

schooling and bird flocking. It is also a population based search technique. PSO can be easily 

implemented and usually results in faster convergence rates than other techniques. Unlike the 

PSO, PSO has no evolution operators such as crossover and mutation.  

 

4.2 Particle Swarm Optimization (PSO)  

Particle swarm optimization [2-4] is an artificial intelligence (AI) technique which can be is 

used to find approximate solutions to extremely difficult or impossible numeric maximization 

and minimization problems. The idea behind the algorithm was inspired by social behavior of 

animals such as bird flocking and fish schooling. This theory can be understood by the 

concept of techniques used by birds or fishes for searching the food in wide area. Suppose the 

following scenario, a group of birds or fishes are randomly searching for food in a wide area. 

There is only one piece of food in the area being searched. All the birds/fishes do not know 

the exact location where the food is. In that condition, they travel in search space according to 

the own experience as well as neighbour’s experience. That mean, in each iteration, they 

compare the distance between its own location and the target with respect to its previous 

experience as well as the best position of neighbor which is closest to the target. After that 

they modify its own speed for the best strategy to find the food. This is the basic principle of 

Particle Swarm Optimization (PSO). 

  In technical term, each bird or fish is called “Particle” and its flock is called “Particle 

Population”. All the particles have own fitness or objective value which is calculated by the 

objective function. For the optimization of objective function, particles positions are updated 

by velocity vector which depends on its personal influence as well as social influence.  

Technically in other words PSO starts with random set of solutions that is called the 

particles. Each particle has positions (value of the variables) and velocities. The particles 

update their velocities and positions based on the local best solution (best solution associated 

with current population) and global best solution (best solution associated with population 

found so far). 

 



Particle swarm optimization based APID controllers 

63 

 

To avoid confusion I am giving some nomenclature which is used in PSO. 

Table 4.1 Parameters of PSO algorithm 

Term Explanation 

Particle One set of solution, i.e., one set of value of variables. 

Position Value of individual variable. 

velocity Corresponding to each variable there is a velocity. It is a vector quantity. 

Population It is the no of particle in a swarm, i.e., set of solutions 

fitness f (particle) 

Variables Define all the independent variables 

Range of variables Define the range of all independent variables 

Velocity range [ -|(span of the variable)|     ,  |(span of the variable)|  ] 

Where span is the difference between largest and smallest value of that 

variable. 

Local _best 

_particle 

It is the best solution associated with minimum fitness of the current 

population. 

Global _best 

_particle 

It is the best solution associated with minimum fitness of the population 

found so far. 

 

4.3 Objective Function of Particle Swarm Optimization 

The function to be optimized is known as objective function. Here, minimization of the 

integral-absolute-error (IAE) or integral-time-absolute-error (ITAE) or combination of both 

i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness function). 

The IAE and ITAE are calculated as: 

 ∫=

t

dtteIAE
0

|)(|
          

(4.1) 

∫∫ +=+

t
t

dttetdtteITAEIAE

0
0

|)(||)(|                   (4.2) 
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4.4 Initial Settings of Particle Swarm Optimization -  

Table 4.2 Initial settings of the algorithm 

Population 10 

Variables 
4321 ,,,,, andkkkkKKK dip  

Range of variables 
dip KKK ,, are ±20% of their respective PID, 

nd . 

Velocity range [ -|(span of the variable)|     ,  |(span of the variable)|] 

Where span is the difference between largest and 

smallest value of that variable. 

 

4.5 Different Operations Used in Particle Swarm Optimization 

Population 

Here, the population size is 10. We have 7 variables 4321 ,,,,, andkkkkKKK dip .  We generate 

random set of solution by MATLAB-command random (population size, variables), i.e., 

random (10, 7). All the values are lying between 0 and 1 and matrix size is 10*7.  

Bring the particle’s positions (variables) in range 

Since value of the variables is not in the defined range therefore we bring it in a defined range 

to get the real value of the optimization variable. The following linear mapping is used for 

this purpose. 

Let i denotes the particles so i=1, 2, 3...10 

And let j denotes the variables so j=1, 2, 3…7 

}0001.0),({
)()(

)(),( minmax
min −×

−
+= jiuedecimalval

span

jXjX
jXjiparticle             (4.3) 

Where, particle (i, j) = real value of variable 

)(max jX = Maximum value of jth variable of any set of solutions 

)(min jX = Minimum value of jth variable of any set of solutions 

Span of decimal no = 0.9999 – 0.0001 
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Velocity and velocity range  

Each variable has velocity which is a vector quantity. To generate velocity the same 

MATLAB command is used as we have used to generate population, i.e., random (10, 7). 

Now we bring the decimal value of velocity in a defined range to get the real value of 

velocity. The following linear mapping is used for this purpose. 

}0001.0),({
)()(

)(),( minmax
min −×

−
+= jiuedecimalval

span

jXjX
jVjivelocity             (4.4)  

Where, velocity (i,j) is the real value of velocity. 

Velocity range is defined as: 

|)()((|)( minmaxmax jXjXjV −+=     is the maximum velocity of j
th
 variable of any set of 

solution. 

|)()((|)( minmaxmax jXjXjV −+=     is the minimum velocity of j
th
 variable of any set of 

solution. 

Other unknowns are same as previous case. 

Particle’s velocity update, particle’s position update and inertia weight (w) 

We update particle’s velocity first then we update particle’s position by the following method. 

Update particle’s velocity by 

+−+= )),(),(__(*),(*),(_ 11 jiparticlejiparticlebestlocalrcjivelocitywjivelocityNew  

)),(),(__(* 22 jipjiparticlebestglobalrc −                  (4.5) 

 

Update particle’s position by 

),(_),(),( jivelocitynewjiparticlejipartcle +=               (4.6) 

Where i=1, 2, 3…10 is the particles and j=1, 2, 3…7 is the variables. i and j is used to 

indicate the coordinate of the particle. Here w is the inertia weight. It is used to control the 

search. At the starting phase of search inertia weight is almost equal to 0.99 and search is in 

exploration mode. At the end phase of search inertia weight is very low (almost equal to 0.01) 

and search is in exploitation mode. Thus at the starting phase of search change in particle’s 

velocity and position are very high compared to end phase of search where change in 

particle’s velocity and position are very small.  

Note- if the exploration mode is very high (w >1) then you jump from one solution to 

another solution with much gap (span) because of the high velocity of the particle.  You may 

over jump best solution. And if exploitation mode is very high (w 0.01) then program will 
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take too much time to converge. Because w affects our results drastically therefore you cannot 

give importance to anyone of the modes. I have made w as a time varying quantity (dynamic 

nature) to control the both modes, i.e., w gradually decreases from 0.99 to 0.01 as the no of 

iteration increases. 

Local weight and global weight 

1c and 2c are  constant. 1c is called the cognitive or personal or local weight. 2c   is called the 

social or global weight. 1c  =2 and 2c =2. r1 and r2 are the random number and both  are in 

range of  (0,1). 

Surety that you are at global optima 

From the second term in the velocity update equation (4.4), we can say that particles always 

try to move towards Local_best_particle, i.e., local minimum and from the third term we can 

say particles always try to move towards Global_best_particle, i.e., global minimum. 

If the Global_best_particle is too far from the Local_best_particle, then Global_best_particle 

has huge impact on the velocities and positions of the particles which are nearer to 

Local_best_particle. It means that for those particles high change in velocities and positions 

occur. Therefore particles finally move towards Global_best_particle. Also the random 

variables r1 and r2 add a random component to the particles movement and help to prevent 

particles from getting stuck at a non-optimal local minimum solution. 

 

4.6 Steps of Particle Swarm Optimization Algorithm 

(1) Generate population with uniform random number and bring it within the define range. 

(2) Generate velocity with uniform random number and bring it within the define range. 

(3) For each particles, i.e., i=1, 2, 3…10  

 Evaluate the fitness, i.e., objective function, i.e., f (particle (i)) 

(4) Find out the particle associated with minimum fitness. Let for ith particle we are getting 

minimum fitness then 

Local_best_particle = )(
th

iparticle  

Global_best_particle = )(
th

iparticle  

Start of PSO loop:  repeat until slope of objective is almost zero or until maximum no of 

iteration is reached. 

 

(i) For each particles, i.e., i=1, 2, 3...10 

     For each variables, i.e., j=1, 2, 3…7 

    {Generate the random number r1, r2. 
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Update the velocity by 

+−+= )),(),(__(*),(*),(_ 11 jiparticlejiparticlebestlocalrcjivelocitywjivelocityNew  

)),(),(__(* 22 jipjiparticlebestglobalrc −                  (4.7) 

Check the velocity limit and if it is out of range, bring it in range. 

If ),(_ jivelocitynew > )(max jV then ),(_ jivelocitynew = )(max jV   

Else if ),(_ jivelocitynew < )(min jV then ),(_ jivelocitynew = )(min jV   

(ii)  For each particles, i.e., i=1, 2, 3...10 

For each variables, i.e., j=1, 2, 3…7 

{Update the position by ),(_),(),( jivelocitynewjiparticlejipartcle +=               (4.8) 

Check the particle’s position limit and if it is out of range bring it in range. 

If )(),( max jXjiparticle > then )(),( max jXjiparticle >  

Else if )(),( max jXjiparticle <  then particle )(),( max jXjiparticle <   

 

(iii)  For each particles, i.e., i=1, 2, 3…10  

Evaluate the fitness, i.e., objective function   i.e.  f (particle ( i)) 

(iv)  Find out the particle associated with minimum fitness in the current population. Let for 

i
th
 particle we are getting minimum fitness. 

Local_best_particle=particle (i
th
) 

If )__(__( particlebestglobalfparticlebestlocalf <  

)__(__( particlebestglobalparticlebestlocal =  

End 

Hence Global_best_particle is our solution for which fitness is minimum. 

 

4.7 RESULTS 

For simulation study, we consider the following systems with dead-time (L) 

2)1/()( +=
−

sesG
Ls

p , L=0.2s, and 0.3s                (4.9)
  

)1(/)( +=
−

ssesG
Ls

p , L=0.2s, and 0.3s.               (4.10) 

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s.                (4.11) 

PH model- 2)11.0)(1/()( ++=
−

ssesG
Ls

p , L=0.01s, and 0.02s.             (4.12) 

For each process model we have used four different types of controller. 

(a) PID. 

(b) PSO-PID – dip KKK ,, are ±20% of their respective PID and these are calculated by 

genetic algorithm. 
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(c) APID. 

(d) PSO-APID - In this all seven parameters are varying within the defined range and these 

are calculated by PSO algorithm. 

We have calculated the close loop response characteristics for different controllers. For 

detailed comparison, in addition to the response characteristics, several performance indices, 

such as percentage overshoot (%OS), rise time ( rt ), settling time ( st ), integral absolute error 

(IAE) and integral time absolute error (ITAE) are calculated for each controller. Performance 

of our PSO-APID is compared with PID, PSO-PID, and APID. Fourth-order Range-Kutta 

method is used for numeric integration. The detailed performance analysis for various types 

of process is discussed below. 

4.7.1 Second Order Linear Process 

Transfer function of the process is given by 

2)1/()( +=
−

sesG
Ls

p                                                                                                           (4.13) 

Response of second order linear process in (4.13) with L=0.2s, and L=0.3s under PID, PSO-

PID, APID, and PSO-APID is shown in Fig. 4.1. Performance indices of the process in (4.13) 

for different controllers are given in Table 4.3 (a) and Table 4.3 (b). Though the controller are 

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers 

settings (for PID and APID). Performance analysis reveals that unlike PID, PSO-PID, and 

APID, PSO-APID is capable of providing acceptable and remarkably improved performance 

during both set point change and load disturbance. 

Table 4.3 (a) -Performance analysis second order linear process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE+ITAE 

 

PID 60.30 0.90 4.40 2.08 9.29 

PSO-PID 44.49 0.80 3.80 1.60 6.65 

APID 5.37 1.40 4.20 1.36 6.26 

PSO -APID 0.57 1.00 6.30 1.23 4.94 

L=0.3s 
PID 93.93 0.90 12.20 4.41 35.28 

PSO -PID 61.81 1.00 3.50 2.27 10.04 

APID 15.58 1.00 4.70 1.85 14.10 

PSO -APID 0.40 2.60 7.90 1.98 8.75 
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Table 4.3 (b) -Performance analysis second order linear process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE 

 

PID 60.30 0.90 4.40 2.08 9.29 

PSO-PID 44.49 0.80 3.80 1.60 6.65 

APID 5.37 1.40 4.20 1.36 6.26 

PSO -APID 2.95 2.10 3.10 1.47 4.49 

L=0.3s 
PID 93.93 0.90 12.20 4.41 35.28 

PSO -PID 61.81 1.00 3.50 2.27 13.98 

APID 15.58 1.00 4.70 1.85 14.10 

PSO -APID 4.24 2.30 4.80 1.94 8.69 
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Fig. 4.1 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE 
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Fig. 4.1 (c) Response of second order linear process for L=0.2s, minimization of IAE 
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Fig. 4.1 (b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE 
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Fig. 4.1 (d) Response of second order linear process for L=0.3s, minimization of IAE 

 

 

4.7.2 First Order with Integrating Process 

Transfer function of the process is given by 

)1(/)( +=
−

ssesG
Ls

p                                                                                                           (4.14) 

Response of first order integrating process in (4.14) with L=0.2s, and L=0.3s under PID, 

PSO-PID, APID, and PSO-APID is shown in Fig. 4.2. Performance indices of the process in 

(4.14) for different controllers are given in Table 4.4 (a) and Table 4.4 (b). Though the 

controller are tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing 

controllers settings (for PID and APID). Performance analysis reveals that unlike PID, PSO-

PID, and APID, PSO-APID is capable of providing acceptable and remarkably improved 

performance during both set point change and load disturbance. 
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Table 4.4 (a) -Performance analysis first order integrating process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE+ITAE 

 

PID 77.50 1.10 10.20 3.44 27.19 

PSO-PID 59.02 1.10 6.00 2.22 14.88 

APID 28.75 1.40 11.00 2.46 19.44 

PSO -APID 24.56 1.70 11.70 2.30 16.52 

L=0.3s 
PID 93.93 0.90 12.20 4.41 35.28 

PSO -PID 58.59 1.20 6.40 2.45 16.79 

APID 15.58 1.00 4.70 1.85 14.10 

PSO -APID 19.79 1.50 13.10 2.42 19.72 

 

 

 

Table 4.4 (b) -Performance analysis first order integrating process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE 

 

PID 77.50 1.10 10.20 3.44 27.19 

PSO-PID 59.02 1.10 6.00 2.22 14.88 

APID 28.75 1.40 11.00 2.46 19.44 

PSO -APID 13.88 1.50 17.40 2.15 21.76 

L=0.3s 
PID 93.93 0.90 12.20 4.41 35.28 

PSO -PID 83.06 1.10 9.60 3.35 26.13 

APID 15.58 1.00 4.70 1.85 14.10 

PSO -APID 12.65 2.50 17.40 2.47 25.45 
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Fig.4.2 (a) Response of first order integrating process for L = 0.2s, minimization of IAE+ITAE 
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Fig.4.2 (b) Response of first order integrating process for L = 0.3s, minimization of IAE+ITAE 
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Fig.4.2 (c) Response of first order integrating process for L = 0.3s, minimization of IAE 
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Fig.4.2 (d) Response of first order integrating process for L = 0.3s, minimization of IAE 

 

4.7.3 Second Order Nonlinear Process 

)(2.0
2

2

2

Ltuy
dt

dy

dt

yd
−=++                  (4.15) 

Response of second order non linear process in (4.15) with L=0.3s and L=0.4s under PID, 

PSO-PID, APID, and PSO-APID is shown in Fig. 4.3. Performance indices of the process in 

(4.15) for different controllers are given in Tables 4.4(a) and 4.4(b). Though the controller are 
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tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers 

settings (for PID and APID). We can conclude that unlike PID, PSO-PID, and APID, PSO-

APID is capable of providing acceptable and remarkably improved performance during both 

set point change and load disturbance. 

 

Table 4.5 (a) -Performance analysis second order non-linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

IAE+ITAE 

 

PID 66.10 1.40 9.30 4.13 46.60 

PSO-PID 51.59 1.40 6.80 3.10 32.76 

APID 19.18 1.70 10.60 2.95 34.88 

PSO -APID 4.34 2.80 4.00 2.01 18.84 

L=0.4s 
PID 83.11 1.50 13.30 4.78 72.40 

PSO -PID 60.12 1.60 7.40 3.82 41.28 

APID 25.15 1.70 10.80 3.26 39.45 

PSO -APID 3.93 3.60 4.80 2.47 29.98 

 

Table 4.5 (b) -Performance analysis second order non-linear process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

IAE 

 

PID 66.10 1.40 9.30 4.13 46.60 

PSO-PID 51.59 1.40 6.80 3.10 32.76 

APID 19.18 1.70 10.60 2.95 34.88 

PSO -APID 2.75 2.70 3.60 1.97 19.75 

L=0.4s 
PID 83.11 1.50 13.30 4.78 72.40 

PSO -PID 69.18 1.40 9.80 4.30 49.67 

APID 25.15 1.70 10.80 3.26 39.45 

PSO -APID 3.93 3.60 4.80 2.47 29.98 
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Fig.4.3 (a) Response of second order nonlinear process for L = 0.3s, minimization of IAE+ITAE 
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Fig.4.3 (b) Response of second order nonlinear process for L = 0.4s, minimization of IAE+ITAE 
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Fig.4.3 (c) Response of second order nonlinear process for L = 0.3s, minimization of IAE 

 

 

 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time t 

R
e
sp

o
n

se
 y

(d2y/dt2) + dy/dt + 0.2*y2 = u(t-0.4)

 

 
PID

PSO-PID

APID

PSO-APID

Fig.4.3 (d) Response of second order nonlinear process for L = 0.4s, minimization of IAE 

 

4.7.4 pH-Neutralization Process 

For pH-neutralization process we consider following linear model 

2)11.0)(1/()( ++=
−

ssesG
Ls

p                   (4.16) 

Response of pH neutralization process in (4.16) with L=0.01s and L=0.02s under PID, PSO-

PID, APID, and PSO-APID is shown in Fig. 4.4. Performance indices of the process in (4.16) 

for different controllers are given in Tables 4.6(a) and 4.6(b). Though the controller are tuned 

for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers settings 
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(for PID and APID). We can conclude that unlike PID, PSO-PID, and APID, PSO-APID is 

capable of providing acceptable and remarkably improved performance during both set point 

change and load disturbance. 

Table 4.6 (a) -Performance analysis pH-neutralization process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.01s  

 

IAE+ITAE 

PID 64.21 0.26 1.69 0.72 1.40 

PSO-PID 48.43 0.25 1.23 0.52 0.94 

APID 23.94 0.3 1.77 0.52 0.84 

PSO -APID 9.75 0.31 0.81 0.39 0.79 

L=0.02s PID 72.34 0.27 1.78 0.84 1.33 

PSO -PID 53.55 0.27 1.27 0.59 1.07 

APID 28.49 0.30 1.84 0.56 0.88 

PSO -APID 6.28 0.33 1.49 0.4 0.73 

 

 

 

 

 

Table 4.6 (b) -Performance analysis pH-neutralization process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.01s  

 

IAE 

PID 64.21 0.26 1.69 0.72 1.40 

PSO -PID 48.43 0.25 1.23 0.52 0.94 

APID 23.94 0.3 1.77 0.52 0.84 

PSO -APID 10.49 0.31 0.79 0.39 0.82 

L=0.02s PID 72.34 0.27 1.78 0.84 1.33 

PSO -PID 56.14 0.25 1.23 0.60 1.12 

APID 28.49 0.30 1.84 0.56 0.88 

PSO -APID 14.27 0.30 1.03 0.43 0.90 
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Fig.4.4(b) Response of pH neutralization process for L = 0.02s, minimization of IAE+ITAE 
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Fig.4.4(a) Response of pH neutralization process for L = 0.01s, minimization of IAE+ITAE 
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Fig.4.4(c) Response of pH neutralization process for L = 0.01s, minimization of IAE 
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Fig.4.4(d) Response of pH neutralization process for L = 0.02s, minimization of IAE 

 

 

4.8 Conclusion  

In this study we have explored the possibility of performance enhancement of Adaptive PID 

controller (APID) through Particle Swarm algorithm optimization technique. From the 

experimental results we observed that both PSO-APID provided remarkably enhanced 

performance over Adaptive PID controller (APID) due to set point changes as well as load 

disturbances. We also observed that genetic algorithm based Adaptive PID controller (PSO-
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APID) exhibited comparatively better performance over PSO optimized conventional PID 

controller (PSO-CPID) for all the systems taken above. PSO-APID provided minimum 

overshoot as well as minimum IAE & ITAE. Initially we have used IAE+ITAE as objective 

function in order to obtain both load disturbances and set point tracking satisfactorily i.e. 

overall improved performance with a dead time. After that we increased the dead time in 

order to see the robustness of the controller and we still found that the proposed PSO-APID 

maintained overall improved performances. We also observed the similar enhanced 

performance when IAE is used an objective function. 
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5.1 Introduction  

Artificial Bee Colony (ABC) algorithm [1] which is one of the most recently introduced 

optimization algorithms simulates the intelligent foraging behavior of a honey bee swarm. 

Artificial Bee Colony (ABC) algorithm was proposed by Karaboga [2, 3] for optimizing 

numerical problems. The algorithm simulates the intelligent foraging behavior of honey bee 

swarms. It is a very simple, robust and population based stochastic optimization algorithm. In 

ABC algorithm, the colony of artificial bees contains three groups of bees: employed bees, 

onlookers and scouts. A bee waiting on the dance area for making a decision to choose a food 

source is called onlooker and one going to the food source visited by it before is named 

employed bee. The other kind of bee is scout bee that carries out random search for 

discovering new sources. The employed bee whose food source has been exhausted by the 

bees becomes a scout. The position of a food source represents a possible solution to the 

optimization problem and the nectar amount of a food source corresponds to the quality 

(fitness) of the associated solution. In ABC system, artificial bees fly around in a 

multidimensional search space and some (employed and onlooker bees) choose food sources 

depending on the experience of themselves and their nest mates, and adjust their positions. 

Some (scouts) fly and choose the food sources randomly without using experience. If the 

nectar amount of a new source is higher than that of the previous one in their memory, they 

memorize the new position and forget the previous one. Thus, ABC system combines local 

search methods, carried out by employed and onlooker bees, with global search methods, 

managed by onlookers and scouts, attempting to balance exploration and exploitation process. 

 

5.2 Behavior of Honey Bee swarm [3]  

The minimal model of forage selection that leads to the emergence of collective intelligence 

of honey bee swarms [4] consists of three essential components: food sources, employed 

foragers and unemployed foragers and the model defines two leading modes of the behavior: 

the recruitment to a nectar source and the abandonment of a source. 

Food source: The value of a food source depends on many factors such as its proximity to the 

nest, its richness or concentration of its energy, and the ease of extracting this energy. For the 

sake of simplicity, the “profitability” of a food source can be represented with a single 

quantity. 

Employed foragers: They are associated with a particular food source which they are 

currently exploiting or are “employed” at. They carry with them information about this 

particular source, its distance and direction from the nest, the profitability of the source and 

share this information with a certain probability. 
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Unemployed foragers: They are continually at look out for a food source to exploit. There 

are two types of unemployed foragers: scouts, searching the environment surrounding the nest 

for new food sources and onlookers waiting in the nest and establishing a food source through 

the information shared by employed foragers. The mean number of scouts averaged over 

conditions is about 5-10%. 

The exchange of information among bees is the most important occurrence in the 

formation of the collective knowledge. While examining the entire hive it is possible to 

distinguish between some parts that commonly exist in all hives. The most important part of 

the hive with respect to exchanging information is the dancing area. Communication among 

bees related to the quality of food sources takes place in the dancing area. This dance is called 

a waggle dance. 

Since information about all the current rich sources is available to an onlooker on the 

dance floor, probably she can watch numerous dances and decides to employ herself at the 

most profitable source. There is a greater probability of onlookers choosing more profitable 

sources since more information is circulated about the more profitable sources. Employed 

foragers share their information with a probability proportional to the profitability of the food 

source, and the sharing of this information through waggle dancing is longer in duration. 

Hence, the recruitment is proportional to the profitability of the food source. 

 

5.3 Proposed Approach 

In this work, a particular intelligent behavior of a honey bee swarm, foraging behavior, is 

considered and a new artificial bee colony (ABC) algorithm simulating this behavior of real 

honey bees is described for solving multidimensional and multimodal optimization problems.  

 

The main steps of the algorithm are given below: 

1 .Initialize the solution population    

2 .Evaluate populations 

3 .Generate new solutions for the employed bees and keep the best solution 

4. Select the visited solution for onlooker bees by their fitness 

5 .Generate new solutions for the onlooker bees and keep the best solution 

5. Determine if exist an abandoned food source and replace it using a scout bee 

7. Save in memory the best solution so far 

8. Repeat steps 2-7 until stopping criteria is reached. 

 

Each cycle of the search consists of three steps: moving the employed and onlooker 

bees onto the food sources and calculating their nectar amounts; and determining the scout 
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bees and directing them onto possible food sources. A food source position represents a 

possible solution to the problem to be optimized. The amount of nectar of a food source 

corresponds to the quality of the solution represented by that food source. Onlookers are 

placed on the food sources by using a probability based selection process. As the nectar 

amount of a food source increases, the probability value with which the food source is 

preferred by onlookers increases, too. Every bee colony has scouts that are the colony’s 

explorers. The explorers do not have any guidance while looking for food. They are primarily 

concerned with finding any kind of food source. As a result of such behavior, the scouts are 

characterized by low search costs and a low average in food source quality. Occasionally, the 

scouts can accidentally discover rich, entirely unknown food sources. In the case of artificial 

bees, the artificial scouts could have the fast discovery of the group of feasible solutions as a 

task. In this work, one of the employed bees is selected and classified as the scout bee. The 

selection is controlled by a control parameter called "limit". If a solution representing a food 

source is not improved by a predetermined number of trials, then that food source is 

abandoned by its employed bee and the employed bee is converted to a scout. The number of 

trials for releasing a food source is equal to the value of "limit" which is an important control 

parameter of ABC.  

In a robust search process exploration and exploitation processes must be carried out 

together. In the ABC algorithm, while onlookers and employed bees carry out the exploitation 

process in the search space, the scouts control the exploration process. In the case of real 

honey bees, the recruitment rate represents a “measure” of how quickly the bee swarm locates 

and exploits the newly discovered food source. Artificial recruiting process could similarly 

represent the “measurement” of the speed with which the feasible solutions or the optimal 

solutions of the difficult optimization problems can be discovered. The survival and progress 

of the real bee swarm depended upon the rapid discovery and efficient utilization of the best 

food resources. Similarly the optimal solution of difficult engineering problems is connected 

to the relatively fast discovery of “good solutions” especially for the problems that need to be 

solved in real time.  

In our case we have decided to use the optimal power of artificial bee colony 

algorithm (ABC) to design our proposed Adaptive PID (ABC-APID) [5, 5] controllers. Here, 

all the above said designs including two steps- first, we define the structure of the adaptive 

PID controller and then the algorithms are used to find their best set of parameters with 

respect to an objective function. In our experimental purpose we have studied the 

performances of the developed adaptive controllers based on ABC algorithms over PID & 

APID controllers for different processes with dead time. 
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5.4 Objective function of ABC algorithm 

The function to be optimized is known as objective function. Here, minimization of the 

integral-absolute-error (IAE) [7] or integral-time-absolute-error (ITAE) or combination of 

both i.e., (IAE+ITAE) is defined as the objective function (performance index or fitness 

function). The IAE and ITAE are calculated as: 

∫=
t

dtteIAE
0

|)(|           (5.1) 

∫∫ +=+

t
t

dttetdtteITAEIAE

0
0

|)(||)(|                    (5.2) 

5.5 Initial Settings of Artificial Bee Colony Algorithm 

Table 5.1 Initial settings of the algorithm 

 

5.6 Results 

For simulation study, we consider the following systems with dead-time (L) 

2)1/()( +=
−

sesG
Ls

p , L=0.2s, and 0.3s                  (5.3)
  

)1(/)( +=
−

ssesG
Ls

p , L=0.2s, and 0.3s.                  (5.4) 

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++ , L=0.3s, and 0.4s.                  (5.5) 

PH model- 2)11.0)(1/()( ++=
−

ssesG
Ls

p , L=0.01s, and 0.02s.               (5.6) 

 

For each process model we have used four different types of controller. 

(a)  PID. 

(b) ABC-PID – dip KKK ,, are ±20% of their respective Conventional PID and these are 

calculated by ABC algorithm. 

(c) APID. 

Population 10 

Variables 
4321 ,,,,,, kkkkKKK dip  

Range of variables dip KKK ,, ,   are ±20% of their respective Conventional PID, K1, 

[0.5],K2[0,5],,K3[0,30], K4[0,1] 

Limit (population*dimension)/2 
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(d) ABC-APID - In this all seven parameters are varying within the defined range and these 

are calculated by ABC algorithm. 

We have calculated the close loop response characteristics for above process model by using 

different controllers. For detailed comparison, in addition to the response characteristics, 

several performance indices, such as percentage overshoot (%OS), rise time ( rt ), settling time 

( st ), integral absolute error (IAE) and integral time absolute error (ITAE) are calculated for 

each controller. Performance of our ABC-APID is compared with PID, ABC-PID, and APID. 

Fourth-order Range-Kutta method is used for numeric integration. The detailed performance 

analysis for various types of process is discussed below. 

 

5.6.1 Second Order Linear Process 

Transfer function of the process is given by 

2)1/()( +=
−

sesG
Ls

p   (5.7) 

Response of second order linear process in (5.7) with L=0.2s, and L=0.3s under PID, ABC-

PID, APID, and ABC-APID is shown in Fig. 5.1. Performance indices of the process in (5.7) 

for different controllers are given in Table 5.2 (a) and Table 5.2 (b). Though the controller are 

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers 

settings (for PID and APID). Performance analysis reveals that unlike PID, ABC-PID, and 

APID, ABC-APID is capable of providing acceptable and remarkably improved performance 

during both set point change and load disturbance. 

Table 5.2 (a) -Performance analysis second order linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

 

IAE+ITAE 

 

PID 60.30 0.90 4.40 2.08 9.29 

ABC-PID 27.90 0.90 3.40 1.44 5.56 

APID 5.37 1.40 4.20 1.36 5.26 

ABC -APID 2.08 2.10 2.30 1.31 4.78 

L=0.3s PID 93.93 0.90 12.20 4.41 35.28 

ABC -PID 55.25 0.90 7.50 2.78 15.12 

APID 15.58 1.00 5.70 1.85 14.10 

ABC -APID 3.67 2.10 2.80 1.45 5.22 
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Table 5.2 (b) -Performance analysis second order linear process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

 

IAE 

 

PID 60.30 0.90 4.40 2.08 9.29 

ABC -PID 21.12 1.00 3.50 1.45 5.84 

APID 5.37 1.40 4.20 1.36 5.26 

ABC -APID 0.00 9.10 2.10 1.43 4.81 

L=0.3s PID 93.93 0.90 12.20 4.41 35.28 

ABC -PID 44.87 1.00 7.50 2.78 15.12 

APID 15.58 1.00 5.70 1.85 14.10 

ABC -APID 0.17 2.50 2.10 1.47 5.22 
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Fig. 5.1 (a) Response of second order linear process for L=0.2s, minimization of IAE+ITAE 
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Fig. 5.1 (b) Response of second order linear process for L=0.3s, minimization of IAE+ITAE 

 

 

 

 

 

Fig. 5.1 (c) Response of second order linear process for L=0.2s, minimization of IAE 
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Fig. 5.1 (d) Response of second order linear process for L=0.3s, minimization of IAE 

 

5.6.2 First Order with Integrating Process 

Transfer function of the process is given by 

)1(/)( +=
−

ssesG
Ls

p  (5.8) 

Response of first order integrating process in (5.8) with L=0.2s, and L=0.3s under PID, ABC-

PID, APID, and ABC-APID is shown in Fig. 5.2. Performance indices of the process in (5.8) 

for different controllers are given in Table 5.3 (a) and Table 5.3 (b). Though the controller are 

tuned for L=0.2s, a higher value i.e., L=0.3s is also tested without changing controllers 

settings (for PID and APID). Performance analysis reveals that unlike PID, ABC-PID, and 

APID, ABC-APID is capable of providing acceptable and remarkably improved performance 

during both set point change and load disturbance. 

Table 5.3 (a) -Performance analysis first order integrating process  

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE+ITAE 

 

PID 77.50 1.10 10.20 3.44 27.19 

ABC-PID 60.01 1.10 5.10 2.30 15.44 

APID 28.75 1.40 11.00 2.46 19.44 

ABC -APID 20.83 1.30 13.10 2.25 18.51 

L=0.3s 

PID 102.2 1.20 17.10 5.70 54.79 

ABC -PID 83.44 1.10 8.80 3.35 25.90 

APID 33.80 1.30 11.00 2.68 22.02 

ABC-APID 27.55 1.20 13.40 2.51 21.67 



Artificial bee colony based APID controllers 

90 

 

 

Table 5.3(b) -Performance analysis first order integrating process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.2s  

 

IAE 

 

PID 77.50 1.10 10.20 3.44 27.19 

ABC -PID 59.74 1.10 5.00 2.26 15.44 

APID 28.75 1.40 11.00 2.46 19.44 

ABC-APID 18.84 1.30 17.40 2.25 21.82 

L=0.3s 

PID 102.2 1.20 17.10 5.70 54.79 

ABC -PID 83.44 1.10 9.80 3.35 26.58 

APID 33.80 1.30 11.00 2.68 22.02 

ABC -APID 27.55 1.20 13.40 2.51 21.67 
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Fig. 5.2 (a) Response of first order integrating process for L=0.2s, minimization of IAE+ITAE 
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Fig. 5.2 (b) Response of first order integrating process for L=0.3s, minimization of IAE+ITAE 

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

Time t 

R
e
sp

o
n

se
 y

 exp(-0.2s)/s(s+1)

 

 
PID

ABC-PID

APID

ABC-APID

Fig. 5.2 (c) Response of first order integrating process for L=0.2s, minimization of IAE 
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Fig. 5.2 (d) Response of first order integrating process for L=0.3s, minimization of IAE 

 

 

 

5.6.3 Second Order Nonlinear Process 

)(2.0 2

2

2

Ltuy
dt

dy

dt

yd
−=++                    (5.9) 

Response of second order non linear process in (5.9) with L=0.3s and L=0.4s under PID, 

ABC-PID, APID, and ABC-APID is shown in Fig. 5.3. Performance indices of the process in 

(5.9) for different controllers are given in Tables 5.4(a) and 5.4(b). Though the controller are 

tuned for L=0.3s, a higher value i.e., L=0.4s is also tested without changing controllers 

settings (for PID and APID). We can conclude that unlike PID, ABC-PID, and APID, ABC-

APID is capable of providing acceptable and remarkably improved performance during both 

set point change and load disturbance. 
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Table 5.4 (a) -Performance analysis of second order non-linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

 

IAE+ITAE 

 

PID 66.10 1.40 9.30 4.13 46.60 

ABC-PID 51.96 1.40 5.90 3.14 32.98 

APID 19.18 1.70 10.60 2.95 34.88 

ABC -APID 9.82 1.80 10.40 2.54 29.18 

L=0.4s PID 83.11 1.50 13.30 5.78 72.4 

ABC - PID 68.82 1.40 9.90 4.22 48.25 

APID 25.15 1.70 10.80 3.26 39.45 

ABC-APID 1.20 3.10 2.40 2.50 30.01 

 

 

 

 

 

Table 5.4 (b) -Performance analysis of second order non-linear process 

Dead time Objective function Controllers %OS Tr(s) Ts(s) IAE ITAE 

L=0.3s  

 

IAE 

 

PID 66.10 1.40 9.30 4.13 46.60 

ABC-PID 51.93 1.50 7.50 3.39 35.93 

APID 19.18 1.70 10.60 2.95 34.88 

ABC-APID 2.69 2.90 5.60 2.37 27.31 

L=0.4s 
PID 83.11 1.50 13.30 5.78 72.4 

ABC -PID 65.59 1.50 7.50 4.13 46.24 

APID 25.15 1.70 10.80 3.26 39.45 

ABC-APID 4.29 3.40 5.20 2.54 26.07 
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Fig. 5.3 (a) Response of second order non-linear process for L=0.3s, minimization of IAE+ITAE 
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Fig. 5.3 (b) Response of second order non-linear process for L=0.4s, minimization of IAE+ITAE 
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Fig. 5.3 (d) Response of second order non-linear process for L=0.4s, minimization of IAE 

 

5.6.4 pH-Neutralization Process 

For pH-neutralization process we consider following linear model 

2)11.0)(1/()( ++=
−

ssesG
Ls

p                   (5.10) 

Response of pH neutralization process in (5.10) with L=0.01s and L=0.02s under PID, ABC-

PID, APID, and ABC-APID is shown in Fig. 5.4. Performance indices of the process in (5.10) 

for different controllers are given in Tables 5.5(a) and 5.5(b). Though the controller are tuned 

for L=0.01s, a higher value i.e., L=0.02s is also tested without changing controllers settings 

(for PID and APID). We can conclude that unlike PID, ABC-PID, and APID, ABC-APID is 
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Fig. 5.3 (c) Response of second order non-linear process for L=0.3s, minimization of IAE 
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capable of providing acceptable and remarkably improved performance during both set point 

change and load disturbance. 

Table 5.5(a)- Performance analysis for pH-neutralization process 

Dead time(s) Objective Controllers %OS Tr(s) Ts(s) IAE ITAE 

 

L=0.001 

 

 

 

IAE+ITAE 

 

 

PID 64.21 0.26 1.69 0.72 1.40 

ABC-PID 49.54 0.26 1.25 0.54 0.97 

APID 23.94 0.30 1.77 0.53 1.13 

ABC-APID 8.59 0.33 0.59 0.41 0.89 

 

L=0.002 

PID 72.33 0.26 1.78 0.84 1.70 

ABC-PID 56.70 0.26 1.27 0.61 1.12 

APID 28.49 0.30 1.84 0.56 1.18 

ABC-APID 11.74 0.32 1.06 0.44 0.95 

 

 

Table 5.5(b) -Performance analysis for pH-neutralization process 

Dead time(s) Objective function Controllers %OS Tr (s) Ts(s) IAE ITAE 

 

L=0.01 

 

 

 

IAE 

PID 
64.21 0.26 1.69 0.72 1.40 

ABC-PID 
49.53 0.25 1.25 0.54 0.97 

APID 
23.94 0.30 1.77 0.53 1.13 

ABC-APID 
8.59 0.33 0.59 0.41 0.89 

 

L=0.02 

PID 
72.33 0.26 1.78 0.84 1.70 

ABC-PID 
56.7 0.26 1.27 0.61 1.12 

APID 
28.49 0.30 1.84 0.56 1.18 

ABC-APID 
11.74 0.32 1.06 0.44 0.95 
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Fig. 5.4 (b) Response of pH neutralization process for L=0.02s, minimization of IAE+ITAE 
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Fig. 5.4 (a) Response of pH neutralization process for L=0.01s, minimization of IAE+ITAE 
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Fig. 5.4 (c) Response of pH neutralization process for L=0.01s, minimization of IAE 
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Fig. 5.4 (d) Response of pH neutralization process for L=0.02s, minimization of IAE 

 

 

5.7 Conclusion 

In this study we have exhibited how the performance of adaptive PID (APID) controllers is 

enhanced when it is used with the optimal power of bio-inspired algorithm. Here, ABC is said 

to be bio-inspired because of the fact that they depicts how the honey bees are sustained 

biologically. When the conventional controller with the optimal power of ABC are not able to 

provide the satisfactory performances over APID controller, we decided to develop the ABC-

APID respectively in order to get overall improved performance for both set point change as 
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well as load disturbances. We also observed that ABC-APID provides improved performance 

as it provides minimum overshoot & improved rise time & settling time. It also provides 

lower value of IAE & ITAE which indicates that it can track set point and reject load 

disturbance properly.  Initially we have used IAE+ITAE as objective function with a dead 

time. After that the dead time is improved in order to see the robustness of the controller & 

we found the performance is still satisfactory for ABC-APID. We also get the similar 

enhanced performance when we use only IAE as an objective function.  
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6.1 Conclusion 

In this study, we have incorporated four optimization techniques - Genetic algorithm (GA), 

Bacterial foraging optimization (BFO) Particle swarm optimization algorithm (PSO) and 

Artificial bee colony algorithm (ABC) on an already developed adaptive PID (APID) 

controller with a view to (i) overcome its empirical and trial method of choosing  appropriate 

tunable parameters, and (ii) achieving its optimal performance. Here, all the seven tunable 

parameters of the APID controller have been optimized by GA, BFO, PSO or ABC algorithm 

for various types of processes. The derived optimal controllers, GA-APID, BFO-APID, PSO-

APID and ABC-APID are tested through extensive simulation experiments, even with 

increased dead-time for checking robustness. Performances of the optimal controllers (GA-

APID, BFO-APID, PSO-APID and ABC-APID) have been compared with PID, optimized 

PID (GA-PID, BFO-PID, PSO-PID and ABC-PID), and APID. Detailed performance analysis 

revealed that all the GA-APID, BFO-APID, PSO-APID and BFO-APID provide significantly 

improved performances over others, justifying the usefulness of this study.  

 

6.2 Future Scope 

In this study we have used four different optimization algorithms to optimize the parameters 

of the both PID & adaptive PID (APID) controllers for different transfer functions. These 

algorithms are taken on the basis of their convergence rate & runtime. Initially we used 

Ziegler-Nichols (ZN) method to tune the parameters i.e., dip KKK ,,  of the PID controller. 

Now, this tuning can be done by using relay feedback method or Cohen-Coon method instead 

of ZN method which may give improved performance of the controller parameters. 

 While developing GA-APID, PSO-APID, BFO-APID & ABC-APID respectively, we 

have considered range of variables i.e., dip KKK ,, are ±20% of their respective Conventional 

PID, and for the four constants are [ ] [ ] [ ]30,0,5,0,5,0 321 kkk  and [ ]1,04k . Therefore, by increasing 

the range of the variables, we may further improve the performance. 

 Here, we consider only IAE & IAE+ITAE as objective functions with single 

weightage. The performance of the controller may be improved if we increase the weight of 

objective functions. Moreover, when a multivariable process comes into consideration the 

behavior of the controller should changes & then how the algorithms optimize the parameter 

of the controllers is an important phenomenon to observe. Hence, we can modify this study by 

using multivariable process instead of single variable process. 
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 For future aspect we may study the stability of the process when the controller is 

optimized by the algorithm used. This stability analysis can be done by using Bode plot, 

Nyquist criteria etc. 

 We have studied the robustness of the controller by increasing the dead time for each 

transfer function. Now, this robustness can be observed by using Kharitonov polynomials 

which can specific the dead time up to which the controller can show its robustness 

specifically. Finally the performance can be improved by using different optimization 

algorithms.     
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