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Abstract 
.  

The main notion of this thesis is to identify the cognitive load during a mental 

arithmetic task experiment using fNIRS signals. The first objective is to classify 

the difficulty level and the state of inactivity during the given task. To identify 

the classes, the feature vectors have to undergo all the possible steps of a pattern 

classification problem. In this paper, we have developed a novel Feature 

Selection technique to reduce the dimension of the feature vectors by omitting 

the redundant features. For this purpose, an objective function depending upon 

the class density or likelihood functions is optimized using the well-known 

Differential Evolution algorithm. General type-2 fuzzy classifier is used for 

subsequent classification step. The general type-2 fuzzy classifier is used, as it 

provides additional degrees of freedom in designing membership functions and 

in modelling uncertainties than the normal type-1 fuzzy system, which relies on 

only one membership function. The proposed Feature Selection technique gives a 

satisfactory accuracy results over principal component analysis. The fuzzy 

classifier outperforms the other well-known classifier like support vector 

machine, k-nearest neighborhood. Experimental result reveals that the proposed 

likelihood-based FS induced type 2 fuzzy classifier attains the highest 

classification accuracy (above 90% in each case) as compared to its standard 

competitors. The load of a subject undergoing the experiment is measured at a 

particular class relying upon the mean type- 1 fuzzy value of all feature entities. 

A clear discrimination in concentration level from 16 channels has been observed 

for each distinct feature set. 
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CHAPTER 1      Introduction 

 

 

 

This chapter introduces basic structure of a Brain-Computer 

interfacing system. In section 1.1, BCI systems and different brain 

signal acquisition techniques are discussed. The main goal of the thesis 

work is to detect cognitive load and hence, in section 1.2, the problem 

definition along with the usefulness of such detection is outline. In 

subsequent sections, the motivation and the contribution to the thesis 

are discussed. The chapter is concluded with describing the 

organization of the thesis. 
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1.1 Brain-Computer Interfacing System  

In recent years, development of brain computer interfacing (BCI) [1]-[2] systems has 

gained a considerable amount of importance from scientific communities. BCI 

researchers have put emphasis on modeling and developing systems which will be used 

to create a direct communication medium between brain and outside world without 

involving muscles or peripheral nervous system [3]. In BCI, external visual or auditory 

stimuli are provided to the user and with user‟s intentions; brain signals in terms of 

electric potential or concentration change of hemoglobin in blood vessels of inner tissue 

are generated. These signals are applied for 

o biomedical engineering such as wheel chair [3]-[5], mind-driven motion of robots 

[6]-[8], thought-controlled driving [9]-[10], prosthetic devices [11]-[12] etc.,  

o sleep disorders, neurological diseases and attention monitoring, 

o correlating observable behaviour with recorded brain signals.  

A complete BCI system consists of several steps - a brain-signal acquisition, signal 

pre-processing to remove any noise or artifacts, classification of the signal to understand 

the user‟s intention. At last, classifier output drives external motor or devices such that it 

can work with user‟s command. This type of control systems may be open loop or closed 

loop in nature in which visual or auditory signals are often used as feedback to the user 

for precise operation, for example in motor imagery BCI system [13]. There are two 

types of brain signal acquisition techniques, namely invasive and non-invasive.  



 
CHAPTER 1: INTRODUCTION 

3 | P a g e  
 

1.1.1 Invasive Brain Signal Acquisition 

Invasive BCI [14] techniques are mostly used for repairing damaged sight within 

the brain. As the devices are implanted within the grey matter of the brain by 

neurosurgical approach, it is able to produce high quality brain signals. But due to scar-

tissue build up as the brain matters start to react with the externally implanted devices, 

the signals sometimes become weaker or non-existent in nature [15]. To avoid this 

problem, the partially invasive BCI techniques are often used, in which the devices are 

implanted under the cortex, but outside the grey matter of human brain. 

Electrocorticography (ECoG) [16] is one of the partially invasive BCI techniques by 

which better resolution electrophysiological signals than non-surgical or non-invasive 

BCI can be accumulated. 

1.1.2 Non-Invasive Brain Signal Acquisition 

To avoid surgical approach and high cost, nowadays, non-invasive techniques like 

Electroencephalogram (EEG) [17], functional Near-Infrared Spectroscopy (fNIRS) [18], 

functional Magnetic Resonance Imaging (fMRI) [19] are preferred over invasive 

techniques such as to collect brain signals.  

In EEG, the electrophysiological activities are measures by recording the 

potentials at different electrodes above the scalp due to underlying neuronal activities 

[17]. fMRI is a functional neuro-imaging technique, in which it is assumed that neural 

activities have direct impact over cerebral blood flow. The brain activity is measured by 

detecting the blood-oxygen-level dependent (BOLD) signal [19] which is related to 

https://en.wikipedia.org/wiki/Blood-oxygen-level_dependent
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energy use by brain signals. In case of fNIRS signal, the change of the concentration of 

oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) in the blood vessels of the 

underlying tissues is captured [18]. These non-invasive technique not only help in 

developing BCI systems to assist physically challenged people, but also help in 

developing systems that can be used to measure cognitive load for several applications 

like lie detection [20], attention measurement [21], detection of mental state [22] etc. 

In this thesis work, fNIRS-BCI techniques is used due to the device‟s portability, 

low-expensive, easy to use, susceptibility to noise etc. unlike EEG and MEG or any other 

techniques which depend upon the electrophysiological signals, it is susceptible to 

electrical noises as it is an optical signal based imaging method. In fNIRS technique [18], 

the external infrared (IR) light sources are used to pass the photons through several layer 

of human brain. As blood contains haemoglobin which is carrier for the oxygen in our 

blood-system, some of the photons are back-reflected from the blood vessels of 

underlying tissues and are captures at particularly placed IR detectors above the human 

head. The amount of these photons is dependent upon the concentration of oxy and de-

oxy haemoglobin. The detail mathematical relation between the amount of photons in 

terms of intensity and the concentration measurements are discussed in the subsequent 

chapters. There exist several literatures, which discussed about the promising outcomes 

of fNIRS BCI systems 
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1.2 Cognitive Load Detection Problem 

According to cognitive psychology, cognitive load is defined as the total mental effort 

used during completion of a task. Cognitive load theory was developed out of the study 

of problem by John Sweller in the late 1980s [23]."Cognitive load theory has been 

designed to provide guidelines intended to assist in the presentation of information in a 

manner that encourages learner activities that optimize intellectual performance" 

[24]. Sweller's theory employs aspects of information processing theory to emphasize the 

inherent limitations of concurrent working memory load on learning during instruction. It 

makes use of the schema as primary unit of analysis for the design of instructional 

materials [24]. There exist several literatures in the field of psychology to measure the 

load during metal task [25]. The advantages of such load detection is that it can help in lie 

detection [20], attention detection [21] etc. In this thesis, an approach is introduced to 

measure the cognitive load during a mental arithmetic task [26] experiment from pattern 

recognition‟s perspective. There are namely two objectives to be completed.  

i. The first objective is to classify the difficulty level and the state of inactivity 

during the given task.  

ii. Secondly, the load of a subject undergoing the experiment is measured. 

To identify the classes, the feature vectors have to undergo all the possible steps of a 

pattern classification problem. The work is discussed with sufficient details in subsequent 

chapters. 

https://en.wikipedia.org/wiki/John_Sweller
https://en.wikipedia.org/wiki/Information_processing
https://en.wikipedia.org/wiki/Working_memory
https://en.wikipedia.org/wiki/Schema_(psychology)
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1.3 Motivation Leading to Thesis 

S cientist communities have devoted their research minds in understanding human 

brain since past several decades. It is very hard to understand properly how human brain 

works, interpret what model to learn, how to learn it, when to learn that model etc. 

Though several learning strategies have already been proposed to mimic the learning 

procedure of human brain, it is still an open problem to scientific society. The main 

motivation for starting working in brain signal processing is to understand the human 

brain precisely, to understand the behavior of brain of an Alzheimer patient and thus, will 

be helpful for human society. Also some people having been suffering from cerebral 

palsy, epileptic seizure, improper motor function problem, therefore developing BCI 

systems at low cost, but with faster response and portability will help them in several 

ways for smoother life style. It is also a challenging problem in cognitive load theory to 

detect cognitive load properly as instructional design helps learners to reduce excessive 

amount of mental load during a task [24]. To deal with a complex part of human body, to 

understand its functionality, and in subsequent stages to use this knowledge in developing 

systems for social welfare led me to work in cognitive load detection problem from the 

perspective of pattern recognition. 

1.4 Contribution to the Thesis 

This thesis work aims for the detection of cognitive load on the basis of the 

fuzzified output of the feature vectors. The difficulty level is classified using general 

type-2 [27]-[29] classifier based on the assumption that difficulty level of problems may 

seem different to different subjects. Though the difficulty level of the problems are 



 
CHAPTER 1: INTRODUCTION 

7 | P a g e  
 

defined pre-experimentation, there exists some uncertainties in finding out appropriate 

difficulty level for each problem for each subject taking part in the experiment. The 

general type-2 fuzzy classifier is used, as it provides additional degrees of freedom in 

designing membership functions and in modelling uncertainties than the normal type-1 

fuzzy system, which relies on only one membership function [27]-[29]. 

The second novelty lies in the feature selection (FS) step, where likelihood based 

objective function is designed with necessary mathematical approach. This selection 

technique identifies the most appropriate features from the original feature vector 

depending upon the class conditional density functions by optimizing a cost function 

using Differential Evolution (DE) [30] algorithm. 

1.5 Organization of the Thesis 

Chapter 2: Functional Near-Infrared Spectroscopy 

This chapter introduces us to the fundamentals of fNIRS system, its mathematical 

background and data acquisition technique. Also it describes thoroughly the pre-

processing techniques effectively used to remove noise and artifacts from fNIRS raw 

signals for further subsequent processing during classification problem. 

Chapter 3: Classification and Load Detection 

The main focus of this chapter is to provide a thorough description of the newly 

proposed feature selection technique and Fuzzy type-2 classifier for completion of the 

objective of this thesis work. Also, some well-known dimension reduction technique like 

Principal Component Analysis (PCA) and well-known classifiers like Support Vector 
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Machine (SVM), k-Nearest Neighborhood (k-NN), and Linear Discriminant Analysis 

(LDA) are discussed in context of classification of fNIRS signal classification. 

Chapter 4: Experiment and Analysis 

This chapter deals with all the experiments done in the laboratory. Some new 

features are also proposed and their discriminative natures are discussed with some 

supporting figures. The chapter concludes with the classification accuracy of the 

proposed classifier and comparison of this accuracy with other well-known classifiers 

and their statistical significance. 

Chapter 5: Conclusion 

This thesis work is concluded at chapter 5 by summarizing the complete work and 

some future research scopes to improve the cognitive load detection from pattern 

recognition‟s perspective. 

Appendix A: MATLAB Source Codes 

 Here, the necessary source codes that can be executed in MATLAB environment 

for the proposed methods are given in tabular form. 
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CHAPTER 2          

Functional NIRS 

 

 

 

The main focus of this chapter is to introduce fNIRS method to the 

reader. The fundamental and mathematical background of fNIRS 

systems are discussed followed by signal acquisition technique. Some 

previous related works using fNIRS signal are also described in brief. 

The chapter ended with the discussion of various noises encountered 

during fNIRS signal processing and some techniques to remove those 

artifacts. 

  



 
   CHAPTER 2: FUNCTIONAL NIRS 
 

14 | P a g e  
 

2.1 Fundamentals of fNIRS 

Functional near-infrared spectroscopy (fNIRS) is a neuro-imaging technique, in 

which the change in the optical properties of the underlying tissues of human brain due to 

change in the concentration of oxy-haemoglobin (HbO) and de-oxy-haemoglobin (HbR) 

[1] in the blood vessels of the tissues is assumed to be coupled with the brain activity. 

fNIRS signals have taken a significant amount of importance due to its electrical noise 

susceptibility (as it is an optical signal) in developing BCI systems using motor imagery 

signals taken from motor cortex (for example, driving simulation) to cognitive load 

detection with the help of mental arithmetic (MA) [2] task signals collected from pre-

frontal cortex as it provides us with both spatial and temporal information unlike EEG [3] 

and fMRI [4], which have high values in only one of them. 

The near-infrared spectrum corresponds to the optical wavelength window of 650-

900 nm can penetrate the outer surface of the human brain, including the cranium and the 

various meninges and fluids surrounding the brain [1]. The photons traversed through the 

different layers of scalp, skull, cortical regions and brain fluids undergo several optical 

phenomena like diffusion, scattering, which create a random walking path of them within 

the human head. Some photons are absorbed while a significant amount are back 

reflected from the blood vessels of the tissues, as the concentration change of oxy-

haemoglobin and de-oxy-haemoglobin take place. The back-reflected photons can travel 

up to several centimetres from the original point source location above the human cortical 

surface and are spotted out by suitably placed IR detectors. The changes in the emitted 

light intensity due to change in optical properties of the tissues can be calculated using 
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Beer-Lamberts Law [1], which measures optical density or attenuation (OD) in terms of 

chromophomore concentration ( c ). The corresponding mathematical relation [5] is 

described as, 

 
0

10log ,
I

OD cLB G
I


 

   
 

 (1) 

where, where OD is attenuation, I0 is the incident light intensity (mW), I is the 

transmitted light intensity (mW), α is the specific extinction coefficient (mol
-1

 m
-1

), c is 

the concentration of the chromophomore (mol), L is the distance between the source and 

the detector (m), B is the differential path length factor and G is a term to account for 

scattering losses. 

 Differences in the absorption spectra of HbO and HbR allow the measurement of 

relative changes in haemoglobin concentration through the use of light attenuation at 

multiple wavelengths. Two or more wavelengths are selected, with one wavelength above 

and one below the isosbestic point of 810 nm at which HbO and HbR have identical 

absorption coefficients. The corresponding modified Beer-Lambert‟s Law [6] for 

measuring change of attenuation is expressed linearly in term of change in concentration 

of HbO and HbR as, 

   ,HbO HbO HbR HbROD c c BL       (2) 

where,   is used to indicate the change in the particular parameter value. 

https://en.wikipedia.org/wiki/Isosbestic_point
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2.2 fNIRS Signal Acquisition 

BCI uses brain signals to collect information on the user‟s intensions. The first 

step in developing an fNIRS-BCI system is to acquire suitable brain signals. The two 

most common brain areas from where the signals are acquired are the primary motor 

cortex and the prefrontal cortex. The signals that are responsible for motor imagery and 

motor execution tasks are collected from motor cortex; prefrontal cortex are used in 

collecting signals are related to mental arithmetic, mental games, landscape imagination 

etc. In spite of the fact that, there exist several different emitter-detector configurations 

used in these two areas, the emitter-detector distances are designed to keep within a 

typical range due to their significant role in fNIRS measurement. For example, an 

increase in emitter-detector distance corresponds to an increase in imaging depth [7]. To 

measure blood oxygenation signals from the cortical areas, 3 cm separation between 

emitter and detector was proposed [8]. A separation of less than 1 cm might contain only 

skin-layer contribution, whereas that of more than 5 cm might result in weak, noisy 

signals [9] which are not at all useful for further processing. A typical emitter-detector 

configuration on the head and the paths traveled by light to reach two detectors are shown 

in Figure 2. A suitable number of emitter/detector pairs for adequate extraction of 

neuronal activity vary depending on the type of brain signals that are used for BCI 

purpose. For the prefrontal cortex, 3 emitters and 8 detectors are suitable for adequately 

acquiring most brain signals corresponding to prefrontal tasks [10]-[16]. The path 

between emitter and detector is known the channel. For brain activities corresponding to 

motor cortex tasks, 6 emitters and 6 detectors can cover the entire motor cortex. In the 
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previous studies, 4 emitters and 4 detectors [17], 6 emitters and 6 detectors [18], and 5 

emitters and 4 detectors have been applied to acquire motor-cortex activities.  

2.3 Previous Related Works 

This section deals with the previous related works using fNIRS signals. The 

discussion has been extended from motor imagery signals taken from motor cortex to the 

cognitive tasks signal for which mainly pro-frontal cortex is responsible. 

2.3.1 Motor Cortex Activity 

Brain signal collection from primary motor cortex is a natural means of providing 

a strong BCI control over external devices for motor intention execution. Moreover, these 

might also be an effective data acquisition from the perspective of neuro-rehabilitation to 

support the people with motor-neuron diseases. Motor execution and motor imagery are 

the two most common activities that are gathered from the motor cortex of human brain. 

2.3.1.1 Motor Execution 

The motor execution task activates the motor cortex due to the movement of the 

human body parts, which involves the muscular activities and muscular tension due to 

physical work. Due to involvement of muscular contraction in motor execution task, 

motor execution-based BCIs are affected by somatic sensory feedback from contracting 

muscles and, therefore, the neuronal modulation may not be solely from the central 

nervous system. Several motor execution tasks including finger tapping [19]-[21], hand 

tapping [16], [22], arm lifting [23], knee extension [23] and hand grasping/gripping [24], 

[25] have been used in the previous studies. 
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2.3.1.1 Motor Imagery 

Motor imagery can be characterized as a covert mental process of envisioning of 

physiological movement of one‟s own body part without inclusion of muscular tension, 

contraction or flexion. Since the main goal of BCI is to develop a communication channel 

for motor-disabled people, motor imagery is one of the most useful tasks in fNIRS-BCI. 

The motor imagery tasks specify imagination of the squeezing of a soft ball, covert 

imagery of a simple or complex sequence of finger tapping, imagination of feet tapping, 

imagination of hand grasping/gripping, imagination of wrist flexion, imagination of 

flexion and extension of elbow, and folding and unfolding of specific fingers [26]. Unlike 

motor execution tasks, the motor imagery signals are free of somatic sensory feedback. 

 

 

Figure 1 fNIRS Signal Acquisition Process 
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2.3.2 Prefrontal Cortex Activity  

As fNIRS signals are more disturbed and attenuated by the motion artifacts due to 

the slippage in hairs, the activities in the prefrontal cortex are also a good choice for 

fNIRS-BCI. Also, they are likely to be more effective in the case of motor-function 

related disability. Given these advantages, most studies have used the pre-frontal 

activities showing promising results. Some of the commonly utilized prefrontal activities 

for fNIRS-BCI are mental arithmetic, music imagery, mental counting, and landscape 

imagery [26]. 

2.3.2.1 Mental Arithmetic 

Mental arithmetic (sometimes called mental calculation) means performing secret 

calculation using the brain without any help in the form of paper, pen, calculator, 

computer, etc. It activates the prefrontal cortex. Since it does not include any muscle 

movement, it is widely used for fNIRS-BCI. Various studies have effectively shown its 

possibility as a mental assignment for BCI. Mental arithmetic entails mental 

multiplication or other arithmetic tasks. However, the most commonly utilized mental 

arithmetic is backwards subtraction, which involves subtraction of a small number (for 

example, a two-digit number) from a large number (for example, a three-digit number) 

with successive subtraction of a randomly appearing small number from the result of the 

previous subtraction [26]. 
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2.3.2.2 Music Imagery 

Music imagery (also called mental singing) consists of organizing and analyzing 

music in the brain without any external auditory stimulus. It has been successfully 

demonstrated music imagery as a brain activity that can be effectively used for fNIRS-

BCI. 

Besides mental arithmetic and music imagery, various other tasks in the prefrontal 

cortex have been demonstrated with promising outcomes. These involve mental counting, 

landscape imagery, mental character writing, object rotation, change-detection tasks, 

labyrinth tasks, and emotion-induction tasks. Some studies have demonstrated direct 

decoding of neural correlates corresponding to subjective preferences, deception, visual 

stimuli, and others [26].  

2.4 fNIRS Signal Processing 

While conducting the experiment, it is certain that various kinds of noises cause 

disturbance in the data stream of fNIRS. These noises are generated as the ideal condition 

for experiment is difficult to create. These noises can be divided into three categories in 

broad sense – instrumental noise, experimental noise and physiological noise. The first 

two categories are not at all related to any physiological activities. Thus it is better to 

remove these noises before removing the physiological noises from the output of the 

modified Beer-Lambert‟s law [6]. 
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2.4.1 Instrumental Noise Removal 

Instrumental Noises are generated due to instrumental degradation or by variation 

of surround light intensity. These disturbances create a constant high frequency noises 

and can be easily removed by low pass filter with appropriately chosen cut-off 

frequencies (say, 3-5 Hz) [26]. 

2.3.2. Experimental Noise Removal 

Experimental noise or error is generated from the motion artifacts such as head 

motion which results in the dislocation of optodes. These can be visualized in the fNIRS 

data as spike artifacts due to abrupt change in light intensity as the optodes change their 

positions. There exist several filtering methods for removing motion artifacts and other 

experimental errors such as the Wiener filtering-based method, eigenvector-based spatial 

filtering, wavelet-analysis-based methods, Savitzky-Golay type filters, and others [26]. 

For comparison of various techniques and their advantages and disadvantages, the readers 

can go through the literature [27].  

2.4.3. Physiological Noise Removal 

Physiological noise includes several kinds of artifacts due to heartbeat (1-1.5 Hz), 

blood pressure fluctuations or Mayer wave (around 0.1 Hz), respiration (0.2 – 0.5 Hz) 

[21] etc. There are several well-known techniques such as band-pass filtering [1], [10]-

[12], ICA [28], ARMAx method, advance filtering technique [27] to remove 

physiological noise. The techniques that are used in the thesis are described with 

sufficient details.  
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2.4.3.1. Band Pass Filtering 

Band-pass filtering is an effective way to remove physiological noises as the 

frequency range is known a priori. Some fNIRS-BCI studies have shown promising 

results using a simple low-pass, or a high-pass or a band-pass filtering to remove 

physiological noises. Various cut-off frequencies for band-pass filtering have been used 

for decades to sample out the noises: For example, [10], [12], [29] and [30] have used the 

frequency bands of 0.01~0.8 Hz, 0.1~0.5 Hz, 0.01 ~ 0.2 Hz and 0.1 ~ 0.5 Hz, 

respectively. In general, the band of 0.1 ~ 0.4 Hz is used in this thesis work as it can 

eliminate significantly a large portion of physiological noises such as heart beat and 

Mayer waves [26] without disturbing the fNIRS signal of interest elicited by a task of 10 

seconds period. The types of band-pass filtering include Butter worth filters, Elliptic 

filters, and Chebyshev filters. However, there is no study which signifies advantage of a 

particular filtering method over others yet.  

2.4.3.2. Advance Filtering Method 

If the frequency band of a physiological noise, for example due to respiration, 

overlap with frequency band of the hemodynamic response, then band-pass filtering is 

not an effective means for removing physiological noises. Therefore, other methods, such 

as adaptive filtering [27], PCA [31] and ICA [29] have found significant application area 

in eliminating physiological noise. To account for physiological clamors, additional 

noise-related elements can be included to the regression model. In addition to modeling 

the canonical functional response, a series with adaptive amplitudes and phase 

components in order to model specific physiological noise contribution from heartbeat, 
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respiration, and blood pressure can be incorporated. The autoregressive moving average 

with exogenous signals (ARMAx) model-based approach incorporating physiological 

signals as exogenous signals can be used to predict the brain state during a particular 

cognitive task. The fNIRS signal at each channel can be regarded as an output from a 

linear combination of various components. The components include the dynamical 

characteristics of the HbO and HbR changes in a specific brain region (the influence from 

the current/previous stimuli), the physiological signals, the baseline fluctuation, and other 

noises. 

Independent Component Analysis 

According to A.Hyvarinen et al. [28] Independent Component Analysis (ICA) is a 

method for finding underlying factors or components from multivariate (multi-

dimensional) statistical data. ICA is a special case of Blind Source Separation (BSS) 

problem in which it is assumed that the sources are statistically independent and non-

Gaussian in nature. Using ICA, one can separate multiple source signals into additive 

subcomponent or target signals. ICA tries to find a direction in vector space along which 

the source components are independent in nature. In our experiment, 16 channel data 

have been collected using the fNIRS device from pre-frontal cortex. Though band pass 

filtering is used to remove several artefacts, still there is a scope of noise interference 

between these channels and also from several physiological disturbances which results in 

low SNR rate at each channel. Thus, use of ICA is necessary as an advance filtering 

method to deal with such kind of nuisance. 
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Let us assume that the data (observed from 16 channels of the fNIRS device used) 

are represented by  1 2( ) ( ), ( ), , ( )
T

mx t x t x t x t  and the sub-components are denoted as 

 1 2( ) ( ), ( ), , ( )
T

ms t s t s t s t  . The objective of ICA is to transform the observed data x  

into maximum number of independent components s  by a linear transform W dependent 

upon a function 1 2( , , , )mF s s s  of independence. So the task of ICA is to find both the 

target variable ( )s t  and the matrix W while only the variable ( )x t  is observable. The 

mathematical derivation of ICA is based on two principles, 

i. The additive components is  and js are uncorrelated. 

ii. Also the non-Gaussianity of the transform s Wx  is locally maximum under the 

constraint that the variance of x  is constant. 

Based on these two principles, let us discuss the generative model for linear noiseless 

ICA is developed mathematically.  After removing the noises, signals classified through 

regular pattern recognition steps which are discussed in the next chapter.  
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CHAPTER 3  

Classification and Load Detection 

 

 

 

This chapter deals with classification of fNIRS signal after pre-

processing and feature extraction. In section 3.1, the problem solving 

approach is discussed followed by Feature Selection and Dimension 

Reduction technique in section 3.2. This section demonstrates the 

proposed likelihood based DE-driven FS technique. In the next section 

(3.3) classification process is discussed by describing some well-known 

classifiers and also elaborating the proposed type-2 fuzzy classifier.  
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3.1 Problem Solving Approach 

This chapter is dedicated to the classification of the fNIRS signal and cognitive 

load detection of individual subjects. One of the objectives is to find the state of activity 

and also the difficulty level of the problems that have been come across by the subjects 

during the experiment. The purpose of this experiment is to find the cognitive load 

encounter in the subjects during this mental arithmetic cognitive task. To find the state of 

inactivity and difficulty level, we are entirely depending upon the nature of the fNIRS 

signal. Thus classification of these signals is primarily required. As it is considered as a 

classification problem, the solution of this problem consists of several well-known steps 

– data acquisition, pre-processing, feature extraction (FE), feature selection (FS) and 

dimension reduction (DR), classification. Some well-known classifiers have been 

described with sufficient mathematical background. In this chapter, the proposed 

classifier based on type-2 fuzzy [1]-[5] logic is proposed for classification. Also, a FS 

tool based on the likelihood estimation [6] is also proposed for better performance. Data 

acquisition and pre-processing steps are described in chapter 2 and the feature extraction 

and classifier performance will be discussed in the next chapter. These approaches are 

described with sufficient details in the subsequent sections.  

3.2 Feature Selection 

The feature selection (FS) technique is used in the learning algorithm to choose a 

smaller subset of features without any loss of information from the larger feature set 

when there exist a few samples for training but the original feature set is of high 

dimension [7]. The reasons behind the essentiality of FS technique are as follows. 
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i. There exist a number of redundant features in the original feature set. When the 

number of data samples for training is lower with respect to the dimension of the 

feature vector, there is a possibility of overtraining the classifier. To get rid of 

overtraining, it is necessary to choose a subset of features such that no redundancy 

is present. 

ii. If the dimension of the feature vector reduces, it is obvious that the training phase 

will take shorter time. 

iii. The complexity of the model reduces as the dimension of the feature vector 

reduces. 

In this work, a new feature selection strategy is proposed based on the likelihood 

functions or class density functions. The technique is discussed with sufficient 

mathematical description in the following subsection. 

3.2.1 Proposed Likelihood Based Feature Selection 

Let 1 2{ , , }N D NX X X X
  

  be a set of N pattern vectors or data points, each 

having D features. Given such 
DNX matrix, the object is to find a feature matrix N nX , 

where n D .  The notion of this FS technique is to select the features which involve in 

significant increment of likelihood of a feature vector as a whole within its own class and 

decrement of likelihood in other classes. The probability of the feature vector c
iX

  with 

prior information that class c has already appeared in the experiment is given by ( / )c
ip X c


. Similarly, the probability of the feature vector c
iX

  with prior information that class d has 

already appeared in the experiment is given by ( / )c
ip X d
 .  Now, for an classification 
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problem with K number of classes, if an iterative optimization technique is used, 

objective is to maximize the difference between intra and inter-class likelihood function 

which can be expressed mathematically as, 

 
1

1
,

( / ) ( / )c c
i iK

d d c

p X c p X d


 

 
 

 (3) 

Thus, the overall objective function considering all the feature vectors of all the classes 

can be written as, 

 1
1

, ,

( / ) ( / )c c
i iK

c i i c d d c

J p X c p X d


    

 
  

 
 

  
 

 (4) 

Let, c
iX


be the thi vector belong to class c, c


be the mean vector of class c, 

c  be the co-

variance matrix of class c and ( / ) ~ ( , )c cp X c N  
 

. By modifying equation (4) and 

neglecting higher order terms, we have, 

 1 2.J L L   (5) 

where, scale factor (0,10]  

 1 1 1

, ,

1
,

1

d c

c i i c d d c

L L L
K

    

 
  

 
 

    (6) 

 

   

2 1 1
, ,

2 22 2

1 1 1
,

1
2 2

n n
c i i c d d c d c

L
K

 
    

 
 
  
 
   
 

    (7) 
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1
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(9) 

Equation (5) is maximized using Differential Evolution (DE) algorithm. To 

initialize population vectors, string vectors of dimension D consisting of „1‟ (true) and „0‟ 

(false) are constructed. The true value at a position indicates the inclusion of the feature 

value of that particular index into the lower dimensional feature vectors. These low 

dimensional feature vectors are used to obtain the value of the cost function of equation 

(5) assuming that their original class definitions have not been changed. The string 

vectors are updated iteratively using DE/rand/1/bin [7] technique. The scale factor  is 

chosen experimentally by taking the ratio of 
1L and

2L , and average them over a number of 

these ratios to maintain a compatibility between these two values. After optimization the 

best string vectors found so far is used for reduction of the original feature vectors. Now, 

when a new unknown feature vector comes into sight for testing, this string vector helps 

the recognizer to down select the features. The corresponding algorithm using DE [7] as 

an optimizer is explained in table I. 
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Table I Algorithm for Likelihood Based DE-Driven Feature Selection 

Algorithm 1: Likelihood Based DE-Driven Feature Selection 

1. Initialization: Declare D-dimensional population vectors of size NP 

, 1iZ i to NP


,  where each vector is a binary string with elements ‘0’ or ‘1’. 

Set crossover rate, Cr = 0.7 and scale factor F = 0.8. 

2. Mutation: For each target vector iZ


 select random mutually distinct 

, ,j k lZ Z Z
  

 to create the donor vector using the equation 

.( )i j k lV Z F Z Z  
   

 

Also the elements of donor vectors are rounded to nearest integer from the set 

{0,1}. 

3. Recombination/ Crossover: Create an offspring vector iU


 for each target 

vectors using the vectors iZ


 and iV


 where the jth of the offspring vector is 

obtained by the following rule, 

𝒖𝒊,𝒋 =  
𝒗𝒊,𝒋, 𝒊𝒇 𝒂 𝒓𝒂𝒏𝒅𝒐𝒎𝒍𝒚 𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒏𝒖𝒎𝒃𝒆𝒓 𝒓,𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟎 𝒂𝒏𝒅 𝟏 ≤ 𝑪𝒓

𝒛𝒊,𝒋,         𝒐𝒕𝒉𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                                                                   
  

4. Selection: Find out the indices of target vector and offspring vectors with 

entries ‘1’. Select the corresponding features from the feature set. Compute 

the objective value using equation (5).  Find out the binary string vector 

which is able to produce minimum objective function value. Translate that 

vector to the next generation or iteration 

5. Repeat from step 2 until the termination criterion is not reached. 

6. Output the best fit string vectors after the termination criterion is achieved. 

The indices with ‘1’ values are the features of a feature vector to be selected 

for subsequent stages. 
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3.2.2 Dimension Reduction Using PCA 

Principle Component Analysis [8] is a statistical method that linearly transforms 

the correlated set of observed variables into linearly uncorrelated set of variables in least 

square sense, also known as principle components. The number of uncorrelated variables 

is less than or equal to the number of observed variables. It is orthogonal transformation 

used to project higher dimensional data into lower dimension space onto a line through 

the sample mean in the direction along the Eigen vectors of the largest Eigen values of 

the scatter matrix of the observed set of data as shown in the figure 2. Let us discuss the 

mathematical explanation in detail from the perspective of fNIRS signal processing such 

that the readers get a comprehensive overview of using PCA in fNIRS. 

Let us consider n d-dimensional data points or feature vectors 1 2, , , nx x x
  

  

obtained from the pre-processed fNIRS signal. The objective is to find a vector ox


such 

that sum of the squared distance between ox


and various 'kx s


 is minimum. The objective 

function can be constructed as, 

  
2

1

n

o o o k

k

J x x x


 
  

 (10) 

Taking the derivative of  o oJ x


 with respect to ox


, it is found that 

 
1

1 n

o k

k

x x m
n 

 
  

 (11) 

Where m


 is the sample mean. 
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Therefore, for dimension reduction, we have to project the feature vectors along the 

direction of the sample mean m


. Now from vector algebra, any vector can be written in 

terms of other vector according to the law of the triangle. 

 

Figure 2 Principal Compnent Analysis in 2D feature space 

Thus,  

 k kx m a e 
  

 (12) 

where, e

 is the unit vector from m


 to kx


. To find the optimal set of coefficients ka ‟s, an 

objective function is to be minimized, mathematically expressed as, 

    
2

1 1 2

1

, ,..., ,
n

n k k

k

J a a a e m a e x


  
   

 

(13) 
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By taking proper mathematical approach, the value is found to be  T
k ka e x m 

  
. Thus 

the set of coefficients can be found by projecting the vectors onto the line in the direction 

of the unit vector that passes through the sample mean. The next step is to find the value 

of the unit vectors.  

Let us define the scatter matrix S as, 

   
1

n
T

k k

k

x m x m


 S =
   

 (14) 

To find the unit vectors let us modify the previous objective function in term of the unit 

vector which is, 

  
2

1

1

n
T

k

k

J e e e x m


   S
    

 (15) 

To minimize  1J e


 we need to maximize Te eS
  . A constrained optimization problem can be 

designed which as follows. 

 
2

,   subject to  1Tmaximize e e e S
    (16) 

By using Lagrange multiplier, it can be transformed into an unconstrained optimization 

problem by defining a function u. Mathematically, it can be written as, 

  1T Tu e e e e  S
     (17) 

Now, 
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or e e

or e e










 



S

S


 

 
 (18) 

Thus, it is found that the principle components are the directional vectors along the 

direction of the Eigen vectors of the scatter matrix. The problem can be extended for d’-

dimensional projection. The steps involved are enumerated below. 

i. Find the scatter matrix S of the observed data vectors. 

ii. Find the Eigen values and corresponding Eigen vectors of the scatter matrix. 

iii. Arrange the Eigen values in ascending order. 

iv. Find the difference between two consecutive Eigen values starting from the 

largest one. 

v. Consider the Eigen values after which the difference gets a higher increment. 

vi.  Construct a matrix A, whose each column corresponds to the Eigen vectors of the 

corresponding Eigen values survived during step v. 

vii. Find 
Ty x A

 
 where, y

  is a reduced dimensional orthogonally projected feature 

vector. 

It is evident from the mathematical derivation of PCA that 

i. Scatter matrix is real and symmetric and hence, the Eigen vectors are orthogonal, 

ii. Eigen vectors are the principles axes of the hyper ellipsoidal cloud of the 

observed data vectors, 

iii. PCA reduces the dimension of the feature vectors by restricting attention to the 

directions along which the scatter of the cloud of data points are greatest. 
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Though PCA does not find any subset of the original feature vector, it reduces the 

dimensionality by orthogonally transforming the feature vectors and creates a new subset. 

In this work, we also compare the classifier accuracy using PCA and the proposed FS 

technique individually. 

3.3 Classification and Cognitive Load Detection 

The final step of any pattern recognition problem is to classify the pattern vectors. 

By classification we mean to identify the group or class of an object or pattern vectors. 

There is a multiple learning strategy such as Supervised Learning, Unsupervised 

Learning, and Reinforcement Learning etc. In this work, supervised learning strategy is 

used and hence, it consists of two phases – training and testing. In BCI, several literatures 

use the standard classifier like Support Vector Machines (SVM) [9], Artificial Neural 

Network (ANN) [10], k-Nearest Neighbourhood (k-NN) [11]. Also type-2 based fuzzy 

[1]-[5] classifier is proposed. The classifier descriptions with necessary supporting 

figures are discussed in this section for the convenience of the reader. 

3.3.1 Support Vector Machine 

Support Vector Machines (SVM) [9] is a maximum margin classifier which 

tri39es to maximize the distance between the hyper plane and nearest training data points 

or also known as support vectors.  

Let us consider two classes which are levelled as +1/-1. The samples denoted by 

 ,t tx r  where, tx  are the observed data points and tr  are the corresponding class 

level (+1/-1). The objective or training phase of the SVM classifier is to find an optimal 
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hyper plane which best separates the training vector and also maximizes the margin 

between hyper plane and nearest training data points (support vectors) on the either side 

of the plane for better generalization. Let the hyper plane is denoted by, 

 T
ow x w

 
 (19) 

In training phase it is necessary to find the weight vector w


 and the bias ow such that 

 
1, 1

1, 1

T
o

T
o

w x w if r

w x w if r

    

    

 

   (20) 

Figure 3 shows the classification strategy of SVM classifier with linear hyper plane for 

features vectors with two feature entities for two-class problem. The data points on the 

dotted lines are called support vectors. Distance between two dotted lines is the margin. 

For multi-class problem, “one verses all” strategy is used and the number of hyper plane 

obtained is same as the number of the class present in the training dataset. The following 

points are to be noted while using SVM classifier is used to classify the fNIRS signal. 

 

Figure 3 SVM Classifier 
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1. During solving the constrained optimization problem in an unconstrained manner, 

the equations are converted to dual form such that the complexity depends on the 

number of the fNIRS training samples not on the dimension of the feature vectors. 

2. If the complete dataset is not linearly separable or some of the points are 

misclassified during training phase, which is quite obvious for physiological 

signals like fNIRS, one can use soft margin method by defining slack variable 

which will store the value of the deviation met by some of the observed variables. 

There are two kind of deviations – the observed data may lie on the wrong side of 

the hyper plane so that it is misclassified, and another one is that the data point is 

on the right side of the hyper plane but in the margin i.e. it is not at a sufficient 

distance from the hyper plane. 

3. If the training set is not linearly separable at all, one can use kernel functions to 

project the dataset in a higher dimensional space so that they can be linearly 

separated, without using a nonlinear function to create a hyper plane. This is 

known as kernel tricks (for example, Radial Basis Function (RBF)). In this 

situation, the dual form optimization problem, as mentioned in point 1, is useful. 

In our study we use both linear kernel and RBF kernel based SVM to classify the 

feature vectors. The accuracies are discussed in the next chapter. For classification of 

unknown feature vector obtained from unlabeled fNIRS signal, one only needs to find the 

sign of the outcome of the hyper plane equation.  
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3.3.2 k-Nearest Neighborhood Classifier 

k-nearest neighborhood [11] is a non-parametric method for classification used in pattern 

recognition problem. The input is only consists of k closest examples in the feature space. 

An object is classified by a majority vote of its neighbours, with the object being assigned 

to the class most common among its k nearest neighbours (k is a positive integer, 

typically small). If k = 1, then the object is simply assigned to the class of that single 

nearest neighbour. The steps of the classification algorithm are enumerated below. 

i. Find the distance between the unknown feature vector and the observed data 

points with known class label. There exist several distance metric between two 

vectors x

 and y

  with covariance matrix S, such as, 

a. Euclidean distance :    
2

1

,

n

E i i

i

d x y x y



 
 

, 

b. Manhattan distance :  
1

,

n

TC i i

i

d x y x y



 
 

, 

c. Mahalanobis distance :      1,
T

Md x y x y x y  S
     

. 

ii. Find out k nearest data points from the test point and their corresponding class 

level. 

iii. Take majority voting to find out the class of the unknown test feature vector. 

In this work, Mahalanobis distance metric is used, as though it is computationally 

complex than other two metrics, it uses the spread function in term of covariance matrix, 

which produce effective and better accuracy than the other two distance metrics.  
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3.3.3 Proposed Fuzzy Type-2 Classifier 

The notion of a type-2 fuzzy set was brought into light by Zadeh as an extension of 

the concept of a normal or type-1 fuzzy set. In type-2 fuzzy set, the membership 

functions of the variables are itself type-1 fuzzy set. This is effective in those cases where 

there exist some uncertainties in determining the exact type-1 membership function. In 

that case, if the knowledge base itself carries so many uncertainties, these lead to rules 

having uncertain antecedents and/or consequents, which in turn translate into uncertain 

antecedent and/or consequent membership functions. In this problem, though the 

difficulty level of each problem is pre-determined, it is obvious that the difficulty levels 

vary from subject to subject, and thus, accurate rules or knowledge base is very tedious to 

construct. Before describing the type-2 classifier in details, I like to introduce the 

necessary definitions [1]-[5] to the readers and advantage of type-2 fuzzy logic to 

validate the effectiveness in this classification problem. 

Definition 1: A T2 Fuzzy set, denoted as A  is characterized by a T2 MF  ,
A

x u  , 

wherew  0,1xx X and u J   i.e., 

          , , , | , 0,1 ,0 , 1xA A
A x u x u x X u J x u           (21) 

Definition 2: The domain of a secondary MF is called the primary membership of x. 

Thus, in the equation (21), Jx is the primary membership function of x. 

Definition 3: The amplitude of a secondary MF is called a secondary grade. 

Definition 4: Uncertainty in the primary memberships of a T2 FS consists of a bounded 

region that we call the footprint of uncertainty (FOU). It is the union of all primary 

memberships i.e., 
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   x

x X

FOU A J



   
(22) 

Definition 5: The upper membership function (UMF) and lower membership function 

(LMF) of A  are two T1 MFs that bound the FOU. UMF is the upper bound of FOU and 

LMF is associated with the lower bound of the FOU, and they are denoted by  ,
A

x u   

and  ,
A

x u   , i.e., x  

 
   

   

,

,

A

A

x u FOU A

x u FOU A
















 (23) 

 

Figure 4 UMF, LMF and FOU of T2 FS 

The general type-2 fuzzy classifier is used, as it provides additional degrees of 

freedom in designing membership functions and in modelling uncertainties than the 

normal type-1 fuzzy system, which relies on only one membership function. The 

Gaussian fuzzy membership functions for each feature entity are developed for different 

subjects for a particular class (Figure 6). If there is S number of subjects available for the 

experiment, then we obtain S number of Gaussian membership curves for a particular 

feature entity in a class. We also consider the secondary membership to be Gaussian in 
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nature where the mean and variance are computed using the information from upper 

membership (UMF) and lower membership function (LMF) (Figure 5).   

 

Figure 5 Gaussian T1 Membership Curve of a Feature Entity for Different Subject 

 

Figure 6 Gaussian T2 Membership Curve of a Feature Value x = 4 

There exists different kind of rules for type reduction [1]-[5] of a general type-2 

fuzzy set. When a feature vector with unknown class label is given to the system, we 
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compute the type-1 membership value of a feature entity considering the vertical slice at 

that particular feature value (Figure 7) by the following mathematical expression, 

 
( )'

( )

( , ( )). ( )

( )
( , ( ))

F

F

F FF
x

F
FF

x

x x x

x
x x





  


 














 (24) 

where, ( )F x is the primary membership value of feature F at a value x and ( , ( ))FJ x x

is the secondary membership value of the primary membership ( )F x . The summation is 

taken over all the primary membership values found from the S number of subjects 

between UMF and LMF. We find all of the membership values of all the features for all 

the classes and store them in matrix F whose rows are indicating the membership values 

of the features for a class and columns are indicating the membership value of a feature 

entity in all the classes.  

After getting the matrix F, we find the average membership value in a particular 

class by summing along the column of a matrix, expressed as, 

 

'

.

F

F

No of features



 


 

(25) 

The class with highest average membership value is the class corresponds to the 

unknown feature vector. The corresponding algorithm for Type-2 fuzzy classification is 

given in table II. 
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Table II  Type-2 Fuzzy Classification 

Algorithm 2: Fuzzy Type- 2 Classification 

1. Find the Gaussian Membership Function of a feature entity for a particular 

subject whose feature vectors are in training set by computing the mean and 

variance of that feature entity from the set of training vectors corresponding to 

that subject.   

2. Repeat step 1 for all the feature entities. 

3. Repeat steps 1 and 2 for all the subjects in the training set. Also obtain the same 

for different classes of training vectors. 

4. In the classification stage, take vertical slices at the feature value of a particular 

feature entity in the fuzzy space for different classes.  

5. Compute the mean and the variance of the T1 membership values corresponding 

to the vertical slices.  

6. Compute the secondary Gaussian membership values at that particular feature 

value along the vertical slices.  

7. Compute the weighted type-2 membership value using equation (24). 

8. Repeat steps 4-7 for all other unlabeled feature entity values. 

9. Store the weighted membership values for different classes of particular feature 

entity in a column vector and merge the column vectors vertically to get a matrix 

F of dimension 𝑲 × 𝒅, where K is the number of classes and d is the dimension of 

the feature vectors. 

10. Obtain the class of the unlabeled feature vector using equation (25). 

After determining the class, we now compute the load on each subject by the value of 

the average membership in a class, which is discussed in details in the next chapter. 
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CHAPTER 4           

Experiment and Analysis 

 

 

This chapter is dedicated toward the detail description of fNIRS 

experiments done in Artificial Intelligence Lab of Jadavpur 

University. In Section 4.1, the experimental set up is described along 

with the detail timeline of the stimulus used for this purpose. In 

Section 4.2, features are discussed with their significance. The pre-

processing steps are discussed in the next section. Section 4.4 gives a 

detail description and comparison of the outcomes of the classifiers 

with statistical significance. The chapter is concluded with the load 

detection for individual subjects in different problems of different 

difficulty level. 
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4.1 Experiment 

So far, we have discussed about the theoretical background necessary for working 

with fNIRS systems and also the proposed feature selection and classification techniques 

for cognitive load detection. This chapter includes a brief description of fNIRS device 

used, experimental setup along with subject and stimuli details, and experiments: to i) 

extract fNIRS features, ii) select the most significant features from a large pool of 

extracted features, iii) detect cognitive load for easy, moderate and hard mental tasks, iv) 

compare the classifier performance and v) to validate classifier performance using 

McNemar‟s statistical test. 

 The experiment has been performed at Artificial Intelligence Lab, Jadavpur 

University, where the brain response of human subjects is captured using a popular brain-

imaging device called fNIRS (Figure 8). This device has been selected for the present 

problem because of its non-invasiveness, capability to localize and measure oxy-

haemoglobin and de-oxy-haemoglobin, low-cost and portability [1]. It can be shown form 

Figure 8(b) that fNIRS band which has been used in this experiment, has 4 infra-red (IR) 

sources and 10 IR detectors. The path from IR source to detector of an fNIRS device is 

termed as channel, which provides measurements of oxy-hemoglobin (HbO) and de-oxy-

hemoglobin (HbR) blood concentration. Therefore, the present fNIRS band captures 

brain images from 16 channels when the band is attached to the forehead of human 

subjects during the experiment. 
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Figure 9 shows an experimental framework; where a subject is asked to perform 

mental mathematical operations only by pointing out the correct answer from a set of four 

options. fNIRS band is placed on her forehead to measure cerebral blood oxygen concentration 

during the trial as pre-frontal cortex data are useful for this type of experiment. Eight 

such healthy subjects of ages between 21 and 27 years are selected to perform the 

experiments. They are instructed to restrict their movement in order to avoid unwanted 

movement-related artifacts to some extent. 

 

Figure 7 fNIRS device to capture brain images during cognitive tasks 

 

Figure 8 A subject is performing cognitive tasks while brain images are captured 

using fNIRS device 
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An experimental trial contains five mental mathematical problems, each of 20 

seconds and a 5-second rest between each problem. The stimulus began with “start” 

instruction followed by a slide containing the instructions for the subjects for subsequent 

tasks and a 5 second of rest time respectively. Figure 10 shows the timeline of the 

stimulus used for performing the tasks. For the present problem, three kinds of 

experimental trial have been prepared based on three difficulty levels: easy (E), moderate 

(M) and hard (H). Each subject has to perform each of these three trials for 7 times, 

resulting in 35 experimental instances for each difficulty level. The cognitive load of the 

subjects is also classified into three distinct levels including low, medium and high, 

depending on the difficulty levels: E, M and H respectively. 

 

 

Figure 9 Time Flow of the stimulus Used. The scale is divided into 5sec segments 



 
  CHAPTER 4: EXPERIMENT AND ANALYSIS 
 

53 | P a g e  
 

 
Figure 10 Frequency response of a Butterworth, Chebyshev-I, Chebyshev-II, and 

Elliptic Filters 

4.2 Experiment 1: Preprocessing 

Before further processing like feature extraction and selection, classification etc, 

we need to eliminate any artifacts present in the signal, else it will create disturbance and 

results in faulty classification of signals. The signals first undergo ICA [2] technique for 

removing physical noises and also for reducing the interference of the signals from other 

channels by extracting the independent components of 16 channels. In next step, these 

signals are band-passed using a Chebyshev type 1 IIR filter of order 10. Though several 

literatures uses different band-pass filters like Chebyshev type 1, type 2, Butterworth, 

Elliptic; in this literature, Chebyshev type 1 filter is used. Figure 11 shows that the sharp 

roll-off and good attenuation in stop-band and low ripples are obtained for Chebyshev 

type 1 filter than others keeping the order fixed. The two cut-off frequencies are defined 

as 0.1 Hz and 0.4 Hz for band-pass filtering. Figures 12-19 show the pre-processing 
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output of oxy-haemoglobin (Figure 12-15) and de-oxy-haemoglobin (Figure 16-19) after 

raw signals are provided from randomly chosen 4 channels. 

 
 

Figure 11 Pre-processing output of oxy-heamoglobin captured in Channel 1 

 

Figure 12 Pre-processing output of oxy-heamoglobin captured in Channel 5 
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Figure 13 Pre-processing output of oxy-heamoglobin captured in Channel 13 

 

Figure 14 Pre-processing output of oxy-heamoglobin captured in Channel 16 
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Figure 15 Pre-processing output of de-oxy-heamoglobin captured in Channel 1 

 

Figure 16 Pre-processing output of de-oxy-heamoglobin captured in Channel 5 
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Figure 17 Pre-processing output of de-oxy-heamoglobin captured in Channel 13 

 

Figure 18 Pre-processing output of de-oxy-heamoglobin captured in Channel 16 
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4.3 Experiment 2: Feature Extraction 

Feature extraction (FE) is the second and one of the most important steps in pattern 

classification problem, since feature can best describe the pattern itself which is hidden 

within a raw signal. In this experiment, we have selected a list of features that can be 

used to extract necessary information from fNIRS data to detect the cognitive load of 

human subjects. We consider seven following feature sets. 

i. F1 : Mean value of HbO concentration. 

ii. F2 : Mean value of HbR concentration. 

iii. F3 : Mean value of HbO+HbR concentration. 

iv. F4 : Variance of HbO+HbR concentration. 

v. F5 : Mean of HbO-HbR concentration. 

vi. F6 : Variance of HbO-HbR concentration. 

vii. F7 : Average slop of HbO-HbR concentration. 

To perform FE, we start with fNIRS data acquired for three different levels of cognitive 

tasks: E, M and H. For each kind of difficulty level, we obtain HbO and HbR data, each 

having dimension of 35×16×40, where, 35 represents the number of experimental 

instances, 16 represents the number of channels of fNIRS and 40 represents the samples. 

To extract first feature set F1, we take mean of HbO data across samples recorded by each 

channel and obtain 16 features for each of 35 instances. Therefore, F1 contains mean-

HbO features having dimension of 35×16. In similar fashion, feature sets F2-F7 is 
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prepared by determining their respective 16 features for 35 instances, which finally 

present a feature matrix of 35×112 dimension for each difficulty level for each subject.  

 A clear discrimination in concentration level from 16 channels has been observed for 

each feature set. For better understanding, we provide feature level discrimination of 7 

features determined from randomly chosen 4 channels, while the 3 subjects are 

performing cognitive tasks during one experimental trial.  Figures 20-23, 24-27, 28 

present the feature level discrimination of seven features between 3 subjects determined 

from 4 channels for easy, medium and hard levels respectively. It is clearly from these 

figures that the features are quite similar between these subjects for a particular difficulty 

level task.  

 In a second measure, we have also shown that the features are quite discriminative in 

nature for different difficulty levels taken from 4 channels for a particular subject. 

Figures 22-25 are showing these characteristics in the feature set. Thus, choice of these 

features is quite effective in terms of classification.  
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Figure 19 Feature Level Discrimination for Easy Task captured in channel 1 

 

 
Figure 20 Feature Level Discrimination for Easy Task captured in channel 5 
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Figure 21 Feature Level Discrimination for Easy Task captured in channel 13 

 

Figure 22 Feature Level Discrimination for Easy Task captured in channel 16 



 
  CHAPTER 4: EXPERIMENT AND ANALYSIS 
 

62 | P a g e  
 

 

Figure 23 Feature Level Discrimination for Medium Task captured in channel 1 

 

Figure 24 Feature Level Discrimination for Medium Task captured in channel 5 
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Figure 25 Feature Level Discrimination for Medium Task captured in channel 13 

 

Figure 26 Feature Level Discrimination for Medium Task captured in channel 16 
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Figure 27 Feature Level Discrimination for Hard Task captured in channel 1 

 

Figure 28 Feature Level Discrimination for Different Task captured in channel 1 
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Figure 29 Feature Level Discrimination for Different Task captured in channel 5 

 

Figure 30 Feature Level Discrimination for Different Task captured in channel 13 
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Figure 31 Feature Level Discrimination for Different Task captured in channel 16 

4.4 Experiment 3: Feature Selection 

Selection of appropriate features is necessary to classify any pattern recognition 

problem, if the extracted feature set is found significantly large and the no of samples 

available for training is small in number. Having a large dimensional feature set (here, 

112), this experiment also utilizes a DE-induced likelihood-based feature selection (FS) 

technique that optimally selects 25 most significant features that are able to correctly 

represent the pattern vectors. 

 The performance of the proposed FS technique is compared with the well-known 

principal component type-2 analysis (PCA), when the selected features are fed to the 

fuzzy classifier. Result is given in Table III, wherefrom it can be concluded from the 

table that the proposed FS technique provides better classification accuracy than PCA [4]. 



 
  CHAPTER 4: EXPERIMENT AND ANALYSIS 
 

67 | P a g e  
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Table III Comparison between Mean and Standard Deviation of Fuzzy Type-2 Classifier 

with PCA Based and Proposed Likelihood Based FS Technique 

Features 

Dimensions 

Average Classifier Accuracy 

(in %) 

Statistical 

Significance 

PCA + Fuzzy 

Type-2 

Classifier 

Proposed 

likelihood + 

Fuzzy Type-2 

Classifier 

 

 

112 

(Reduced to 25) 

88.791 

(0.01407) 
92.597 

(0.01207) 
+ 

    

 

 

(a) 

 

(b) 

 

 

(c) 

  

(d) 

Figure 33. Oxygenation level recorded from 14 sensor-detector pair. 

 (a): inactive condition, (b): easy task, (c): moderate task, (d): hard task  
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4.6 Experiment 5: Cognitive Load Detection for Different 

Difficulty Level 

This experiment deals with classification of cognitive load into three classes: low, 

medium and hard and also determine subjective load for E, M, and H levels of cognitive 

tasks. For this we determine fuzzy membership values for each level (class) of cognitive 

load: low, medium and hard. For a particular class, we quantified the range of fuzzy 

memberships (0,1] in three levels as shown in the Table IV. 

 

 

 

 

The membership ranges, as mentioned in Table IV, are used to detect subjective 

load while the particular subject is offered easy, moderate and hard cognitive tasks one 

by one. The cognitive load for randomly selected four subjects are presented in Table V, 

which gives a clear indication that using the proposed technique, cognitive load differs 

subject to subject for the same degree of complexity.      

In order to detect cognitive load distribution of the subjects with increasing difficulty 

level, oxygenation level is captured from fNIRS and presented in Figure 33 (a)-(d). From 

Figure 33 (a)-(d), we can observe the change in oxygenated blood volume of a subject 

with the increase in difficulty level of a task. From the color bar shown in figure, it is 

Table IV Measurement of Cognitive Load According To 

Average Fuzzy Membership Values 

Range of Fuzzy 
Membership Values 

Cognitive Load 

0.0-0.3 Low 

0.3-0.7 Medium 

0.7-1.0 High 
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clear that there is a high rise of brain activity with the increase in oxygenation, the 

highest of which is represented by yellow color, whereas the lowest brain activation is 

represented by blue color. Now, from figure 33 (a), it is evident that there requires less 

oxygenated blood during inactive (rest) situation. In addition, it is also prominent from 

figure 33 (a) that in inactive situation, brain activity becomes low, which results in the 

appearance of blue region. Figure 33 (b) shows the oxygenation level during easy task 

performance, where blue regions as well as its intensity tend to get lower. In figure 33 

(c), difficulty level of the task becomes moderate, where the human brain needs to 

perform more activity, thus flow of oxygenated blood tends to get higher, so more 

reddish/yellowish region appears, whereas blue region decreases significantly. Lastly, 

Figure 33 (d) shows the oxygenation for hard task. This task requires the highest brain 

activation, which is evident from only the red/yellow regions near the forebrain, and no 

de-oxygenation takes place. 

 

 

 

 

 

 

Table V Subject Wise Cognitive Load Detection for 4 Subjects Corresponds 

to Table IV 

 

Class 

Subject  

Load (In Alphabetic Form) 

Easy Moderate Hard 

1 Low Medium Medium 

2 Medium High High 

3 Low Low Medium 

4 Medium High High 
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4.7 Experiment 6: Proposed Fuzzy Type-2 classifier 

Performance  

We have compared type-2 fuzzy classifier performance using proposed 

likelihood-based FS algorithm with linear support vector machine (LSVM) [5], k-nearest 

neighbor (kNN) with Euclidean distance metric [6] and support vector machine with 

radial basis function (SVM-RBF) [8] classifiers (Table VI). The classifier performance of 

kNN is averaged over three different values of k (3, 5, 7). Table VI indicates that the 

proposed likelihood-based FS induced type 2 fuzzy classifier attains the highest 

classification accuracy (above 90% in each case) as compared to its standard competitors. 

The last column of the table represents statistical significance of the difference of the 

means of best two algorithms. Positive (+) significance means that if we use two-tailed 

test, then the t value of 49 degrees of freedom becomes significant at a 0.05 level of 

significance. Negative (-) significance indicates not statistically significant and „NA‟ 

represents the cases for which two or more algorithms best accuracy results.  

 Table VII provides the individual class performance by using confusion matrix of 

four different classes (easy, moderate, hard and inactivity) while implementing type-2 

fuzzy classifier and proposed likelihood-based FS technique. Table VII indicates that the 

classification accuracy for the individual class is high, over 90% 
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4.8 Experiment 7: McNemar’s Statistical Test   

McNemar‟s test [9] is one popular statistical test to compare the relative 

performance of the proposed algorithm with existing standard techniques. Here, we too 

apply McNemar‟s test to compare performance of the proposed likelihood-based feature 

selection induced type-2 fuzzy classifier with the above mentioned three standard 

classifiers including LSVM, kNN and SVM-RBF. The results of Mcnemar‟s test, as 

reported in Table VIII depends on the value of the parameter p, where p indicates the 

estimated probability of rejecting the null hypothesis of a study question when that 

hypothesis is true. Table VIII confirms that the proposed classifier outperforms all its 

competitors by a wider margin. 

  

Table VI Mean and Standard Deviation of Classifier Accuracy Using Proposed 

Likelihood Based FS Technique 

Features 

Dimensions 

 

 

Difficulty 

Level / 

Class 

Average Classifier Accuracy 

 (In %) 
Statistical  

Significance 
L-SVM             KNN 

 

SVM-RBF  

 

Type-2 

Fuzzy 

Classifier 

 

 

 

 

112  

(Reduced to 

25) 

 

Easy 

 

 

Medium 

 

 

Hard 

 

 

Inactivity 

                           

 

75.156 

(0.01936) 

 

72.309 

(0.01584) 

 

71.473 

(0.01575) 

 

74.794 

(0.02941) 

 

 

77.431 

(0.0) 

 

76.139 

(0.01894) 

 

73.164 

(0.01795) 

 

76.981 

(0.01349) 

 

 

83.174 

(0.01493) 

 

80.197 

(0.01346) 

 

76.197 

(0.01976) 

 

76.197 

(0.01976) 

 

93.797 

(0.01949) 

 

92.647 

(0.01719) 

 

90.794 

(0.01019) 

 

93.147 

(0.02009) 

 

+ 

 

 

+ 

 

 

+ 

 

 

+ 
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Table VIII Confusion Matrix of Four Different Classes Using Fuzzy Type-2 

Classifier and Proposed Likelihood-Based FS Technique 

 

Predicted Class 

Actual Class 

Easy Moderate Hard Inactivity 

Easy 93.797 2.458 1.0977 2.6473 

Moderate 2.598 92.647 1.913 2.842 

Hard 3.892 3.197 90.794 2.117 

Inactivity 3.414 1.941 1.498 93.147 

 

Table VII Statistical Test 

 

Classifier algorithm used for 

comparison (features:25) 

REFERENCE ALGORITHM: LIKELIHOOD-

BASED FS INDUCED TYPE-2 FUZZY 

CLASSIFIER 

                Z p 

 

L-SVM 

 

 

kNN 

 

 

SVM-RBF 

 

36.257 

 

 

21.145 

 

 

7.145 

 

  

p<0.00001 

 

 

p<0.00001 

 

 

p<0.00001 
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CHAPTER 5  

Conclusion and Future Scope 
 

 

 

The thesis is concluded with this chapter. In section 5.1, the 

conclusion and fruitfulness of the work is discussed briefly. In the 

next section, an outline is provided for future research works that can 

be done in this domain. 
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5.1 Feature Selection 

 This paper proposes an interesting approach to detect cognitive load of human 

subjects using fNIRS signal. Seven different feature sets are utilized here to identify right 

features to classify cognitive load. Type-2 fuzzy classifier is used as it gives additional 

degree of freedom to model the uncertainties a dataset carries within than the ordinary 

type-1 fuzzy logic. Without depending upon a single rule-base, it takes into consideration 

a perturbation in an uncertainty to create a more flexible rule-based for fuzzy reasoning. 

The fuzzy membership ranges have been defined to detect subjective load while the 

particular subject performs easy, moderate and hard cognitive tasks. Cognitive load 

distribution of the subject with increasing difficulty level is analyzed from the 

oxygenation level recorded using fNIRS device. It is clear from the experimental results 

that the proposed likelihood-based FS induced type 2 fuzzy classifier attains the highest 

classification accuracy (above 90% in each case) in comparison to its standard 

competitors including LSVM, kNN, BPNN and SVM-RBF. Experiment also reveals that 

individual class performance (easy, moderate, hard and inactivity) by using type-2 fuzzy 

classifier and proposed likelihood-based FS technique is high, over 90%. 

5.2 Scope of Future Research 

Though, a lot of works has been done cognitive load detection and also on the 

pre-frontal cortex brain signal using fNIRS device for mental arithmetic stability, there 

lay a lot of scopes in working in this domain.  
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According to free lunch theorem, no classification algorithm can be termed as 

best. Thus, the first scope lies in designing better classifier for dealing with this imagery 

cognitive task related problems, where the job is more difficult (say, combination of 

mental arithmetic, landscape, music imagery).  

Cognitive load has been measured using the quantification technique. Here lies a 

scope on developing a better metric to measure the load, and mapping it with the spatial 

load distribution image taken from the fNIRS to verify the effectiveness of the metric.    
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APPENDIX A  

MATLAB Source Codes 

This section deals with the necessary source codes developed on a MATLAB 

environment. The codes are easy to use and have been organized in a tabular form with 

comments for the ease of use. 

Table IX Noise Elimination from fNIRS Signal 

Source Code 1: Noise Removal 

r = 16; %#independent components = #channnels 
n = size(X,1); 
[Xica, A, T, mu] = myICA(X', r); 
t = 0 : 0.5 : size(Xica,2)/2-0.5; 

   
for i = 1 : size(X,2) 
    figure; 
    subplot(2,1,1), plot(t,X(:,i)/max(abs(X(:,i)))); 

     
    subplot(2,1,2), plot(t,Xica(i,:)/max(abs(Xica(i,:)))); 
end 

   
for i = 1 : size(Xica,1) 
    figure; 
    subplot(2,1,1), plot(t,Xica(i,:)/max(abs(Xica(i,:)))); 
    x = Xica(i,:)'; 
    BandPassSpecObj = fdesign.bandpass('N,Fp1,Fp2,Ap',10,0.1,0.4,1,1.96); 
    BandPassFilt = design(BandPassSpecObj, 'cheby1'); 
    y = filter(BandPassFilt, x); 
    M(i,:) = y'; 
    subplot(2,1,2), plot(t,y/max(abs(y))); 
end 
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Table X Proposed Feature Selection Method 

Source Code 2: Likelihood Based DE-Driven Feature Selection 

function [ X_red ] = feature_selection( Xfea ) 

%% 
%This function tries to optimize the feature vector using differential 
%evolution technique. 
%% 
%Parameter definitions 

  
MAXiter = 500;      %maximum no of iteration used 
NP = 50 ;       %number of vectors in a pool of population 
F = 0.8; 
CR = 0.7; 
lambda = rand(1)*10; 
Xdim = size(Xfea,2); 
Xmut = zeros(NP,Xdim); 
fvalue = zeros(NP,1); 
%% 
%Initialization 
Xpop = (ones(NP,Xdim) - rand(NP,Xdim))>0.5; 

  
for i = 1 : NP 
    Xindex = []; 
    Xindex = find(Xpop(i,:)>0); 
    fvalue(i,:) = obj_func(Xfea(:,Xindex),y, lambda); 
end 
[~ ,minindex] = min(fvalue); %value and index of the minimum cost function 
best = Xpop(minindex,:);        %best feature vector of the generation 

  
%% 
%Generation 

  
for iter = 1 : MAXiter 
    for i = 1 : NP 

         
        %Select the three random vectors for vector i 
        r1 = floor(rand(1)*NP)+1; 
        r2 = floor(rand(1)*NP)+1; 
        r3 = floor(rand(1)*NP)+1; 
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        while(r1==i) 
            r1 = floor(rand(1)*NP)+1; 
        end 
        while(r2 == i||r2 == r1) 
            r2=floor(rand(1)*NP)+1; 
        end 
        while(r3 == i|| r3 == r1 || r3 == r2) 
            r3 = floor(rand(1)*NP)+1; 
        end 
        %% 
        %Mutation 
        %formation of mutant vector 

         
        Xmut(i,:) = (Xpop(r1,:) + F*(Xpop(r2,:) - Xpop(r3,:)))>0.5; 

                 
        for j = 1 : Xdim 
            if rand(1) < CR 
                Xu(i,j) = Xmut(i,j); 
            else 
                Xu (i,j) = Xpop(i,j); 
            end 
        end 
        Xuindex = []; 
        Xuindex = find(Xu(i,:)==1); 

         
        fvalue_u = obj_func(Xfea(:,Xuindex),y, lambda); 

         
        if fvalue_u < fvalue(i,1) 
            fvalue(i,1) = fvalue_u; 
        end 
    end 
        [~ ,minindex] = min(fvalue);      
        best = Xpop(minindex,:); 
end 
        X_red = Xfea(:,find(best>0)); 
end  
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Table XI Likelihood-Based Objective Function 

Source Code 3:  Likelihood Based Objective Function 

function [ f ] = obj_func( X , y, lambda ) 

NC = max(y); % total number of classes present 
Xnew = zeros (size(X,1),size(X,2),NC); 

  
for i = 1: size(X,1) 
    for j = 1 : NC 
        if y(i,1) == j 
            Xnew (i,:,j) = X(i,:); 
        end 
    end 
end 
mean_val = zeros(NC,size(X,2)); 
cov_val = zeros(size(X,1),size(X,2),NC); 
inv_cv = zeros(size(X,1),size(X,2),NC); 
for i = 1 : NC 
    mean_val(i,:) = mean(Xnew(:,:,i)); 
    addi = zeros(size(Xnew,1),size(Xnew,2)); 
    for j = 1 : size(Xnew,1) 
        addi = addi + (Xnew(j,:,i)-mean_val(i,:))'*(Xnew(j,:,i)... 
                                                -mean_val(i,:)); 
    end 
    cov_val(:,:,i) = addi/(Size(Xnew,1)-1); 
    inv_cv(:,:,i) = pinv(cov_val(:,:,i)); 
end 

  
term1 = zeros(NC,size(Xnew,1),NC); 
for i = 1 : NC 
    for j = 1 : size(Xnew,1) 
        for k = 1 : NC 
            term1(k,j,i) = (Xnew(j,:,i)-mean_val(k,:))*inv_cv(:,:,k)*...  
                         (Xnew(j,:,i)-mean_val(k,:))'... 
                         ./sqrt(det(cov_val(:,:,k))); 
        end 
    end 
end 
term2 = 0; 
for i = 1 : NC-1 
    for j = i+1 : NC 



APPENDIX A 
 

81 | P a g e  
 

        term2 = term2 + (1/sqrt(det(cov_val(:,:,j))))- ... 
                    (1/sqrt(det(cov_val(:,:,i)))); 
    end 
end 
L1 = 0; 
for i = 1 : NC 
    L1 = L1 + 4*sum(sum(term1(i,:,i)))-sum(sum(term1(:,:,i))); 
end 

  
f = L1 + lambda*term2; 
end 

 

Table XII Proposed Type-2 Fuzzy Classifier 

Source Code 4: Type 2 Fuzzy Classifier 

function [ t1red ] = t2fuzzclassifier(Xtest,m,s) 
% This function is used to generate the type 2 gaussian type membership 
% function of the test input variables and subsequent reduction of type 2 
% into type 1 by using weighted average method. 
r = size(m,1); 
c = size(m,2); 
max_chan = size(Xtest,1); 
fgauss = zeros(max_chen,r,c); 
for i = 1 : max_chan 
    for j = 1 : r 
        for k = 1 : c 
            fgauss(i,j,k) = gaussmf(Xtest(i,k),[s(j,k) m(j,k)]);  
        end 
    end 
end 
t1red = zeros(max_chan,c); 
for i = 1 : max_chan 
    for j = 1 : c 
        sd = std(fgauss(i,:,j)); 
        mn = mean(fgauss(i,:,j)); 

         
        f2gauss = gaussmf(fgauss(i,:,j) , [sd mn]); 
        t1red(i,j) = sum(f2gauss.*fgauss(i,:,j))/sum(f2gauss);  
    end 
end 
end 
 


