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Abstract 

 

Problem of non-rigid registration has gained much prominence in the area of bio-

medical image analysis. Recently, such a non-rigid registration problem has been 

modeled as a global optimization problem and was solved using graph cuts. Graph cuts 

based solution is shown to improve the accuracy of the registration results over other 

existing approaches. Incorporation of curvature information in graph cuts based non-rigid 

bio-medical image registration has not been explored considerably. In this thesis, we have 

undertaken a study of showing the impact of curvature in an intensity-based non-rigid 

registration process. At first, we discuss how Mean and Gaussian curvatures can be 

extracted from the brain MRI and retinal images and show appropriate results. Based on 

these curvature values, every pixel in the source and the target images is labeled by one 

of the eight local surface primitives. Then, every pair of corresponding pixels, already 

registered using graph cut based on intensity information only, is checked to see whether 

their local surface primitives also match. If the local surface primitives do not match, then 

a displacement map is generated for every such unmatched pixel in source image. The 

map essentially indicates the local displacement such a source pixel should undergo 

within a small neighborhood to achieve best curvature-wise matching with the 

corresponding target pixel. Experimental results clearly corroborate to the fact that 

intensity based registration cannot completely guarantee curvature-wise best matching. 

 

 

 

 

 



Chapter 1 

 

INTRODUCTION 

 

This chapter provides an overall outline of this thesis. Curvature of an image is 

introduced first in the section 1.2. In section 1.3, the concept of rigid and non-rigid 

registration has been discussed. Finally, the chapter is concluded with an overview of the 

organization of the thesis in section 1.4. 

 

1.1.  Motivation 

The motivation behind the thesis is to analyze whether intensity based non-rigid 

registration can ensure best curvature-wise matching as well. The eventual goal is to 

achieve better registration with both intensity and curvature information. Non-rigid 

registration has gained much prominence in biomedical image analysis. In this thesis, we 

work with brain MRI (Fig. 1.1) and retinal images (Fig 1.2).  

 

       

Fig.1.1. Brain MRI: Datasets 
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Brain MRI data are downloaded from Brainweb [1]. The retinal images are multi-

temporal colored images, captured at different times by using a ZEISS FF 450plus IR 

Fundus Camera with VISUPAC/System 451, which is connected to a JVC digital camera. 

The images were taken at the same visit or at different dates from the patients at the 

Kentucky Lions Eye Center. 

 

Fig.1.2. Brain atlas of MRI 

      
 

Fig.1.3. Retinal colored images 

  

 

1.1. Concept of curvature 

The problem of image registration arises when images of one object are taken for 

example at different times, from different perspectives, and/or different imaging devices. 

The fundamental goal is to combine information and to integrate useful data obtained 
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from the separate images. However, due to spatial distortion of the object under 

consideration, for example, introduced in motion, the same object in different images is 

not directly comparable. The idea of image registration is to geometrically transform 

images in order to compensate for these distortions. 

In particular in medical domain, the image registration method has a wide area of 

applications. To study about the evolution of pathology of a patient, or to take full 

advantage of the complementary information coming from multimodal imagery [2], 

image registration is very helpful. This registration makes the diagnosis of a patient easier 

for a doctor. As for example, to detect brain tumors, doctors often get misdirected after 

observing scanned brain slice images obtained from imaging devices. Such wrong results 

can lead to wrong treatments for the patients. Detection of such brain tumors demands 

very accurate registration which can be possible if curvature information is introduced in 

existing intensity based greater level accurate Graph-cuts based non-rigid image 

registration [3]. In other case, diabetic retinopathy, a diabetic eye disease, which occurs 

to the retina due to diabetes, can eventually lead to blindness. Detection of such disease 

by analyzing retinal fundus images also requires high accurate image registration [4]. 

From differential geometry, the second order derivative of a curvilinear function 

       i.e. 
   

     represents the curvature of a point on a surface. 

Considering the diagram in Fig. 1.1, at each point on the curve, the direction of 

tangent bends at a certain rate in different directions. A measure of this rate of bending is 

called the curvature and is defined as: 

  |
      

               
| 

          (1.1) 
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Fig.1.4. Definition of curvature 

Now, the curvature information of any pixel in a digital image can be mathematically 

represented by two principle curvatures, namely, the Mean curvature and the Gaussian 

curvature.  For image registration with non-rigid geometry, two corresponding pixels in 

the source and the target images will be more accurately registered if curvature 

information is also considered with their intensity maps. 

 

 

1.2.  Non-rigid registration 

Non-rigid image registration plays an important role in bio-medical image analysis. It 

becomes a challenging problem due to its high degrees of freedoms and inherent 

requirement of smoothness. Image registration is a process for determining the 

correspondence of features between images collected at different times or using different 

imaging modalities. It is mostly used in correction for different patient positions between 

scans [5].  

Image registration has been modeled as an energy minimization problem [5, 6, 7]. 

This optimization was done by using Graph-Cuts algorithms via alpha-expansions [8, 9, 

10]. The dissimilarity measure used in the energy function of this graph-cuts based 

method can incorporate either SAD (Sum of Absolute Difference), SSD (Sum of Squared 

Difference) or MI (Mutual Information) [10]. All of these techniques are used to improve 

the accuracy of the registration outputs as per high requirement in patient diagnosis. One 
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objective is to further improve registration accuracy of such registration methods [11]. 

Another objective is to incorporate higher order term in the energy function representing 

the surface properties of registered images. Though there can be other motives, we shall 

focus on the second objective. 

Generally, image registration is of two types: Rigid registration and Non-Rigid 

registration. In rigid registration, images are assumed to be of objects that simply need to 

be rotated and/or translated with respect to one another to achieve correspondence. 

 

Fig.1.5. Example for Rigid vs. Non-rigid registration 

In sharp contrast, non-rigid image registration cannot achieve correspondence 

between structures in two images, without some localized stretching of the images, either 

through biological differences or image acquisition or both. 
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1.3. Thesis organization 

The thesis is organized into following three chapters: In chapter 2, detailed discussion 

of curvature extraction process is depicted. The chapter also discussed the concept local 

surface primitive class of a pixel in image. In chapter 3, a brief discussion about intensity 

based registration has been introduced. We show the limitations of intensity based 

registration. A curvature based method has been proposed for this solution. Curvature 

based local displacement map is generated for fine tuning of already registered images 

based on only intensity information. The thesis is concluded in Chapter 4 with potential 

directions of future research. 
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Chapter 2 

 

CURVATURE EXTRACTION 

 

In this chapter detail discussions have been provided for the process of curvature extraction 

from a digital image. The chapter starts with fundamental concepts of curvature brought from 

differential geometry in mathematics. Then it is discussed how a pixel of a digital image behaves 

according to its local surface property or its curvature property. These discussions are depicted 

in section 2.1. Section 2.2 gives brief idea about local surface class primitives of a pixel. In the 

last section of the chapter, some graphical results are shown to demonstrate the process of 

extraction of curvature information from a given image. 

 

 

2.1. Definition of curvature 

 It has already been introduced that curvature of an image surface is also very important 

information in image registration process. Earlier, it has been successfully incorporated to detect 

some surface related features as ridges, valleys, thin nets, crest lines etc. from digital images [1]. 

Such features are characterized by points of maximal curvature on the image surface. Likewise, 

in image registration, if it is possible to model the local surface behavior of every pixel of an 

image, then it is necessary to align two images with respect to their local surface behavior along 

with their intensities, to yield more accurate registration. 

 At any point on a surface, the vector that is at right angle to the surface (tangent at that 

point on the surface) is called normal vector on that point. Planes containing the normal vector 

are called normal planes. The intersection of a normal plane and the surface will form a curve 

called a normal section and the curvature of this curve is called the normal curvature (see Fig. 

2.1). For most of the points on the surface, different normal sections will have different 
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curvatures [2]. It demonstrates that curvatures can be represented to characterize a point on any 

surface. 

 

Fig. 2.1. Planes of principal curvatures 

  From the fundamental differential geometry, we know that, second order derivative of a 

curvilinear function,        i.e.  
   

     determines the curvature of a point on a surface[3, 4, 5].  

Consider the following diagram:   

 

Fig.2.2. Definition of curvature 
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At each point on a curve, with equation y = f(x), the tangent line turns at a certain rate 

(Fig. 2.2). A measure of this rate of turning is the curvature: 

                                                       |
      

               
|                                                               (2.1) 

     

 2.1.1. Principal curvature 

  The differential    of the Gauss map f can be used to define a type of extrinsic 

curvature, known as the Shape Operator. At a point on the surface, the eigenvalues of the shape 

operator are called principal curvatures of the surface and the eigenvectors are the corresponding 

principal directions. These eigenvalues and the eigenvectors at each point thus determine how 

the surface bends by different amounts in different directions at each point. 

  Curvature information [13] of any point on a surface can be mathematically 

modeled with two matrices: first fundamental form matrix and second fundamental form matrix.  

 

2.1.2. First fundamental form matrix 

               

    =   (
  
  

)        (2.2) 

  Where E, F, G are the coefficients of first fundamental form matrix, I. 

Illustrative example: 

  Consider a unit sphere represented as: 

          (
        
        

    
) ;                     (2.3) 

  Now,        
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          (
         
        

 
)       (2.4) 

  And    
  

  
  

           (
        
         

     
)       (2.5) 

                         (2.6) 

                    (2.7) 

                    (2.8) 

 So,    (
  
  

) so that | |              (2.9) 

 Where E, F & G are given by eq.(2.6) – eq.(2.8). 

 

2.1.3. Second fundamental form matrix: 

  Consider r = r (u, v) be a regular parameterization of a surface in   . 

  Unit normal vector,  ̂   
     

|     |
 

            ;      
  

  
       (2.10) 

           ;      
  

  
       (2.11) 

           ;      
  

  
       (2.12) 

where L, M, N are the coefficients of second fundamental form matrix, II. 

So,     (
  
  

) so that |  |             (2.13) 

A quadratic equation is formed as:  
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 | |  
                |  |    ; n = 1, 2      (2.14) 

where      are the two principal curvatures of a point on a surface [12]. 

 

2.1.4. Mean Curvature 

 Mean curvature of a point is given by, 

              ;  where   ,    are the roots of eq. (2.14). 

 

2.1.5. Gaussian Curvature 

 Gaussian curvature of a point is defined as: 

          ;  where   ,    are the roots of eq. (2.14). 

These values (H, K) provide the complete curvature information of a point on a surface. 

In this way, for 2D and 3D digital images, every pixel on images can also be 

characterized by its local principal curvatures: Mean and Gaussian curvatures (H, K) [6]. Here, 

for non-rigid image registration, (H, K) curvature extraction is done for Brain MRI images and 

colored Retinal images results. For further details of curvatures please refer [7, 8, 9, 10]. 

 

2.2. Surface Primitives 

 From section 2.1, we have learned to extract the Mean and Gaussian curvature of every 

pixel of an image. Now those curvature values of every pixel determines how much a local 

surface of that pixel, defined in earlier section 2.1, is bent or curved along with its neighbor 

pixels. Based on the (H, K) values whether H-K value is positive or negative or zero, a point or 

pixel on an image surface can also be characterized by some local surface primitives or labels as 

given in Table 2.1. There are three cases of H-value whether it is zero or positive or negative and 

same cases for K-value as well. So there will be total 8 local surface class labels and a „no‟ 
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surface class label or local surface primitives corresponding to 9 possible combinations of 

positivity, negativity and zero of (H, K) values taken together [6]. 

 H<0 H=0 H>0 

K<0 Saddle Ridge Minimal Surface Saddle Valley 

K=0 Ridge Surface Flat surface Valley Surface 

K>0 Peak Surface None Pit Surface 

 

Table 2.1: Local Surface Primitives based on (H, K) [12]. 

From table 2.1, one can have necessary information about the local geometry of a pixel. 

Therefore, in non-rigid image registration, two corresponding pixels between source and target 

images will be curvature-wise aligned if their local surface primitives are properly matched. It 

may happen that two corresponding pixels are matched intensity-wise but their local surface 

primitives are not the same.  

 

2.3. Some statistical results showing extraction of curvature from 

images 

 Datasets which are applied for curvature extraction are taken from Brain MR Images and 

Retinal Images. Mean and Gaussian curvature values of those images are calculated as descripted 

in section 2.2. Some results are shown below in Fig.2.3 - Fig. 2.10. From these graphs, we can 

see that, the mean curvatures are slightly noisy and random whereas the Gaussian curvatures are 

smoother in the neighborhood. 
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                                                  (a)                                                                   (b) 

 Fig.2.3. (a) Mean Curvature plot; (b) Source Image of Brain MRI DataSet1 

 

 

    

                                        (a)                                                                  (b) 

 Fig.2.4. (a) Gaussian Curvature plot; (b) Source Image of Brain MRI DataSet1 
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(a)                                                                      (b) 

 Fig.2.5. (a) Mean Curvature plot; (b) Floating Image of Brain MRI DataSet3 

 

 

    

                                                   (a)                                                                   (b) 

 Fig.2.6. (a) Gaussian Curvature plot; (b) Floating Image of Brain MRI DataSet3 
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                                         (a)                                                             (b) 

 Fig.2.7. (a) Mean Curvature plot; (b) Source Image of Retinal DataSet1 

 

 

    

                                         (a)                                                             (b) 

 Fig.2.8. (a) Gaussian Curvature plot; (b) Source Image of Retinal DataSet1 
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                                        (a)                                                                 (b) 

 Fig.2.9. (a) Mean Curvature plot; (b) Floating Image of Retinal DataSet2 

 

    

                                         (a)                                                             (b) 

 Fig.2.10. (a) Gaussian Curvature plot; (b) Floating Image of Retinal DataSet2 

            It can be observed that, the Mean curvature values range from -5 to +5 approximately 

whereas the Gaussian curvature values range from -20 to +20. This shows these values can have 

negative as well as positive values. If both the curvature values of a pixel become zero, then it 

can be deemed as locally flat surface.  
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             Some statistical histograms are shown below for above mentioned datasets. In each 

histogram, the no. of pixels belong to a certain surface class primitive is plotted along y-axis and 

label assignments are plotted along x-axis. The labels represent the following surface classes as 

given in Table 2.2. 

 

Label Assignment (H, K) values Surface Class 

1 H>0 ; K>0 Pit Surface 

2 H<0 ; K>0 Peak Surface 

3 H=0 ; K>0 None 

4 H>0 ; K<0 Saddle Valley 

5 H<0 ; K<0 Saddle Ridge 

6 H=0 ; K<0 Minimal Surface 

7 H>0 ; K=0 Valley Surface 

8 H<0 ; K=0 Ridge Surface 

9 H=0 ; K=0 Flat Surface 

 

Table 2.2: Label Assignments based on Surface Classes 

              According to Table 2.2, the pixels which have H>0 and K>0 for example will belong to 

„Pit surface‟ class and have to be assigned label „1‟. Similarly, other pixels are assigned 

corresponding labels of their corresponding surface class belongingness based on their (H, K) 

values. In each histogram, shown below in Fig. 2.11 – Fig.2.14, most pixels belong to label „1‟, 

„3‟, „4‟ & „5‟ corresponding to „Pit Surface‟, „Peak Surface‟, „Saddle Valley‟ & „Saddle Ridge‟ 

respectively. 
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a. Source image of Brain MRI DataSet1 [11] 

     

              (a)                                                                       (b) 

Fig.2.11. (a) Source image of Brain MRI DataSet1[11] ; (b) Histogram showing no. of pixels 

assigned surface class labels for Fig.2.11. (a). 

 

b. Floating image of Brain MRI DataSet3[11] 

    

              (a)                                                                       (b) 

Fig.2.12. (a) Floating image of Brain MRI DataSet3[11] ; (b) Histogram showing no. of pixels 

assigned surface class labels for Fig.2.12a. 
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c. Source image of Retinal Fundus DataSet1 

  

                 (a)                                                                           (b) 

Fig.2.13. (a) Source image of Retinal Fundus DataSet1; (b) Histogram showing no. of pixels 

assigned surface class labels for Fig.2.13. (a). 

 

d. Target image of Retinal Fundus DataSet2 

   

                 (a)                                                                           (b) 

Fig.2.14. (a) Floating image of Retinal Fundus DataSet2; (b) Histogram showing no. of pixels 

assigned surface class labels for Fig.2.14. (a). 
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Chapter 3 

 

IMPACT OF CURVATURE ON NON-RIGID 

REGISTRATION 

In this chapter, detailed discussions are made on impact of curvature on non-rigid image 

registration. We first discuss intensity based non-rigid image registration in section 3.1. In 

section 3.2, the limitations of intensity based image registration are presented showing the 

importance of curvature in image registration. Then a method is proposed as possible solution to 

overcome the limitation of intensity based registration in section 3.3. In section 3.4, we show the 

experimental results obtained for datasets of Brain MRI images and Retinal images. The chapter 

concludes with quantitative and qualitative analysis of the results obtained in section 3.4. 

 

 

3.1. Introduction: 

Image registration is a process of spatial transformation of different sets of data into one 

coordinate system to find the relations between positions in one image with the corresponding 

positions in one or more other images. One of the scanned images is called as source image or 

reference image and the other images are called target images. Images can be taken from 

different sensors, different times, different depths and different viewpoints. The correspondences 

can be used to change the appearance-by rotating, translating, stretching etc. – of one image so it 

more closely resembles another so that the pair can be directly compared, combined or analyzed 

[13, 14]. 
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An image registration algorithm can be decomposed into three components: 

a)   The similarity measure of how well two images match 

b)   The transformation model, which specifies the way in which the source image can be 

changed to match the target. A number of numerical parameters specify a particular 

instance of the transformation. 

c)   The optimization process that varies the parameters of the transformation model to 

maximize the matching criterion [15, 16]. 

 

 

3.2. Intensity based non-rigid registration 

We now discuss intensity based image registration. This type of registration 

matches intensity patterns in each image using mathematical or statistical criteria [1]. 

They utilize a measure of intensity similarity between the source and target images and 

adjust the optimal transformation by maximizing the similarity measurement [2]. This 

results in most similar images after correct optimal registration [19, 20, 21].  

 

3.2.1 Measures of similarity 

Measures of similarity have included squared differences in intensities, 

correlation co-efficient, measures based on optical flow, and mutual information. Some 

of such measures [1] are detailed below: 

(a) Sum of squared differences (SSD) 

It is defined as: 

                                              
 

 
∑     )       )))                                      (3.1) 
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           Registered images here differ only by Gaussian noise. It is sensitive to small 

number of voxels that have very large intensity differences. It is suitable for mono-modal 

image registration [1]. 

(b) Correlation Co-efficient 

It is defined as: 

                                                        
∑     )  ̅       ))  ̅) 

√∑     )  ̅)  ∑       ))  ̅)   
                                    (3.2) 

             Registered images have linearity intensity relationship and objects of interest are 

in the field of view of both images. Segmentation of interesting features is often 

necessary for registration using this kind of similarity measure. It is used in single-modal 

image registration. 

(c) Correlation ratio 

Correlation ratio is defined as: 

                                                        
 

  
∑     

 
                                                 (3.3) 

             The correlation ratio assumes a functional relationship between intensities. It can 

be defined in terms of sums and sums of squares of source voxels that correspond to a 

number    of iso-intense voxels in that target image. 

(d) Mutual information 

It is defined as: 

                                                                                                             (3.4) 

            It assumes only a probabilistic relationship between intensities. It is defined in 

terms of entropies of the intensity distribution [2]. 

(e) Normalized Mutual Information 

It is defined as: 
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                                                    (3.5) 

            It can be proposed to minimize the overlap problem seen occasionally with 

mutual information [17, 18]. 

            In all these cases, T(X) is the intensity at a position x in an image.  

            S(t(x)) is the intensity at the corresponding point given by the current estimate of 

the transformation t(x). 

            N is the number of voxels in the region of overlap. 

 

 

3.2.2. Optimization 

Optimization refers to the manner in which the transformation is adjusted to 

improve the image similarity. A good optimizer is one that reliably and quickly finds the 

best possible transformation.  

In non-rigid registration applications, choosing or designing an optimizer can be 

difficult because the more non-rigid (or flexible) the transformation model, the more 

parameters are generally required to describe it [3, 4]. For the optimizer this means that 

more time is required to make a parameter choice and that there is more chance of 

choosing a set of parameters, which result in a good image match [5, 6]. 

The method of image registration finds optimal transformation,  , which spatially 

matches a floating image,   ,to the reference image,   , based on some measure of 

intensity dissimilarity,          )) where,    and     are intensities of floating image and 

reference image respectively. A registration problem can be mathematically defined as: 

                                                                         ))                                 (3.6) 
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Where     ) denotes the transformed floating image. 

A regularization term is often added to Eq. (3.6) to ensure smooth transformations 

[7]. Thus, we can write:  

                                                                         ))       )                 (3.7) 

The term    ) in Eq. (3.7) is called the smoothness penalty and   is a constant 

representing the amount of penalty. In case of non-rigid transformation, the pixels in the 

floating image can move more freely. Therefore, a deformation vector field, D, is used to 

represent the transformation T. So, Eq. (3.2) can be written as: 

                                                                         ))       )                (3.8) 

There exist several problems with these choices for the data term. Firstly, 

displacement labels to the pixels in the floating image cannot be directly assigned from 

the above dissimilarity measures. Secondly, this way of choosing labels often fails to 

impose strict penalty in the data term for intensity mismatches. Thirdly, change in 

illumination between the floating and the reference image pair cannot be properly 

handled. The above goals can be achieved by using a novel function defined as below: 

                                                             ))   ⌊     ∑ ‖       )‖   )⌋                (3.9) 

SAD (Sum of absolute difference) is directly used in eq. (3.9) as a measure of intensity 

dissimilarity. In Eq. (3.9), x denotes a pixel in the floating images X. Low displacement 

labels, which indicate more probable motions, need to be assigned to the pixels in the 

floating image where the intensity differences with the pixels in the reference image are 

small and vice-versa. Firstly, using Eq. (3.9), the labels can be directly assigned from the 

corresponding values of C. Secondly, the exponential function enforces strict penalty by 

assigning low labels in the data term to pixels in the floating image having small intensity 

difference with pixels in the reference image. The floor function is used to ensure integer 

labels. Since we want to assign lower labels (l) for better matches and for all l,⌊ ⌋    ⌈ ⌉, 

a floor function is a better choice over a ceiling function. Table 3.1 illustrates the above 
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concepts.  

 

∑ ‖       )‖
   

          )) Label 

0 1 1 

1 2 2 

2 8 8 

3 20 20 

 

Table 3.1: Label Assignments from Eq. (3.9) 

When ∑ ‖       )‖   exceeds 3, we still assign the corresponding label to be 

20. We restrict correspondences between pixels in the floating and reference images by 

imposing strict limits to intensity differences between them. Hence, this type of label 

assignment increases the registration accuracy. Notably, change in illumination between 

two images essentially causes a shift in their intensity patterns. Hence, in case of image 

pairs with considerable change of illumination, only large labels will be assigned even if 

the change in intensity due to motion is small. As a result of this incorrect label 

assignment, registration accuracy gets adversely affected. So the equation (4) is modified 

by incorporating a term to capture the changes in illumination between a floating and a 

reference image in the following manner:  

                                  ))   ⌊   (∑ ‖       )‖             )))⌋                 (3.10) 

                                Where          )) =     ∑ ‖       )‖   )                           (3.11) 

Minimum SAD in equation (3.11) for each pixel in the reference image is 

calculated over its local neighborhood, and is used to establish better correspondence 

between the reference and the floating images. Using equations (3.10) and (3.11), we 

reduce the difference in intensity between the floating and the reference images caused 

by change of illumination. So, more accurate labels can be assigned and better 
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registration accuracy can be achieved. The smoothness penalty is imposed based on the 

concept of label consistency using MRF [11] and is given by: 

                                         )  ∑ ‖   )     )‖         )                                     (3.12) 

Where N(x) denotes the neighborhood of the pixel x. The energy function   of the graph 

cuts based optimization is given by [11]: 

 

                                       ∑   (  )   ∑          )         )                            (3.13) 

Where    is the data term,    is the smoothness term and      ) denotes the 

intensity of the pixel p (q). The optimal transformation (D*) for non-rigid registration in 

Eq. (3.8) is similar to the graph cuts-based energy function (  ) [22, 23] in Eq. 

(3.13).Graph cuts with α–expansion [8, 9] is employed to obtain optimal transformation 

through the assignment of multiple displacement labels. We directly apply the above 

equations for registration of brain images. For the colored retinal images, we treat red 

(R), green (G) and blue (B) components separately [10, 11]. So, three optimal 

transformations DR *, DG* and DB* for the R, G and B components are obtained. Three 

separately registered images using DR*, DG* and DB* are then generated. Finally, a test 

image is employed to obtain the composite non-rigidly registered image from these three 

components. 

 

 

3.3. Shortcomings of intensity based registration 

In the preceding section 3.1, it is shown how non-rigid image registration is being 

carried out based on intensity pattern between source and target images. But a very 

important shortcoming of intensity based non-rigid image registration is avoiding 

curvature information of a pixel in an image.  
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3.3.1. Registration accuracy  

In earlier sections, we have seen the behavior of curvature information of every 

pixel in image. Matching of intensities between two images thus no longer gives us the 

most accurate registration results. The errors remained in intensity based registration can 

further also be rectified by incorporating the curvature information of every pixel in 

image. 

Obviously, intensity based registration gives us maximum matching between two 

images. However, we have come across pixels, which are already registered intensity-

wise, can differ in their curvature values. One possible reason of this behavior could be 

the lack of explicit use of curvature information in the intensity based registration 

process. It may happen in some cases that, two corresponding pixels are having, for an 

example, flat surface and ridge surface (based on local surface behavior of a pixel) but 

their intensities are same. That will lead us to improper registration results. So, curvature 

information should be incorporated along with intensity of each pixel in image during 

non-rigid image registration to enhance the registration accuracy. 

 

3.3.3. Adaptive window size 

We know that in non-rigid image registration, the pixels in floating image can 

move freely. So, a window of size 31×31 has been used to determine how much 

displacement of pixels take place through this window. This is used to make the 

registration more error free and accurate which is the high demand in biomedical 

applications. But the displacement of pixels is not uniform throughout the images. 

Therefore, an adaptive window size should be introduced to fix dynamically the size of 

window according to the displacements of pixels in different regions of images. 
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3.4. Possible improvements using curvature 

As discussed in earlier sections, curvature information should be used to achieve better 

registration accuracy. We suggest a method to demonstrate the importance of curvature in 

non-rigid image registration. The schematic of the proposed method is shown below: 

 

 

Fig.3.1. Schematic diagram of the proposed method 

In this method, firstly, the registered image of the registration method [7] along 

with source image [7] is taken as input images. This registered image obtained from 

method [7] is taken as target image for further curvature based registration process. Mean 

and Gaussian curvatures of every corresponding pixels in source and target image is 

obtained as discussed earlier. Then local surface primitives are checked between 

corresponding pixels. If the surface primitive do not match, then a local displacement 

matrix is generated based on the Mean and the Gaussian curvature information for every 

pixel in its neighborhood. Based on this local displacement matrix, every pixel is 

displaced to its correct position. In this way, the target images are registered with the 

source image based on the curvature properties.  
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3.4.1. Curvature extraction of intensity based registered image 

Firstly, a source image from Brain MRI [12] or Retinal image datasets and the 

corresponding registered image, obtained via non-rigid image registration method [7], as 

the target image are taken as inputs. Then Mean and Gaussian curvature values are 

obtained for every corresponding pixel in the source and the target images. The method 

of extraction of Mean and Gaussian curvature has already been discussed in Chapter 2. 

Those curvature values are denoted as (H, K) values where H = Mean curvature and K = 

Gaussian curvature. Some graphs showing the curvature extraction have been shown in 

Chapter 2, section 2.3. 

 

3.4.2. Local displacement matrix generation 

We have estimated (H, K) values of every corresponding pixel in target image. 

a. Local surface primitive 

Based on the Table 2.1 and the curvature values obtained, every pixel in target 

image are labeled according to their local surface primitives. Then these surface 

primitives between corresponding pixels are compared if they are same or not. If same 

then they belongs to same neighborhood and same surface primitive class. But if they are 

not same, then their curvature difference are compared which is discussed in the 

succeeding sub-section. 

b. Curvature difference metric 

When the corresponding pixels belong to same local surface primitive class, then 

a difference metric is used to determine curvature difference between each corresponding 

pixels in source and target images. The metric is given by: 

            √                )                  )           (3.14) 
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Where (       ,       ) and (               ) are corresponding (H, K) values of source 

and target image respectively. 

c. Thresholding 

The curvature difference metric thus give us curvature difference values between 

source and target images. Then thresholding of those curvatures is done with a chosen 

threshold value. The pixels below this threshold are the points of interest. Local 

displacement will have to generate for those interested points.  

This curvature difference metric between two corresponding pixels is then 

checked if they are equal or not. If they are checked to be equal then these two 

corresponding pixels are properly aligned based on curvature. But if they differ in 

curvature metric, then a local first order neighborhood is chosen for each pixel.  

d. Local displacement map 

In the chosen local neighborhood of 8 neighbors, differences in curvature between 

the pixel in target image and its neighbors are calculated. So, a 3×3 matrix containing 

local curvature differences in the neighborhood is obtained.  

Fig.3.2. Schematic of Local displacement matrix generation 
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In the matrix, the position with minimum curvature difference is found. Now, if 

two corresponding pixels are found to have minimum curvature difference, then no 

displacement is required. Otherwise, the target pixel is displaced to the position with 

minimum curvature difference. This matrix so generated is called the local displacement 

matrix. The position where minimum difference is found will then represent the required 

local displacement of the pixel in the target image. We can observe that, more curvature 

difference for a pixel requires more local displacement whereas less curvature difference 

requires less local displacement for that pixel. 

 

 

3.5. Experimental Results 

The flowing table 3.2 demonstrates the comparative results between the method 

[7] and the proposed method. The number of pixels in registered image from method [7] 

which are matched with source based on curvature values is calculated. Then after 

creating local displacement matrix according to the proposed method, number of matched 

pixels based on curvature difference is obtained. So, the number of pixels, which are 

aligned based on curvature information, can be obtained. For Brain MRI datasets, 

maximum of 2430 pixels (3.7% of the image pixels) were not registered properly in 

method [7]. On other way, maximum of 34271 pixels (52.29% of image pixels) were not 

registered properly in method [7]. This no. of pixels can be properly aligned based on 

curvature. 

3.5.1. Results for Brain MRI Datasets 

a. Quantitative results 

      = No. of pixels matched with intensity after registered via intensity based 

registration method [7]. 
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     = No. of pixels matched with curvature after creating local displacement 

matrix in the proposed curvature based method. 

         = No. of pixels aligned with local displacement map in the proposed 

method to improve registration accuracy. 

Datasets                     

DataSet1 61018 63272 2430 

DataSet2 65529 65536 0 

DataSet3 64592 64944 596 

DataSet4 65271 65310 226 

DataSet5 64764 64141 395 

Table 3.2: Comparison between method [7] & proposed method based on no. of 

pixels in Brain MRI [24] images registered with intensity & curvature 

b. Qualitative results 

The output registered images of our proposed method for Brain MRI datasets are 

shown and compared with their corresponding and floating image counterparts. 

Dataset 1 

    

(a)                  (b)                         (c)                  (d) 

Fig. 3.3: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] 

(d) Registered image of proposed method. 
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Dataset 2 

       

(a)                    (b)                         (c)                  (d) 

Fig. 3.4: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 

Dataset 3 

         

(a)                   (b)                         (c)                  (d) 

Fig. 3.5: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 

Dataset 4 

         

(a)                 (b)                         (c)                  (d) 

Fig. 3.6: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 
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Dataset 5 

         

(a)                 (b)                         (c)                  (d) 

Fig. 3.7: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] 

(d) Registered image of proposed method. 

 

3.5.2. Results for Retinal colored images 

 

a. Quantitative results 

                        = No. of pixels matched with intensity after registered 

via intensity based registration method [7] for red, green and blue components of colored 

Retinal image respectively. 

                     = No. of pixels matched with curvature after creating 

local displacement matrix in the proposed curvature based method for red, green and blue 

components of colored Retinal image respectively. 

                     = No. of pixels aligned with local displacement map in the 

proposed method red, green and blue components of colored Retinal image respectively 

to improve registration accuracy. 
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Datasets                                                                   

DataSet1 55913 61144 49572 35982 38345 36875 16207 14792 25287 

DataSet2 59902 53506 56148 62931 59968 61341 2705 5851 4418 

DataSet3 37704 39369 57469 44558 42563 54715 23178 26923 12966 

DataSet4 10574 34881 10392 32106 43716 32894 34342 22206 34271 

DataSet5 20003 37683 12065 35192 44424 33818 30903 21705 32726 

 

Table 3.3: Comparison of method [7] and proposed method based on no. of pixels in 

Retinal fundus images registered with intensity & curvature. 

 

b. Qualitative results 

The output registered images of our proposed method for Retinal image datasets are 

shown and compared with their corresponding and floating image counterparts. 

Dataset 1 

    

(a)                    (b)                         (c)                  (d) 

Fig. 3.8: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 
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Dataset 2 

    

(a)                     (b)              (c)                  (d) 

Fig. 3.9: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 

Dataset 3 

     

(a)                    (b)                         (c)                  (d) 

Fig. 3.10: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 

Dataset 4 

    

(a)                    (b)                         (c)                  (d) 

Fig. 3.11: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 
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Dataset 5 

     

(a)                    (b)                         (c)                  (d) 

Fig. 3.12: (a) Source image ; (b) Floating image ; (c) Registered image of method [7] (d) Registered 

image of proposed method. 

Average execution times for registering a brain image and a retinal image are 4 min and 

12 min respectively for our proposed method on a typical desktop with Intel (R) Core 

(TM) i3-3210 processor with a speed of 3.20 GHz and 4.00 GB of memory and 64-bit 

Operating System. 

 

 

3.6. Analysis of Results 

We now analyze the results obtained in the previous section. Both quantitative 

and qualitative analyses are included. 

 

 3.6.1. Quantitative analysis 

From the quantitative analysis through Table 3.2.a and Table 3.2.b, we can 

observe that, there are some pixels which were not properly registered in the registration 

method [7]. Those pixels have to be properly registered with their curvature properties. 

That has been showed in the table how many pixels need to be aligned in our proposed 
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method. This clearly demonstrates that our proposed method is supposed to give better 

results than the registration method [7] based on curvature information. 

The output registered images for all the 5 datasets of Brain MRI images [24] and 

5 datasets of Retinal colored images obtained from the proposed method has been shown 

in section 3.4.1 and section 3.4.2. These shows the qualitative results of the proposed 

method.  
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Chapter 4 

 

Conclusions and Future Directions 

 

In this chapter, the conclusions of the research work have been provided with key 

contributions of my work in this thesis. The probable future scopes of research are 

mentioned at the end of this chapter. 

 

4.1. Conclusions: 

The problem of non-rigid bio-medical image registration has become nowadays a very 

challenging problem due to its high degrees of freedoms and inherent requirement of 

smoothness. Due to high demand in high registration accuracy as for example in bio-

medical applications such as brain tumor detection, the intensity based non-rigid image 

registration leave errors to some extent which are further need to be rectified. This thesis 

provides a direction towards possible improvement of intensity based non-rigid 

registration by incorporating curvature information of pixel in an image. 

The proposed method introduces the fundamental concepts of Mean and Gaussian 

curvature of a pixel in image and its relation to the non-rigid registration. The method 

generates a Local Displacement Matrix (LDM) for every pixel in target image for fine 

tuning of intensity based registration based on Mean and Gaussian curvature information 

after labeling every pixel according to its local surface primitive class. A SSD (Sum of 

Squared Differences) metric has been used here for obtaining differences in curvature 

values between corresponding pixels in source and target images.  
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Experimental results, both in quantitative and qualitative way, demonstrate the 

importance of curvature in no-rigid intensity based image registration. The method shows 

the possibility of achieving better registration accuracy as well as less execution time. 

 

 

4.2. Future directions: 

The thesis proposed a method to demonstrate the importance of curvature in non-rigid 

image registration. This ensures that curvature should be undoubtedly incorporated in 

non-rigid image registration. Now, we have to focus on the compatible mathematical 

modeling of curvature information so that it can be incorporated inside the data term of 

the energy function required for Graph-Cuts based Optimization. In future, this 

optimization should have to be implemented using Graph-Cuts Optimization. After 

achieving this goal, other sub research objectives can also be future research direction 

such as creation of adaptive window size to enhance execution speed of the registration 

method. 

 

 



Appendix A 

 

Matlab Code Implementation for Histogram Generation 

%------------Matlab Code for Histogram generation showing curvature 

%variation among pixels in source and target images------------------------ 

  

a=imread('source1.jpg'); 

b=imread('target2.jpg'); 

aa=double(a); 

bb=double(b); 

c=zeros(256+30); 

for i=16:271 

    for j=16:271 

        c(i,j)=bb(i-15,j-15); 

    end 

end 

cc=zeros(256+30); 

for i=16:271 

    for j=16:271 

        cc(i,j)=b(i-15,j-15); 

    end 

end 

  

%----------------curvature computation of Source1------------- 

  

[hsource,ksource] = curvature_extraction(aa); 

  

%----------------curvature computation of Registered---------- 

  

[htarget,ktarget] = curvature_extraction(c); 

 

%------------------------labeling of source according curvature classes---- 

hksource_label = zeros(256); 

for i = 1:256 

    for j = 1:256 

        if(hsource(i,j) > 0) && (ksource(i,j) > 0) 

            hksource_label(i,j) = 1; 

        else if(hsource(i,j) < 0) && (ksource(i,j) > 0) 

            hksource_label(i,j) = 2; 

        else if(hsource(i,j) == 0) && (ksource(i,j) > 0) 

            hksource_label(i,j) = 3; 
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        else if(hsource(i,j) > 0) && (ksource(i,j) < 0) 

            hksource_label(i,j) = 4; 

        else if(hsource(i,j) < 0) && (ksource(i,j) < 0) 

            hksource_label(i,j) = 5; 

        else if(hsource(i,j) == 0) && (ksource(i,j) < 0) 

            hksource_label(i,j) = 6; 

        else if(hsource(i,j) > 0) && (ksource(i,j) == 0) 

            hksource_label(i,j) = 7; 

        else if(hsource(i,j) < 0) && (ksource(i,j) == 0) 

            hksource_label(i,j) = 8; 

            else 

            hksource_label(i,j) = 9; 

            end 

            end 

            end 

            end 

            end 

            end 

            end 

        end 

    end 

end 

 

%------------------------labeling of target according curvature classes---- 

hktarget_label = zeros(256+2); 

for i = 1:256 

    for j = 1:256 

        if(htarget(i,j) > 0) && (ktarget(i,j) > 0) 

            hktarget_label(i+1,j+1) = 1; 

        elseif(htarget(i,j) < 0) && (ktarget(i,j) > 0) 

            hktarget_label(i+1,j+1) = 2; 

        else if(htarget(i,j) == 0) && (ktarget(i,j) > 0) 

            hktarget_label(i+1,j+1) = 3; 

        else if(htarget(i,j) > 0) && (ktarget(i,j) < 0) 

            hktarget_label(i+1,j+1) = 4; 

        else if(htarget(i,j) < 0) && (ktarget(i,j) < 0) 

            hktarget_label(i+1,j+1) = 5; 

        else if(htarget(i,j) == 0) && (ktarget(i,j) < 0) 

            hktarget_label(i+1,j+1) = 6; 

        else if(htarget(i,j) > 0) && (ktarget(i,j) == 0) 

            hktarget_label(i+1,j+1) = 7; 

        else if(htarget(i,j) < 0) && (ktarget(i,j) == 0) 

            hktarget_label(i+1,j+1) = 8; 

            else 
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            hktarget_label(i+1,j+1) = 9; 

            end 

            end 

                                %end 

            end 

            end 

            end 

            end 

        end 

    end 

end 

 

%---------------------Histogram generation--------------------------------- 

source_surface_label_matrix = zeros(1,65536); 

target_surface_label_matrix = zeros(1,65536); 

for i = 1:256 

    for j = 1:256 

        source_surface_label_matrix(1,256*(i-1)+j) = hksource_label(i,j); 

        target_surface_label_matrix(1,256*(i-1)+j) = hktarget_label(i+1,j+1); 

    end 

end 

  

figure; hist(source_surface_label_matrix,9);title('Histogram for local surface primitive of 

Source') 

xlabel('Local Surface Label Assignment'); 

ylabel('No. of points'); 

figure; hist(target_surface_label_matrix,9);title('Histogram for local surface primitive of 

Target') 

xlabel('Local Surface Label Assignment'); 

ylabel('No. of points'); 
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Matlab Code Implementation for Curvature Extraction 

%------------Matlab Code for Curvature Extraction-------------------------- 

  

function [h,k] = curvature_extraction(input_image) 

  

x = 1:1:256; 

y = 1:1:256; 

Z(1:256,1:256) = 0; 

[X,Y] = meshgrid(x,y); 

for i = 1:256 

    for j = 1:256 

        Z(i,j) = input_image(i,j,1); 

    end 

end 

k = gcurvature(X,Y,Z); 

h = mcurvature(X,Y,Z); 

 

%--------------Matlab Code for Gaussian Curvature extraction--------------- 

  

function gc = gcurvature(x,y,z) 

  

[xu,xv]     =   gradient(x); 

[xuu,xuv]   =   gradient(xu); 

[xvu,xvv]   =   gradient(xv); 

  

[yu,yv]     =   gradient(y); 

[yuu,yuv]   =   gradient(yu); 

[yvu,yvv]   =   gradient(yv); 

  

[zu,zv]     =   gradient(z); 

[zuu,zuv]   =   gradient(zu); 

[zvu,zvv]   =   gradient(zv); 

  

for i=1:(size(z,1)) 

    for j=1:(size(z,2)) 

        Xu          =   [xu(i,j) yu(i,j) zu(i,j)]; 

        Xv          =   [xv(i,j) yv(i,j) zv(i,j)]; 

        Xuu         =   [xuu(i,j) yuu(i,j) zuu(i,j)]; 

        Xuv         =   [xuv(i,j) yuv(i,j) zuv(i,j)]; 

        Xvv         =   [xvv(i,j) yvv(i,j) zvv(i,j)]; 

        E           =   dot(Xu,Xu); 

        F           =   dot(Xu,Xv); 

        G           =   dot(Xv,Xv); 
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        m           =   cross(Xu,Xv); 

        n           =   m/sqrt(sum(m.*m)); 

        L           =   dot(Xuu,n); 

        M           =   dot(Xuv,n); 

        N           =   dot(Xvv,n); 

        gc(i,j)      =   ((L*N)-M^2)/((E*G)-F^2); 

    end 

end 

 

%-----------Matlab Code for Mean Curvature Extraction---------------------- 

  

function gm = mcurvature(x,y,z) 

  

[xu,xv]     =   gradient(x); 

[xuu,xuv]   =   gradient(xu); 

[xvu,xvv]   =   gradient(xv); 

  

[yu,yv]     =   gradient(y); 

[yuu,yuv]   =   gradient(yu); 

[yvu,yvv]   =   gradient(yv); 

  

[zu,zv]     =   gradient(z); 

[zuu,zuv]   =   gradient(zu); 

[zvu,zvv]   =   gradient(zv); 

  

for i=1:(size(z,1)) 

    for j=1:(size(z,2)) 

        Xu          =   [xu(i,j) yu(i,j) zu(i,j)]; 

        Xv          =   [xv(i,j) yv(i,j) zv(i,j)]; 

        Xuu         =   [xuu(i,j) yuu(i,j) zuu(i,j)]; 

        Xuv         =   [xuv(i,j) yuv(i,j) zuv(i,j)]; 

        Xvv         =   [xvv(i,j) yvv(i,j) zvv(i,j)]; 

        E           =   dot(Xu,Xu); 

        F           =   dot(Xu,Xv); 

        G           =   dot(Xv,Xv); 

        m           =   cross(Xu,Xv); 

        n           =   m/sqrt(sum(m.*m)); 

        L           =   dot(Xuu,n); 

        M           =   dot(Xuv,n); 

        N           =   dot(Xvv,n); 

        gm(i,j)     =   ((E*N)+(G*L)-(2*F*M))/(2*(E*G)-F^2); 

    end 

end 
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Matlab Code Implementation for Proposed  method 

%-----Matlab Code for Calling the Proposed method function----------------- 

  

expsumon; 

  

proposed_method; 

 

 

%---Matlab Code implementation of Intensity Based Non-rigid Image Registration 

(function: expsumon) -------------- 

  

a=imread('source1.png'); 

b=imread('floating2.png'); 

%aa=20*double(a); 

%bb=20*double(b); 

aa=double(a); 

bb=double(b); 

c=zeros(256+30); 

for i=16:271 

    for j=16:271 

        c(i,j)=bb(i-15,j-15); 

    end 

end 

cc=zeros(256+30); 

for i=16:271 

    for j=16:271 

        cc(i,j)=b(i-15,j-15); 

    end 

end 

  

z=zeros(961,65536); 

for p=1:256 

    for q=1:256 

        yy=zeros(31); 

    for ii=-15:15 

    for jj=-15:15     

        yy(ii+16,jj+16)=abs(aa(p,q)-c(ii+p+15,jj+q+15)); 

    end 

    end 

    mn=min(min(yy)); 

k=zeros(31); 

for i=-15:15 

    for j=-15:15 
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     if((abs(aa(p,q)-c(i+p+15,j+q+15))-mn)<=3)    

        k(i+16,j+16)=floor(exp(abs(aa(p,q)-c(i+p+15,j+q+15))-mn)); 

     else 

       k(i+16,j+16)=20; 

     end 

         

                     

    end 

end 

%for i=1:31 

 %  for j=1:31 

  %     if(k(i,j)>=.13) 

   %         k(i,j)=floor(3.*rand(1)); 

    %    else  

     %        k(i,j)=7+floor(3.*rand(1)); 

      % end  

    %end 

%end 

k=k'; 

k=k(:); 

z(:,256*(p-1)+q)=k; 

    end 

end 

B=ones(65536,1); 

B(1,1)=0; 

s=spdiags(B,1,65536,65536); 

pp=zeros(961,961); 

for i=1:961 

    for j=1:961 

        pp(i,j)=12*abs(i-j); 

    end 

end 

          

  

h = GCO_Create(65536,961);            

GCO_SetDataCost(h,z);    

GCO_SetSmoothCost(h,pp); 

GCO_SetNeighbors(h,s); 

GCO_Expansion(h);                

ss=GCO_GetLabeling(h); 

[E D S]=GCO_ComputeEnergy(h)  

       

       

ss=ss'; 
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d=zeros(1,65536); 

for p=1:256 

    for q=1:256 

l=zeros(31); 

for i=-15:15 

    for j=-15:15 

        l(i+16,j+16)=cc(i+p+15,j+q+15); 

       

    end 

end 

l=l'; 

l=l(:); 

l=l'; 

 d(256*(p-1)+q)=l(ss(256*(p-1)+q)); 

    end 

end 

sumon=zeros(256); 

matchedpixs = 0; 

for i=1:256 

    for j=1:256 

        sumon(i,j)=d(((i-1)*256)+j); 

        if(a(i,j) == sumon(i,j)) 

            matchedpixs = matchedpixs + 1; 

        end 

    end 

end 

sumon=uint8(sumon); 

figure;imshow(sumon),title('Sumon Registration') 

diff=abs(a-sumon); 

m=mean(mean(diff)) 

sd=std(std(double(diff))) 

imwrite(sumon,'sumon_registered2_trial.png'); 

  

  

%---curvature error computation between source and registered----- 

[source_mean_curv,source_gaussian_curv] = curvature_extraction(aa); 

[registered_mean_curv,registered_gaussian_curv] = curvature_extraction(sumon); 

  

mean_curvature_difference_sumon = (abs(source_mean_curv - 

registered_mean_curv)).^2; 

gaussian_curvature_difference_sumon = (abs(source_gaussian_curv - 

registered_gaussian_curv)).^2; 

curvature_error_sumon = sqrt(mean_curvature_difference_sumon + 

gaussian_curvature_difference_sumon); 
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mean_curvature_error_sumon = mean(mean(curvature_error_sumon)) 

std_sumon = std(std(curvature_error_sumon)) 

  

 

% ---------------Matlab Code for Curvature based Non-rigid Image Registration  ----------- 

  

  

a=imread('source1.png'); 

b=imread('sumon_registered2_trial.png'); 

aa=double(a); 

bb=double(b); 

  

c=zeros(256+2); 

for i=2:257 

    for j=2:257 

        c(i,j)=bb(i-1,j-1); 

    end 

end 

  

%----------------curvature computation of Source1-------------------------- 

[hsource,ksource] = curvature_extraction(aa); 

 

%----------------curvature computation of Registered4------------- 

[htarget,ktarget] = curvature_extraction(bb); 

 

%----------------Curvature Difference Matrix Generation-------------------- 

hdiff = zeros(256); 

kdiff = zeros(256); 

sc = zeros(256); 

for p=1:256 

    for q=1:256 

        hdiff(p,q) = abs( hsource(p,q) - htarget(p,q) ); 

        kdiff(p,q) = abs( ksource(p,q) - ktarget(p,q) ); 

        sc(p,q) = hdiff(p,q)*hdiff(p,q) + kdiff(p,q)*kdiff(p,q);  %developing matrix based 

on curvature difference metric 

    end 

end 

sc = sqrt(sc); %square root of curvature difference matrix 

meanval = mean(mean(sc)); 

  

%------------Thresolding of Curvature Difference Matrix with Mean--------------------------

- 

upper_threshold = meanval + 10; %setting upper threshold 
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% th_l = meanval - 5; %setting lower threshold 

correctpix = 0; 

incorrectpix = 0; 

matchedpix = 0; 

for p =1:256 

    for q =1:256 

        if(sc(p,q) <= upper_threshold) 

            correctpix = correctpix + 1; 

        else 

            incorrectpix = incorrectpix + 1; 

            sc(p,q) = 0;    %these upper threshold pixels are discarded. 

        end 

        if(sc(p,q) == 0) 

            matchedpix = matchedpix + 1;  % counting pixels matched with curvature 

        end 

    end 

end 

 

%------------------------Labeling of Source according to Curvature Class--- 

hksource_label = zeros(256); 

for i = 1:256 

    for j = 1:256 

        if(hsource(i,j) > 0) && (ksource(i,j) > 0) 

            hksource_label(i,j) = 1; 

        elseif(hsource(i,j) < 0) && (ksource(i,j) > 0) 

            hksource_label(i,j) = 2; 

        elseif(hsource(i,j) == 0) && (ksource(i,j) > 0) 

            hksource_label(i,j) = 3; 

        elseif(hsource(i,j) > 0) && (ksource(i,j) < 0) 

            hksource_label(i,j) = 4; 

        elseif(hsource(i,j) < 0) && (ksource(i,j) < 0) 

            hksource_label(i,j) = 5; 

        elseif(hsource(i,j) == 0) && (ksource(i,j) < 0) 

            hksource_label(i,j) = 6; 

        elseif(hsource(i,j) > 0) && (ksource(i,j) == 0) 

            hksource_label(i,j) = 7; 

        elseif(hsource(i,j) < 0) && (ksource(i,j) == 0) 

            hksource_label(i,j) = 8; 

            else 

            hksource_label(i,j) = 9; 

        end 

    end 

end 

%------------------------Labeling of Target according to Curvature Class--- 
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hktarget_label = zeros(256+2); 

for i = 1:256 

    for j = 1:256 

        if(htarget(i,j) > 0) && (ktarget(i,j) > 0) 

            hktarget_label(i+1,j+1) = 1; 

        elseif(htarget(i,j) < 0) && (ktarget(i,j) > 0) 

            hktarget_label(i+1,j+1) = 2; 

        elseif(htarget(i,j) == 0) && (ktarget(i,j) > 0) 

            hktarget_label(i+1,j+1) = 3; 

        elseif(htarget(i,j) > 0) && (ktarget(i,j) < 0) 

            hktarget_label(i+1,j+1) = 4; 

        elseif(htarget(i,j) < 0) && (ktarget(i,j) < 0) 

            hktarget_label(i+1,j+1) = 5; 

        elseif(htarget(i,j) == 0) && (ktarget(i,j) < 0) 

            hktarget_label(i+1,j+1) = 6; 

        elseif(htarget(i,j) > 0) && (ktarget(i,j) == 0) 

            hktarget_label(i+1,j+1) = 7; 

        elseif(htarget(i,j) < 0) && (ktarget(i,j) == 0) 

            hktarget_label(i+1,j+1) = 8; 

            else 

            hktarget_label(i+1,j+1) = 9; 

        end 

    end 

end 

 

  

%-----------------------Local displacement matrix-------------------------- 

neighbourhood_size = 9; % Local neighbourhood size = 9 

hsource_copy = zeros(256+2); 

ksource_copy = zeros(256+2); 

  

local_neighbour_index = sqrt(neighbourhood_size); % local neighbourhood window is 3 

by 3 matrix 

local_curv_diff_map = zeros(local_neighbour_index); 

  

for p = 1:156 

    for q = 1:256 

        hsource_copy(p+1,q+1) = hsource(p,q);   % h values of source are copied into 

hsource_copy 

        ksource_copy(p+1,q+1) = ksource(p,q);   % k values of source are copied into 

ksource_copy 

    end 

end 
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displacement_row_position = zeros(1,65536); 

displacement_col_position = zeros(1,65536); 

aligned_pix = 0; 

  

for p = 1:256 

    for q = 1:256 

        if(hktarget_label(p,q) ~= hksource_label(p,q)) 

            if(sc(p,q) ~= 0) % fine tuning i.e curvature alignment is done for unmatched 

pixels 

            for i = -1:1 

                for j = -1:1  % building the local curvature difference map of 3_by_3 matrix in 

the neighbourhood for each pixel in target image 

                    local_curv_diff_map(i+2,j+2) = sqrt( (hsource_copy(p+i+1,q+j+1)-

htarget(p,q)).^2 + (ksource_copy(p+i+1,q+j+1)-ktarget(p,q)).^2 ); 

                end 

            end 

            min_local_diff = min(min(local_curv_diff_map)); % calculating minimum 

curvature difference in the neighbourhood of source pixel 

         

            if(local_curv_diff_map(2,2) == min_local_diff) % checking whether 

corresponding points are having minimum curvature 

                displacement_row_position(1,256*(p-1)+q) = i; % no displacement of those 

points having min curvature difference with their corresponding points 

                displacement_col_position(1,256*(p-1)+q) = j; 

                matchedpix = matchedpix + 1; % counting pixels matched with minimum 

curvature difference 

            else 

                for i = -1:1 

                    for j = -1:1 

                        if(local_curv_diff_map(i+2,j+2) == min_local_diff) % searching for the 

position in the neighbourhood where the pixel finds minimum curvature difference 

                            displacement_row_position(1,256*(p-1)+q) = i; % book keeping of 

pixel positions in the neighbourhood with minimum curvature difference 

                            displacement_col_position(1,256*(p-1)+q) = j; 

                            aligned_pix = aligned_pix + 1; 

                        end 

                    end 

                end 

            end 

            end 

        end 

    end 

end 
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final_matched_pix = 0; 

final_registration = zeros(256); 

for p = 1:256 

    for q = 1:256 

        final_registration(p,q) = c( p+1+displacement_row_position(1,256*(p-1)+q), 

q+1+displacement_col_position(1,256*(p-1)+q)) ; 

    end 

end 

  

final_registration=uint8(final_registration); 

imwrite(final_registration,'final_curvature_register2_trial.png'); 

sc = curvature_difference_metric_function; 

for p = 1:256 

    for q = 1:256 

        if(sc(p,q) == 0) 

            final_matched_pix = final_matched_pix + 1;  % total no of matched pixels after 

this registration 

        end 

    end 

end 

figure;imshow(final_registration),title('Proposed Registration') 

  

%----------------Calculate curvature error between source and registered 

%image--- 

  

[registered_mean_curv,registered_gaussian_curv] = 

curvature_extraction(final_registration); 

  

mean_curvature_difference_proposed = (abs(hsource - registered_mean_curv)).^2; 

gaussian_curvature_difference_proposed = (abs(ksource - registered_gaussian_curv)).^2; 

curvature_error_proposed = sqrt(mean_curvature_difference_proposed + 

gaussian_curvature_difference_proposed); 

  

mean_curvature_error_proposed = mean(mean(curvature_error_proposed)) 

std_proposed = std(std(curvature_error_proposed)) 

  


