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PREFACE

The primary motif behind the formulation and development of Brain-Computer Interfaces is to
provide aid to the patients suffering from several motor disabilities and thus cannot interact
with the surrounding environment; hence the only possible way of survival for them is to
instruct an assistive device that is capable of reading and decoding oscillatory activities
occurring inside the cognitively intact brain. The thesis is focused on the application of
different computationally intelligent tools that enhances the system performance in the
concerned research domain. Two major problems rather two phases of a problem have been
mainly addressed in the thesis, firstly, Brain Localization and the other one is Feature
Extraction. There are different modalities for acquisition of brain signal waves, among them
EEG is found to be the most suitable for the applications discussed in the thesis.

The first segment proposes a novel framework for selection of optimal EEG electrodes and
feature set as well. A variant of the traditional Firefly Algorithm, formally termed as Self
Adaptive Firefly Algorithm (SAFA) has been employed as an optimization tool to serve the
purpose. From elementary neurophysiological knowledge it is well known that not all brain
regions contribute equally for all sort of cognitive tasks, hence it is extremely important to find
out the specific regions of human brain that is activated for a specific task. Again, redundant
information is also undesirable for any problem as that leads to a huge computational expense,
so selection of features also plays a key role in EEG based BCI systems.

The second segment designs an EEG based BCI system from pattern recognition
perspective and emphasizes on the impact of feature extraction in such a system. Due to the
poor spatial resolution of EEG signals spatial filtering has been emerged as one of the most
efficient ways of spatially representing EEG signals. In this case, CSP has outperformed the
other basic spatial filters in terms of most of the performance metrics. CSP basically projects
the raw EEG signals into another subspace such that the projected signals are maximally
discriminate. A regularized framework has been developed to compensate for the drawback of
overfitting and lack of robustness. The efficacy of the designed framework has been tested by
implementing for classification of EEG motor imagery paradigms. Two distinct methodologies
have been adopted stressing on different phases of a pattern recognition based approach and in
both the cases CSP has been utilized as a feature extracting tool. With respect to EEG based
BCI system design the novelty in the present research lies in the process of bypassing
peripheral muscular activities with the help of an assistive machine that can detect mental
states easily. Sufficient experimental data acquisition has been carried out in laboratory and the

efficiency of the proposed scheme has been validated by conducting standard statistical tests.

Vi
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Chapter 1

Introduction

This chapter primarily emphasizes upon the main objective of the thesis as a whole by
introducing the necessary preliminary concepts. It attempts to provide an insight to
the rudimentary concepts of man-machine interaction along with its scopes of
possible applications of BCI to develop an intelligent interface to cater to the human
needs. Section 1.1 recapitulates the steps of evolution of a basic BCI device and states
its attributes with a functional definition. Section 1.2 introduces Computational
Intelligence (CI) as a new research discipline and establishes a link of application of
CI techniques in the present work. Section 1.3 delineates the prerequisite concepts of
brain localization and reports the recent trends of research in the domain. Section 1.4
describes different brain signal measuring modalities and justifies the reason of
choosing EEG as the preferred technique for the present work by reporting its
superiority over the existing methodologies. Section 1.5 highlights one of the most
popular EEG paradigms, termed as Motor Imagery (MI) and presents the related
works in the domain of MI detection. Section 1.6 provides a rough outline regarding
the possible applications of the thesis. Finally section 1.7 and 1.8 presents the

objective and organization of the thesis briefly.
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1.1 INTRODUCTION TO BRAIN COMPUTER INTERFACE (BCI)

A BCI [1] system primarily aims at establishing a platform for successful communications
between a human being and an assistive machine, preferably a computer and is employed in a
large number of applications. The preliminary concept of BCI [2] has been evolved through
well known American TV series Star Trek that was aired long back in 1966. The series
presented a character that suffers from locked in syndrome where the body is paralyzed after
losing the voluntary control of the muscles but the person is cognitively intact, that is a
functionally active brain is trapped in an inactive body that is not able move its organs. In
such a scenario, the only possible modality to communicate with the environment for survival
is to employ an assistive device that can read brain signals and decode them into executing
necessary control commands. Such a device is termed as BCI [3].

Back in 1960, such an idea of controlling a device using brain signal patterns seemed to
be entirely based on fantasy, despite the successful attempts of German scientist Hans Berger
to record and measure brain electrical potentials from human scalp in 1929. Moreover, the
technology available to measure and process of brain signals for analysing user intensions
was very limited. The first BCl was introduced by Dr. Grey Walter in 1964. Unfortunately,
Dr. Walter did not involve himself in publishing this revolutionary development; instead he
simply discussed the basic matters while presenting a talk to Ostler Group, London. During
those days and even since the turn of the century, there were very limited number of research
enthusiasts who invested their valuable intellectual resources in this particular research
domain and it is needless to say that there were very few labs actively dedicated for research
conducted in the field of BCI. But the situation has changed these days, extensive research
carried out in the field of neuroscience over the last decades has led to much better
understanding about the working principle of human brain. Now a day, with the help of novel
signal processing algorithms and the rapid development of computing power have enabled
successful implementation of BCI systems in real time applications [4]. Unlike earlier days,
today thousands of research groups are participating in active BCI research and as an obvious
consequence; every day there is more BCI related papers, conferences, public talks, media
articles and so on. More importantly, BCI is no longer considered as science fiction and thus
BCI has succeeded in achieving its initial goal of proving the worth of rehabilitative
applications of BCI for patients suffering from motor function disabilities.

Normally for performing a task involving control or communication, firstly the process

is initiated with the user’s intent which in turn triggers a complex operation of activating
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specific brain areas that contribute for the specific control task and next signals are
transported through the motor pathways to the corresponding muscles that perform the
physical movements required to complete the task. A BCI system provides an alternative path
way by recording the brain signal pattern according to a user’s intent and then translating the
recorded brain activity into effective control instruction for real time applications.
Deciphering these brain signal patterns into active commands require the tools of pattern
recognition and signal processing which can be employed by using a computer. Since the
processed signals originate from the human brain and because of the involvement of a
computer in the procedure, the system is aptly termed as “Brain Computer Interface”. A BCI
system possesses three mandatory attributes,

» It records signal rhythms directly from human brain (invasively or non-

invasively)
» It must send feedback to the user for real time signal processing
» While recording brain signal potentials the user must involve himself in

intentional control.

Machine
Human
Hardware Software

Brain Sensory
Inputs

P \ Audio/Video

‘I Subsystems

Output Devices
Recognition
of Input
Input Devices Modalities

- Input

'a\ ﬁ Subsystems
Human Q

Response

Fig 1.1 Overview of BCI System
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Fig 1.1 depicts a detailed description of the fundamental concepts of BCI through
different interfaces using a diagram. As shown in the diagram, a user can interact with the
hardware directly through an interface. A man-machine interface environment always has a
feedback component incorporated in the input-output chain that evaluates and controls the
data which traverses from the user to an assistive computer and comes back to the user as well
in the form of a recurrent loop.

Although most researchers have accepted the formal terminology and the relevant
concepts of BCI, but there is no universally accepted formal definition of BCI, in fact many
variants of the same are found in the BCI literature. According to Wolpaw, “A direct brain-
computer interface is a device that provides the brain with a new, non-muscular
communication and control channel”, in the words of Donoghue, BCI can be defined as, “A
major goal of a BMI (brain-machine interface) is to provide a command signal from the
cortex. This command serves as a new functional output to control disabled body parts or

physical devices, such as computers or robotic limbs .

1.2 Computational Intelligence

Computational Intelligence (Cl) [5] is originally an invention of Professor Lotfi A. Zadeh.
Since its initiation the discipline has undergone numerous alterations both in its content as
well as organization. The elementary definition of Cl emphasizes on fuzzy logic, genetic
algorithm, neural networks and probabilistic reasoning along with the study of their
intersecting regions. Gradually, the periphery of CI expanded and today’s definition of CI is
greatly motivated by the biologically inspired models of machine intelligence. Modern
concepts of CI are mainly concerned with granular computing, neural computing,
evolutionary computing and their impact and interaction with artificial life, chaos theory and
others, as shown in Fig. 1.2.

According to Prof. James Bezdek CI can be defined as, “A system is computationally
intelligent when it: deals with only numerical (low level) data, has pattern recognition
components, does not use knowledge in the Al sense; and additionally when it (begins to)
exhibits i) computational adaptivity, ii) computational fault tolerance, iii) speed approaching
human like turnaround and iv) error rates that approximate human performance. ”

In the present context, computational adaptation typically refers to the ability of a
system to tune its parameters following certain optimizing criterion and depending upon the
temporal changes in its input and output variables. Most of the Artificial Neural Networks

(ANN) follows this attribute. Further, computational fault tolerance is more or less common
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characteristic in parallel and distributed environment since computational resources are
replicated at each of the distributed unit in such a way that even if a few units are damaged or
malfunctioning then that would not cause the whole system to shut down, as resources are
available at each unit. It is important to note that while ANN and fuzzy logic is controlled by
their inherent fault tolerance mechanisms, but belief networks or genetic algorithms can be
configured in this way to get the benefit of computational fault tolerance.

Artificial life, Chaos
Theory and others

Granular
Computing

Neuro
Computing

Evolutionary
Computing

Fig. 1.2 Computational Intelligence Family

The other two important aspects of Bezdek’s definition is related to computational
speed and error rates, as it is often seen that accuracy is sacrificed to achieve higher speed
which is extremely undesirable in this context. Both ANN and fuzzy logic produce
considerably quicker responses against any input excitation, moreover unlike traditional
systems fuzzy logic has provisions for firing multiple rules ensuring the partial matching of
the available facts with antecedent clauses of those rules. Hence fuzzy logic is less susceptible
to error and has got high computational speed as well. Similarly, ANN has provisions for
updating multiple neurons concurrently yielding high computational speed and the parameters
are altered wisely at each step satisfying certain constraints such that error rate is minimized.
The parallelly constructed structure of Genetic Algorithms(GA) and belief networks increases
the computational speed and their inherent filtering component takes care of the accuracy

issues and enhances the same to the greatest possible extent. To justify the first clause of
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Bezdek’s definition it is important to note that all of fuzzy logic, GA and ANN deals with
numerical data, they have certain pattern recognition components and none of them use
traditional Al concepts, hence from this point of view fuzzy logic, GA and ANN are reliable
members of CI family.

Basically, computational intelligence emerged as an alternative to deal with the
shortcomings of traditional Artificial Intelligence (Al). Gradually, the limitations of Al
became more and more pronounced over the decades when Al became incompetent to serve
the demand of search, optimization and machine learning in i) information systems with large
biological and commercial databases, ii) factory automation for steel, aerospace, power and
pharmaceutical industries. Almost at the same time, the contemporary model of non
traditional machine intelligence including rough sets, fuzzy logic, chaos theory, artificial
neural networks, genetic algorithms etc. proved their worth and efficiency to deal with the
drawbacks of Al and thus the limitations of traditional Al opened up new avenues for the non
conventional model of various engineering applications. This new discipline is termed as

Computational Intelligence.

1.3 BRAIN LOCALIZATION FOR BCI

EEG signals despite having an excellent temporal resolution suffers from the drawback of
poor spatial resolution because of the limited number of recording sites over the human scalp
and also due to the shielding effect of the skull. Due to volume conduction effect, the source
signals inside the brain often gets scattered and as a result many electrodes placed in the
closed proximity of that specific scalp region records components of the concerned source, as
shown in Fig. 1.3. It is considered as a challenging problem in the domain of neuroscience to
predict the active regions of brain from the recorded potential distributions. Estimation of
original sources is apparently a tricky problem because there can be an infinite combinations

of internal currents that can result in creating such potential distributions over human scalp.

A BCI can be briefly defined as a machine learning device that can detect and decode a
certain set of patterns from the control signals directly acquired from a user’s brain. In the
context of BCI, the fundamental concept behind source localization lies in the mapping of
multichannel EEG signal into a higher dimensional subspace that is comprised of multiple
sources that are modelled either as current dipoles or monopoles. Further, the source
localization can be proved as an efficient tool for classifying EEG signals as well, instead of

employing the traditional machine learning algorithms utilizing source localization a user can
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Fig 1.3 Volume Conduction effect of Human Brain

Architecture of a BCI
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Y Application & Interface

Measurement Feedback \
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Fig 1.4 Overview of EEG Based BCI System

exploit two neuro physiological postulates by reconstructing the sources of recorded scalp

potentials,
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Table 1.1 HIGHLIGHTS OF THE TRENDS IN EEG SOURCE LOCALIZATION RESEARCH

Author and Year of
Publication

Highlights

Zarghami et al.(2015)

Transfer-Function-Based Calibration of Sparse EEG Systems for Brain Source
Localization

Shirvany et al. (2014)

Particle Swarm Optimization Applied to EEG Source Localization of
Somatosensory Evoked Potentials

Hammond et al. (2013)

Cortical Graph Smoothing: A Novel Method for Exploiting DWI-Derived
Anatomical Brain Connectivity to Improve EEG Source Estimation

Shirvany et al. (2012)

Investigation of Brain Tissue Segmentation Error and Its Effect on EEG Source
Localization

Yitembe et al. (2011)

Reduced Conductivity Dependence Method for Increase of Dipole Localization
Accuracy in the EEG Inverse Problem

Antelis et al. (2010)

DYNAMO: Dynamic Multi Model Source Localization Method for EEG
and/or MEG

Barton et al. (2009)

Evaluating the Performance of Kalman-Filter-Based EEG Source Lcalization

Noirhomme et al.(2008)

Single-trial EEG Source Reconstruction for Brain-Computer Interface

Xu et al. (2007)

Lp Norm lIterative Sparse Solution for EEG Source Localization

Rodriguez-Rivera et al.
(2006)

MEG and EEG Source Localization in Beamspace

Qiu et al. (2005)

A Feasibility Study of EEG Dipole Source Localization Using Particle Swarm
Optimization

Gutierrez et al. (2004)

Estimating Brain Conductivities and Dipole Source Signals with EEG Arrays

Rodriguez-Rivera et
al.(2003)

Statistical Performance Analysis of Signal Variance Based Dipole Models for
MEG/EEG Source Localization and Detection

Schimpf et al. (2002)

Dipole Models for the EEG and MEG

Sclabassi et al. (2001)

EEG Source Localization: a Neural Network Approach

Brain Localization and Feature Extraction Using Computational Intelligence Techniques
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> Lateralization of electrocortical activities (for example, a stronger arousal of left
sensorimotor cortex due to movement of right hand because of the contra lateral
working mechanism of human brain)

> Spatially representative distributions of different extremities in motor as well as
sensorimotor cortex region.

In the later stage, this phenomenon vyields activations that are spatially discriminate
during real as well as imaginary movements of various extremities and thus source
localization can be used as an efficient tool for differentiating brain signals which in turn can
enable a BCI system to classify multitude of conditions.

Further, BCI systems based on the concept of source localization are resistant to the
local variations of EEG signals and hence can be chosen as a robust alternative to deal with
such situations. To use the traditional machine learning algorithms it is often required to train
the algorithms a large number of times because of the variations in EEG signal patterns over
time instances as well as different subjects, which can result in a high run time complexity as
well.

Contrarily, as long as the spatial locations of different electrodes remain constant, such
trivial variations won’t affect BCI systems designed for source localization. In the present
work, we have proposed an extension of the source localization based upon Independent
Component Analysis (ICA) [6]. By employing ICA, we can decompose the EEG signal
recorded into N maximally independent components where N is the maximum number of

electrodes.

1.4 BRAIN SIGNAL MEASUREMENT TECHNIQUES

In order to measure the neuronal activity occurring inside human brain, several devices [26]
with different working mechanisms are available [7].

Firstly, Electroencephalogram (EEG) [8] devices are used to detect electrical signals
originating within human brain. Due to neuronal firing, an ionic decomposition occurs that
yields a state leading to the formation of dipoles and as a result negative charges are found to
be accumulated over the motor cortex. Due to the attractive and repulsive forces that act in
between these ions, volume conduction occurs as a result of which information is transported
across the brain to maintain resting potential and to propagate action potential, as shown in
Fig. 1.5. There are a variety of electrode options that are available in the market which are
capable of recording these signals from human scalp. For example, tin (Sn) electrodes, gold

plated (Au) electrodes, silver or silver chloride (Ag/AgCl) electrodes etc. can serve the
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purpose. But in most of the cases, Ag/AgCI electrodes are preferred over others due to its
longevity, cost effectiveness, precision and ease of use. More importantly, the signal recorded
from human scalp has its amplitude in the order of microvolts (uV), to deal with signals at
this amplitude level becomes extremely difficult. Hence, a mandatory operation performed by
every EEG device is the amplification of the original scalp recording to a certain threshold
limit. Further, to employ and analyse these signals using a digital computer requires
digitization of the same that is an analog to digital converter is also embedded as a part of
EEG acquisition device. Finally, a band pass filter is employed to extract the signals within
the range of 0-70 Hz, which is usually considered as the maximum range of EEG [9]
recordings.

Functional Magnetic Resonance Imaging (fMRI) [10] is another modality that utilizes
the difference in magnetization occurring due to oxygenation and de-oxygenation of blood as
the prime measure. Hence, the coupling between cerebral blood flow and neuronal arousal has
a major influence in this method. Despite its precision of locating sources of neuronal firing
inside human brain there remains a time lag between actual firing and the detection of the
concerned source. This temporal delay does not allow these FMRI systems to be employed in

real time on line applications.

@ Firing Neurons

@ Inactive Neurons

Intra-cortical
Electrodes

Yl(t) :W11X1(t) + W21X2(t) +W31X3(t)

Fig. 1.5 Neurophysiological Working Mechanism of EEG

Magnetoencephalography (MEG) is another brain rhythm recording device that

considers the magnetic fields arising out of the electrical signals originating within human
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brain as their primary metric. Because of the sensitivity involved with these kinds of signal,
extremely expensive high quality equipments are recommended to carry out these
experiments successfully. So, high cost is the reason which stops it from gaining wide
popularity.

Electrocorticography (ECoG) [11] is another device which has maximum of the
attributes similar to EEG in terms of working mechanism, but the difference lies in the
procedure of implanting the electrodes on/inside human scalp. Unlike EEG, in ECoG systems
the electrodes are placed inside the cortex that is over the exposed area of human brain, to
enhance the information content. Since, for such electrode placements a user needs to undergo
craniotomy (surgery on skull), it is not always a feasible method for real time applications.

For similar reasons, in spite of having excellent temporal and spatial resolutions of the
brain signals acquired through the electrodes placed deep inside human brain, intra-cortical
electrodes [12] are not always considered as the preferred alternative for most of the lab based

experiments. In fact, the invasiveness greatly limits the applicability of these electrodes.

fNIRS L‘
1‘ -
~p

Intra-corticl
"erede VMethods  vec

EEG

Fig. 1.6 Brain Signal Measuring Interfaces (Invasive & Non invasive)

Functional Near-Infrared Spectroscopy (fNIRS) [13] is a hemodynamic technique
based functional neuroimaging method where the transmission/scattering characteristic of the

near Infrared (NIR) radiation has been employed and it is inferred that oxygenated
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haemoglobin molecules and deoxygenated haemoglobin molecules absorb and scatter the
light at different portions of NIR spectrum [26]. Hence, the degree of attenuation or the signal
strength of the light received back from the target tissue measures of the oxygen concentration
in different regions of brain and thereby locates the source of neuronal firing.

Fig. 1.6 [26] illustrates the different equipments that are popularly used to record brain
signal rhythms. From the above discussion, it can be inferred that invasive recording
techniques combine excellent signal quality, very good spatial resolution, and a higher
frequency range; moreover these recordings are less vulnerable to artifacts. Further, the
cumbersome application and re-application of electrodes is unnecessary for invasive
approaches. Despite having these advantages, invasive methods have a serious limitation of
surgery requirement. From ethical and financial perspective, neuro surgery is often considered
as an impractical solution other than the users who depend upon BCI for communication. In
fact, in certain cases, these needs can be fulfilled by non invasive techniques thus avoiding the
complexity of risky surgeries. More importantly, long term stability of these approaches is
also doubtful which motivated us to consider EEG as the most suitable bio-modality to carry

out lab based experiments for analysing brain activities.

TABLE 1.2 RELATIVE DRAWBACKS OF OTHER BRAIN SIGNAL RECORDING
INTERFACES OTHER THAN EEG

Measuring Limitations
Interface

Exorbitant, large sized and immobile interface, aggravates
fMRI claustrophobia in the users while recording

Exposure to high intensity (> 1 Tesla) magnetic fields, bulky
MEG and stationary device

Invasive technique, requirement of risky surgery for
ECoG implantation of electrodes

Poor temporal resolution, less depth of penetration and
fNIRS recording of limited sites over the human scalp

1.4.1 Electroencephalogram (EEG)

Electroencephalography [14] refers to the well established procedure of recording EEG

signals from human scalp using electrodes that has been used in the clinical and research
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setup since last few decades. EEG signal acquisition system is comparatively light weight,
cost efficient and easy to apply. EEG based BCI systems (Fig. 1.4) possess exceptional
temporal resolution that is those systems can detect changes within a predefined interval of
time with precision. On the other hand, EEG signals suffer from poor topographic resolution
and more importantly they are susceptible to be disturbed by noise and artifacts (for example,
bioelectrical signals originated because of the eye movement or eye blink
(Electrooculographic activity or EOG), or from body muscles (Electromyographic activity or
EMGQG)).
The primary attributes of EEG signals can be listed as,

» EEG signals are extremely non-stationary in nature because of the asynchronous

neuronal firing over certain period of time.

» EEG signals are non-periodic and non-Gaussian in nature.

Y

The amplitudes of EEG signals lie within the range of [-10pV, 10uV].

» Usually, the frequency band in the range 0.5-70 Hz is referred to as EEG bandwidth.(
Table 1.3)

> EEG signals are primarily determined by the arousal of different brain regions. The
cerebral cortex which covers the outer part of the cerebrum, which is responsible for
major part of information processing inclusive of thoughts and action, is primarily
segmented into four components termed as “lobes”. Each lobe is responsible for
carrying distinct set of functions; Fig 1.7 depicts a clear picture of brain partitioned
into functional components. To conduct an EEG based experiment, it is extremely
important to have a prior knowledge about the operations of the different regions of
the cerebral cortex in order to acquire relevant signals corresponding to a particular
cognitive task.

o Frontal lobe: Creative thought, problem solving, intellect, judgment, attention,
abstract thinking, physical reactions, muscle movements, coordinated movements and
personality. The prefrontal region is responsible for behaviour, planning and short
term memory.

e Parietal lobe: Visual functions, language, reading, internal stimuli, tactile sensation
and sensory comprehension, visuospatial processing

o Temporal lobe: Senses of smell and sound, processing of complex stimuli like faces
and scenes

e Somatosensory Cortex: Perception of somatosensations

o Occipital lobe: Sense of sight or vision
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e Motor Cortex: Movement co-ordination

motor cortex somatosensory cortex

frontal lobe panietal lobe

occipital lobe

cerebellum

- spinal cord

Fig. 1.7 Functional Areas of Human Brain

TABLE 1.3 EEG FREQUENCY BANDS

Frequency
Band | Range Implications

(H2)
Delta 05-4 Sleep, fatigue, severe slowing of mental processes

Meditation, attention lapses, slowed processing, memory

Theta | 4-8 consolidation
Alpha | 8-13 Relaxation, readiness, inactive cognitive processing
Beta 13-30 Focus, active concentration, alertness

30-70 Cross—_modal sensory procgssing, short-term memory
Gamma matching of recognized objects

A number of EEG signal modalities are used for BCI systems depending upon the

stimulus presented to a user and requirement of the problem. The most commonly used
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modalities include P300 potential, slow cortical potential (SCP), Steady State Visually
Evoked Potential (SSVEP), Event Related Desynchronization/ Synchronization (ERD/ERS).

A P300 based BCI system depends upon a stimulus that flashes in succession.
Practically, stimuli are comprised of letters, but at times it can be goal directed symbols for
practical applications such as robot movement, cursor control etc. Selective concentration and
attention to a specific flashing symbol yields a brain pattern formally termed as P300, which
is originated from the centro parietal brain region at around 300ms after the presentation of
the stimulus.

SCP signifies the change in the membrane potentials of the cortical dendrites that lasts
typically upto several seconds starting from 300ms after the stimulus presentation. This
response is usually observed in the motor cortex region.

An SSVEP based BCI system requires a number of stimuli where each distinct stimulus
corresponds to an output command, which in turn is associated with a task that a BCI based
system can execute. Unlike P300 systems, instead of flashing in succession the stimuli
continues to flicker at different frequencies in the range of 6-30 Hz. Paying attention to a
flicker elicits an SSVEP activity in the visual cortex with the same frequency as that of the
target flicker. So SSVEP based BCI systems are capable of determining which flicker has
occupied a user’s attention simply by checking the SSVEP rhythm in the visual cortex at a
specific frequency.

ERD/ERS [15] refers to the decrease/increase in EEG signal amplitudes in specific
frequency bands during execution of dynamic cognitive processes as a response to excitation
invoked by stimuli presentation. Motor Imagery tasks produce ERD/ERS in motor cortex

while tactile stimulations give rise to alpha band ERD/ERS in somatosensory cortex.

1.5 MOTOR IMAGERY

Not only actual task execution, but the preparation of movement or imagination of task
execution elicits a change in the Sensorimotor Rhythms (SMR). An SMR typically signifies
the oscillations in the brain activity recorded from the somatosensory and motor cortex
region. As mentioned previously, ERD/ERS patterns can be volitionally produced by motor
imagery signals which refer to the imagination of the movement without actually performing
it. Topographically, ERD/ERS patterns follow a homuncular mechanism that is the oscillatory
activity invoked by right hand motor imagery is most prominent over the electrodes ( Cs)
placed over the left hemisphere and vice versa for the left hand motor imagery case [16]. So,

the activity invoked by hand motor imagery is located on the contralateral side [17]. Since the
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cortical areas corresponding to left and right leg motor imagery resides too close, hence it is
not possible to discriminate between left foot and right foot in EEG. For similar reasons,
detection of ERD/ERS patterns corresponding to individual fingers is not feasible. Since,
hand areas, feet areas and tongue areas are topographically different and large enough hence
in the present works, these four motor imagery signals are considered to control BCI systems.
Unlike selective attention based BCI, motor imagery based system do not require any external
stimulus, but a user requires to adapt the skills of motor imagery to perform it with efficiency.
For this reason, BCI systems based upon motor imagery do not produce satisfactory results in
the first session itself instead some training can enhance the result. Again the performance
and the training time also vary amongst the subjects, however longer training is recommended
at times for sufficient control. Thus, training is an important aspect in most of the BCI
systems; in such systems users undergo a process called operant conditioning. During BCI
learning, operant conditioning incorporates a feedback that is displayed on the computer
screen and formally known as “neurofeedback”. Usually, the feedback is in the visual form,
but it can be presented in tactile as well as audio form also. The feedback basically evaluates
the user’s performance that whether he has done well or failed, a user can exploit this

feedback to optimize his performance and thus enhance the BCI system outcome.

1.6 PRINCIPLES OF COMPUTATIONAL INTELLIGENCE

The principles of CI that have been employed in the present work include two major
components,
» Pattern Recognition

» Optimization

1.6.1 Pattern Recognition

Pattern Recognition is a sub branch of CI that mainly emphasizes on discriminating patterns
or regularities in a dataset based on certain attributes. Although the possible approaches of
utilization of this tool include supervised, unsupervised and semisupervised methodologies,
the present work has been designed based upon supervised algorithms only. Any Pattern
Recognition system follows the three fundamental steps of,

» Feature Extraction

» Feature Selection

» Classification [18]
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Table 1.4 RELATED WORKS IN MOTOR IMAGERY DETECTION

Author and Year of
Publication

Highlights

Xu et al.(2014)

Enhanced Low-Latency Detection of Motor Intention from EEG for
Closed-Loop Brain-Computer Interface Applications

Park et al. (2013)

Classification of Motor Imagery BCI Using Multivariate Empirical Mode
Decomposition

Bamdadian et al.
(2012)

Online Semi-Supervised Learning with KL Distance Weighting for
Motor Imagery Based BCI

Ang et al. (2011)

Calibrating EEG Based Motor Imagery Brain-Computer Interface from
Passive Movement

Li et al. (2010)

An EEG Basrd BCI System for 2-D Cursor Control by Combining
Mu/Beta Rhythm and P300 Potential

Ang et al. (2009)

A Clinical Study of Motor Imagery Based Brain Computer Interface for
Upper Limb Robotic Rehabilitation

Wu et al. (2008)

Classifying Single-Trial EEG During Motor Imagery by Iterative Spatio-
Spectral Patterns Learning (ISSPL)

Sadeghian et al.(2007)

Continuous Detection of Motor Imagery in a Four Class Asynchronous
BCI

Wang et al. (2006)

Common Spatial Pattern Method for Channel Selection in Motor Imagery
Based Brain-Computer Interface

Xiaomei et al. (2005)

Adaboost for Improving Classification of Left and Right Hand Motor
Imagery Tasks

Townsend et al. (2004)

Continuous EEG Classification During Motor Imagery-Simulation of an
Asynchronous BCI

Cincotti et al. (2003)

The Use of EEG Modifications Due to Motor Imagery for Brain-
Computer Interfaces

Dornhege et al.(2002)

Combining Features for BCI

Pfurtscheller et al.
(2001)

Motor Imagery and Direct Brain-Computer Communication

Ramoser et al. (2000)

Optimal Spatial Filtering of Single Trial EEG During Imagined Hand
Movement

Castellano et al.
(1999)

Moving Target Detection in Infrared Imagery Using a Regularized
CDWT Optical Flow
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1.6.2 Optimization

Optimization signifies the mathematical steps that are involved in formulation of the
procedure of making an entity or a solution as efficient or perfect as possible. In the present
context, the term “Optimization” refers to the method of selecting the optimal solution from a
pool of candidate solutions satisfying a predefined constraint with a goal of either maximizing
or minimizing an objective function. Among the various methods of optimization,
evolutionary techniques [19] are those which typically follow the postulate of “survival of the
fittest”. In this work Firefly Algorithm [20] has been employed for solving a specific problem
related to EEG signal modality.

1.7 OBJECTIVE OF THE THESIS

The primary objective of the thesis is to assemble the existing CI techniques and analyze their
scopes of application in the source localization and feature extraction paradigm. The
formulation of modern day intelligent man machine interactive devices majorly depends on
the judicious analysis of existing ClI modalities and proficient development of the concerned
interface. These Cl based BCI modalities find extensive use in rehabilitation, tele-operation,
tele-navigation as well as context awareness.

Amongst the brain signal measuring techniques, EEG is considered to be the most
efficient modality for BCI applications [21]. Literature show that already many interesting
applications have been implemented using EEG, still there exists ample opportunity to
improvise the existing applications by introducing innovative concepts. The entire work has
been partitioned into two components. The first part presents an evolutionary perspective for
selection of optimal electrode positions and EEG features for a specific cognitive task. This
part is mainly concerned with the feature extraction and features as well as electrode selection
phase and justifies the usage of an optimization algorithm to reach closer towards relatively
simpler solutions of such complex problems. The second segment explores the signal
processing methods and emphasizes on the impact of spatial filtering [22] on EEG signals.
This part reiterates the existing variants of the well known CSP algorithm and analyses the
outcomes of the application of newly formulated regularized variants of CSP for motor
imagery detection [23] purpose. All computations are performed in a MatlabR2012b
environment in an Intel Core i3 processor running at 2.30 GHz. All human subjects on whom
experiments are conducted sign consent forms prior to providing data.

The possible application areas of the present thesis include,
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BCI systems
Rehabilitative systems [24]
Robotic control [25]
Context Awareness

vV V V VY

1.8 ORGANIZATION OF THE THESIS

The thesis is segmented into six distinct chapters. Chapter 2 provides a detailed illustration
regarding the various machine learning tools and techniques that have been employed in the
numerous experiments that have been carried out during the works included in the present
thesis. Chapter 3 describes the proposed scheme of EEG optimum electrodes and feature
selection from the evolutionary perspective. Further Chapter 4 narrates the needs of spatial
filtering in EEG based works and introduces RCSP as the solution to deal with the drawbacks
of traditional CSP. This chapter also mentions further scopes of future work by mentioning
the limitations of the existing frameworks and opens new avenue for improvising the same.
Chapter 5 aims to show the impact of employing RCSP as a feature extraction tool in motor
imagery detection purpose for online BCI applications. Finally in Chapter 7 the conclusions
are drawn and future scopes of work are stated. All chapters are provided with necessary
bibliography. Appendix A provides the detailed descriptions of the performance metrics and
statistical methods used to evaluate results and Appendix B presents a step wise description of

running the source codes.
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Chapter 2

Standard Tools and Techniques

This chapter aims to revisit the standard tools and techniques that have been
employed in the works described throughout the thesis. These methodologies contain
the detailed description of different feature extraction and classification algorithms.
Section 2.1 illustrates the feature extracting algorithms with required diagrams
including autoregressive parameters, adaptive autoregressive parameters, Hjorth
parameters, power spectral density estimates and wavelet based features. Section 2.2
describes the classification algorithms with required diagrams including SVM

classifier, k-NN classifier, Naive Bayesian classifier and Ensemble classifiers.
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2.1 FEATURE EXTRACTION METHODS FOR EEG SIGNAL PROCESSING

From pattern recognition perspective, feature extraction can be defined as the procedure to
derive a significant set of values (termed as “features”) from an initial set of measured
datapoints, which are intended to be informative and non-reduntant and to facilitate the
subsequent steps of learning, generalization and enhanced human interpretations as well. This
section provides an insight to the EEG feature extraction methods that include time domain
features [1], [2] like Autoregressive Parameters (AR), Adaptive Autoregressive Parameters
(AAR) and Hjorth Parameters, frequency domain features [3] like Power Spectral Density
(PSD)/ Band Power Estimates and time-frequency correlated features [4] like Wavelet
Decomposition [5] Based Features.

2.1.1 Autoregressive Parameters

The AR parameter model is considered to be one of the most well known feature extracting
techniques for EEG based BCI paradigm. The primary reason of this popularity is the
efficiency of this technique to represent the randomness of any signal accurately because AR
parameters are estimated using methodical algorithms. Moreover, AR parameter model
provides ‘maximum entropy spectral estimation’ which ensures that only reduced numbers of
parameters are sufficient for accurate representation of a stochastic signal removing the need
for signal averaging. Formally, this model is a basic parametric model for a time series signal.

Mathematically, the model can be illustrated using (2.1),

Ye =AYt &Y ot @y Y, H X% (2.1)

where x, denotes a zero mean Gaussian noise process calculated as N{O, o-f }, p is the order of

the AR model, yy.; denotes the previous samples, a; signifies the coefficients and i is an integer
that can vary [0, p], and yk\is the estimated output while index k is used to refer to distinct
equidistant time instances. In the present works, we have used sixth order AR model, that is
p=6. Usually, AR model is employed to represent any wide sense stationary stochastic time

series that is characterized as,

< X, >= constant and <X Xyog >=1y (2.2)

To compute the AR model coefficients two methodologies have been adopted,
» Yule-Walker Method [6]

For an AR model of order p, (2.1) can be expressed as,

p
Yo = zai Y T % (2.3)
i1
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By convention, yy is assumed to have zero mean too. The estimation method includes
multiplying both sides of (2.3) by x«.q where d signifies a time delay, averaging and
normalizing the obtained outcome. Since d can vary from 1 to p, repeating the above
mentioned steps for p number of times yields a set of equations, known as Yule-
Walker equations, which can be presented as matrix form as,

| I || & I

R S P || 4 )

N N 1 {la r
| 'p-1 Tp2 Tp3 1% LU'p]

» Burg’s Method
In contrast to Yule-Walker method, instead of estimating the AR model parameters
directly, Burg’s approach [7] computes the reflection coefficient at first and these
reflection coefficients are treated as the last AR parameter estimate for each model of
order p. From these, the AR parameter estimates are calculated using Levinson-
Durbin algorithm. Given N discrete values, it is possible to compute the values of k

coefficients using forward or backward linear prediction method,

k
fn = _Z & Yo (2.5)
i=1
K
bn = _Z & Yosi (2.6)
i=1

Using the above two equations a; is chosen in such a way that the forward error F¢

and backward error B, are minimized,

N N Kk

Fk = Z(yn - fn)2 = Z(yn _(_Zai yn—i))2 (27)
n=k n=k i=1
N-k N-k K

Bk = 4 (yn _bn)z = - (yn _(_Zai yn+i))2 (28)
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So basically this technique attempts to find p such that the forward and backward
errors are minimized while constraining the AR parameters to satisfy the Levinson-
Durbin equation, given by,

Aca = At 1, (2.9)

Here, initial estimate Ay=1 and Av+1= [1 a; &, &s.....ax 0] and Vis1= [0 &... az & &
1].

2.1.2 Adaptive Autoregressive Parameters

Because of the random behavior of EEG signals it is not wise to use stationary processes to
estimate the model coefficients. To model a stochastic natured signal using AR model one can
segment the entire data and then obtain AR model parameters for each segment. However,
there also lies one tradeoff between the segment length and the error. The shorter is the length
the resolution is more improved but it comes with a large error as well. Employing a sliding
window for segmentation can solve the problem, but because of the computational overhead
the method cannot be employed for online studies. In case of AAR parameter model[8], the
randomness is incorporated by varying the AR parameters obtained with time. The
coefficients are predicted in an adaptive way and it is assumed that in each iteration the AAR
parameters are altered by an amount less than the prediction error, otherwise it becomes
impossible to represent such non-stationary processes using AAR model. A number of AAR
prediction algorithms are found in literature like Least Mean Squares (LMS), Recursive Least
Squares (RLS), Recursive AR (RAR), Kalman Filtering and so on. Mathematically, it can be

expressed as,

Y = Yia T8 Vi teen@y Vi, X (2.10)

Here X, is computed as N{O, crxz’k} and Gf’k denotes the time varying variance of the

noise process. Basically, it is a two step process,

» Calculation of the error coefficient

» Updating of the estimates using error coefficient.
In AAR model, the adaptation rate, smoothening of the parameters and time resolution is
administered by the update coefficient, whose value is predetermined along with the order.
The AAR model is chosen to meet the issues created by AR parameters,

» A stochastic model describes well the random behavior of the EEG.

> An adaptive method provides parameters with a high time resolution.

> As side-effect no frequency band has to be selected.
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2.1.3 Hjorth Parameters

Hjorth parameters [9] indicate statistical properties for the analysis of EEG signals for feature
extraction phase. This technique basically has three embedded parameters namely, activity,
mobility and complexity. Activity signifies the variance of the signal that is basically a
measure of the signal power. Mobility provides an outline about the measure of the signal’s
mean frequency and finally complexity generates the measure of the change in frequency.
Apart from providing useful information about the frequency spectrum, this technique enables
the users to analyze the signal in time domain as well; moreover this method allows a user to
deal with a computationally less expensive framework. For a signal y(n) having length of N,

activity (A(y)), mobility (M(y)) and Complexity (C(y)) can be defined as,

3 (y() - y)°

A(y) = MT (2.11)
M(y) = —AA(:;)) (2.12)
C(y)= % (2.13)

Here, yand y'refers to the mean and first order derivative respectively. In the

present work, Hjorth parameters were calculated for each channel yielding total three features
corresponding to activity, mobility and complexity for each channel. It is preferable to
employ small windows in case of Hjorth parameters to accurately represent the non-

stationarities associated with EEG signals.
2.1.4 Power Spectral Density

Spectral estimation is done to get the distribution of signal power [10] over the frequency

range. For a finite data set a(n)and its autocorrelation sequence X ., , the Power Spectral

Density (PSD) can be estimated as below,

Pa(@) = o5 3 Xpa (e an
|=—00
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If the sampling frequency is denoted as f, then @ can be replaced as f—and
S

above equation can be written as,

1 & 7j2ﬂf|f
Paa(f) = f_ Z Xaa(l)e s (2.15)

S |l=-o0
According to Nyquist criteria, the maximum frequency present in the system is half of

the sampling frequency ( f), the average power for entire signal over the entire Nyquist

range is described as follows,

“%
[ Pua (1) (2.16)
_f%

where P,, () represents power in an infinitesimal bandwidth, so it is termed as PSD.

» Welch Method
Welch method [11] belongs to the category of non parametric PSD estimation methods
where PSD of a signal is estimated from the signal itself, in other words using Welch
method PSD estimate is computed using the Fourier Transform of the signal or the
autocorrelation function of the signal.

To compute the complete PSD estimate from a time varying EEG signal, the
following steps are followed,

First the signal is split up into overlapping time sequences. Then the segmented
signals are passed through a suitably chosen window function; basically a window is
applied to each of the segmented signals and further, Discrete Fourier Transform is
computed and the result obtained is squared in terms of magnitude to obtain the
periodograms and the individual periodograms thus obtained are time averaged to yield
a final PSD measure.

Basically, the Welch method comes up with two modifications in the traditional
Bertlett’s method that the subsequences formed are overlapping and instead of time
averaging the periodograms, the modified periodograms serve the purpose.

Mathematically, the signal can be split in L overlapping sequences of length M.

The i" signal segment can be expressed as,

a,(n)=a(n+iD) (2.17)

wheren=0, 1, 2, ..., M-1and i=0, I, 2, ...., L-1.
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Next, the signals are required to be windowed before computing the periodograms.
Further, after the windowing functions are employed, the periodograms are calculated using,

1 & jorT i
=——> a(nw(n)e ™ (2.18)
MU nzc;

where w(n) signifies the windowing function and U is a normalization factor defined

as,

lew (n) (2.19)

Finally, Welch PSD estimate is calculated as the time average of the modified

periodogram,

Z () (2.20)

2.1.5 Wavelet Decomposition Based Features

Wavelet Transform [12] is an efficient mathematical tool for EEG signal analysis having a
wide variety of applications. Classical Fourier Transform method has been successfully
employed for stationary signal, but because of the stochastic nature of the EEG signals it is
not always wise to use Fourier Transform (FT) directly for these EEG signals. FT of a signal
provides localization in frequency domain while compromising time domain localization.
Basically, there exists a tradeoff between time and frequency domain localization depending
upon the size of the window. To deal with this dilemma, Discrete Wavelet Transform (DWT)
[13] provides a flexible way of signal representation in frequency as well as temporal domain
by varying the size of the windows. Moreover, DWT is more precise in localizing artifacts
and transients and apart from that this technique provides multi resolution analysis by
decomposing the signal into fine and coarse elements. The Continuous Wavelet Transform
(CWT) of a signal x(t) is computed as an integral of the signal multiplied by scaled by (s=

1/frequency) and shifted version (by 7) of a wavelet function w(t), which is also termed as

the mother wavelet [14].

* t_ T
Xewr (8:7) = I X(t)y (——)dt (2.21)
f S
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Calculating CWT in this way for every possible scale is a computationally hectic work,
instead representing s and 7 in terms of power of two results in an easier analysis. Such
analysis leads to DWT which can be expressed as,

(T)dt (2.22)

) 1 %
Xowr (1,K) = = t
(j.k) Mijw

hm) || Zl 1Dy

hm | 21 s Ds

As hn) | | Zl, e D3

o |2

[

gm) |, 21

gm) | | zl, H= A3

Fig. 2.1 Working Principle of DWT Decomposition

Original frequency
of sampling 256 Hz
N /\ Dy
0-128Hz 128-256Hz
A, /\ Da
0-64 Hz 64-128 Hz
A /\ Ds
0-32Hz 32-64Hz
Required Range
Ay Dy
0-16Hz 16-32Hz

Fig 2.2 Signal Decomposition Using DWT

where s and 7 are replaced by 2V and k2’ respectively. As shown in Fig. 2.1, the input signal

is passed through a high pass filter (h[.]) and a low pass filter (g[.]) and the corresponding
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filtered outputs (2.23) and (2.24) are down sampled by 2 at each level to generate the
Approximate Coefficient (A;) and the Detail Coefficient (D;) from the low pass and high pass
filter respectively.

Further, the Approximate Coefficient thus obtained is further decomposed in the
similar procedure to get the Approximate and Detail Coefficients of the subsequent stages.
The limit of decomposition is determined by the required frequency span of signals, for
example in this case, the signals are recorded at 256 Hz frequency (Fig. 2.2), but only (0O-
16Hz) is likely to contribute relevant oscillatory components for motor imagery detection
tasks, in this scenario, the required component will be A,.The mother wavelet chosen in this
work is Daubechies which has been found suitable for EEG recordings. The order is chosen to
be 4.

o0

Yiw (M) = > x(k)h(2n—k) (2.23)

k=—o0

o0

Yhigh (N) = Z x(k)g(2n—k) (2.24)

k=—0

2.2 CLASSIFICATION ALGORITHMS

Classification [15] is the next step that comes after Feature Extraction and performance of a
motor imagery based BCI system depends almost entirely on the performance of the classifier
used for the purpose. The main objective of an BCI system [16] lays mainly in the
classification of the mental states from the raw EEG signals and differentiating those
classified movements for actuation purpose. There are popular classifiers [17] that have beeen
used for this purpose in the later chapters, like SVM (Support Vector Machine) [18], BPNN
(Back Propagation Neural Network), k-NN (k-Nearest Neighbour), Naive Bayes Classifier

and Ensemble classifier.

2.2.1 SVM classifier

Primarily developed based on the concept of hyperplanes SVM is inherently a non-
probabilistic linear classifier, while it can be extended for non-linear problems [19] as well.
An SVM classifies the data samples in two different classes by constructing an N-dimensional
hyperplane, in other words SVM searches for that direction of the hyperplane which leaves
the maximum possible margin for both the classes [20]. In this case, the complexity does not
depend on the dimension of the feature space, so SVM can be used for high dimensional

feature spaces.
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Let us consider the mathematical aspects of linear SVM. Suppose, X, , i=1, 2,....,N

denote the feature vectors of training set X, now the goal is to construct an optimal hyperplane
(2.25),

g(X) = 0" X+, (2.25)
such that the training vectors are classified correctly in the two linearly separable classes @, ,

o, . In the above equation w indicates the direction of the hyperplane and @, indicates the

actual position. Now, SVM will search for the direction of the hyperplane leaving maximum
margin from both the classes. The distance of a particular point from the hyperplane g(x) can

X
be expressed as, z=——. Now, wand «, can be scaled so that the value of g(x) is +1 in

Figure 2.3 Linear SVM Classification, H; does not classify the data, H, classifies with very small

margin but H; classifies with maximum margin

. . 1 1 2 ™~
> Having a margin of —+—=—
o o] e 026

> Requiring that @' X+, >1,VXea

.
o X+@y<-lLVXew, )
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Let, y,denote the class indicators such that y, = +1for @, and y, = -1 for @, . So, now

the task is basically a quadratic optimization problem of computing the parameters w and a,

to minimize the objective function,
1 . . .
J(w,w,) = E”COHZ subject to the constraint y, (@' X +a,) >1fori=1, 2, ..., N (2.27)

The above problem can be solved by using the method of Karush-Kuhn-Tucker (KKT)
conditions [21], after solving, since the Lagrange multipliers considered can either be zero or

positive, the vector parameter w of the optimal solution comes out to be a linear combination

of N, number of feature vectors corresponding to A4 = Osuch that N, < N . These vectors

are known as Support Vectors [22] and the corresponding classifier is termed as Support
Vector Machine (SVM). Basically the datapoints can be broadly categorized into three
sections,
» Datapoints lying beyond the margin (2.26) and correctly classified using the
constraint part of (2.27)
» Datapoints lying within the margin (2.26) and correctly classified using (2.28)
» Datapoints lying within the margin (2.26) and incorrectly classified using
(2.29)

0<y (@' % +@,) <Li=[LN] (2.28)

Y, (@' % +a@,) <0,i=[LN] (2.29)

These issues can be addressed by introducing a new variable &, , termed as slack

variable with values & <0,0<¢; <1 and & >1 for the three cases respectively as expressed in

(2.30),

Yi (a)TXi +@y) 21-&,i=[LN] (2.30)

The goal of the optimization therefore is now to maximize the margin while

minimizing the number of points with & > 0. This can be stated by the minimization of J(w,
§) given by (2.31) subject to the condition (2.30), where C is a positive constant that controls
the relative influence of both the effects and £ >0 for i=[1,N].

1, 2 -
J(@, @) =§||a)|| +C;§i (2.31)

The nonlinear extension of SVM [23] is described in details in Chapter 3.
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2.2.2 k-NN classifier

k-Nearest Neighbour classifier [24] belongs to the family of instance based classifiers where
classification of an unknown data point can be done by relating the unknown point to certain
points with known class labels based on some similarity measures/distance measures. This is
a non-parametric supervised algorithm that does not require extensive training like other
classifiers. Let us consider a data set consisting of samples where each sample is represented
by an associated position vector and each component of the concerned vector corresponds to a
distinct attribute characterizing the specific sample. Since it is a supervised algorithm [25] so
the sample space must comprise of known class labels corresponding to each sample. To find
the class of an unknown test sample the following two steps are carried out,

» Find out the k nearest neighbor of the test sample

» Determine the class of the sample from the k nearest neighbours.

Fig. 2.4 depicts the working principle of k-NN classifier with k=3 having attributes A,
and A,.The choice of the neighbours [26] is controlled by the selection of a specific similarity
measure from a pool of similarity measures including Euclidean Distance, City Block
Distance, Hamming Distance, Correlation values etc. The process of determination of the
class label of the query sample is dependent on the choice of voting mechanism as well.
Usually, majority voting technique is followed where the query sample is assigned to a class

having maximum number of votes from the k nearest neighbours.

A

Fig. 2.4 k-NN Classification with k=3
Another commonly used approach is the inverse distance-weighted voting, where,

closer the neighbours, the higher weight is associated with their votes which means that the
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weights corresponding to the votes vary with the inverse of the distance or the inverse of the
squared distance. The weighted votes are then summed up and the class with the highest vote

is returned.

2.2.3 Naive Bayesian Classifier

A Naive Bayesian classifier [27] is a probabilistic classifier [28] that has been developed
based upon the Bayes’ theorem [29] with an assumption of independence among predictors.
In other words, this method assumes that the occurrence of a feature under a particular class is
independent of any other feature belonging to the same class. Apparently, this technique
seems to be a simple one but has the capability of outperforming typically standard
algorithms in terms of performance especially in case of high dimensional data. Given a
variable Y, dependent upon features xi, X,, ....x, Bayes’ theorem states,

prior x likelihood

posterior = -

evidence

P(Y)-p(%, - X, [Y)
Y yeeny = n 2.32
PCY [ %, X,) D06, %0 X ) (2.32)

Using the assumption, the numerator is equivalent to the joint probability, which can be

expanded using chain rule as,
PCY, X X,) = PO P(Xy e X, [Y) (2.33)
= P(Y)-POGIY)-POG Y X)) PO TY S X0 X5, X )

To simplify the complicated problem, it is assumed that each feature x; is independent of

every other feature x; such that i#. Thus it is obtained,

PCY X5 %) o€ POYS X0y %) )

oc p(Y).-p(x [Y).p(X, [Y)...p(X, |Y) (2.34)

o p(Y).] [ p(x 1Y)
i=1 _/
This model is combined with the Maximum a Priority (MAP) rule to produce the Naive
Bayesian classifier which classifies according to the classfunc described as,
classfunc(X,, X,,...X,,) =argmax p(Y = y)H p(x, =X, Y =y) (2.35)
i=1
The commonly used probability distribution of the features include normal distribution,

multinomial or multivariate distributions while the class priors may be calculated by
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assuming either equiprobable classes or from the estimation of the fraction of the total number
of samples that belong to a particular class.

2.2.4 Ensemble Classifiers

Ensemble classifiers [30] refer to the group of individual distinct classifiers that are
cooperatively trained on a data set for a supervised classification problem to enhance the
performance of individual classifiers. This technique is often referred to as a “multiclassifier”
technique and the component classifiers are known as base classifiers or weak learners. Each
of the base classifiers performs the classification task separately and the final output of the
ensemble classifier is obtained after incorporating the decisions of all the classifiers on the
test data set. Because of the fusion of so many classifiers it is likely that the concerned
ensemble classifier should provide superior performance in comparison to the individual
component classifiers. The two well known principles for implementation of ensemble
classifiers include bagging and boosting [31].

In bagging the training subsets are randomly drawn (with replacement) from the
training set. Homogeneous base classifiers are trained on the subsets. The class chosen by
most base classifiers is the considered to be the final verdict of the ensemble classifier. There
are a number of variants of bagging and aggregation approaches including random forests
and large scale bagging [32]. Boosting [33] creates data subsets for base classifier training by
re-sampling the training patterns, however, by providing the most informative training pattern
for each consecutive classifier. Each of the training patterns is assigned a weight that
determines how well the instance was classified in the previous iteration. The training data
that are wrongly classified is included in the training subset for the next iteration. AdaBoost

is a more generalized version of boosting.
2.2.5 Artificial Neural Network

A typical artificial neuron [34] is a real world electrical analogue of biological neurons
performing similar functions. Mathematically, it is represented by two sections, i) a linear
activation/inhibition module and ii) a non-linearity that limits the signal level within a finite
band as shown in Fig. 2.5 Here, the weighted summer plays the role of a cell body by
representing the linear combiner module producing Net from the inputs. The synapse in an
artificial neuron is modelled as a nonlinear function like step function, signum function,
sigmoid function, tanh function etc. that is implemented in the phase of obtaining Out from
Net.
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Net = > wx; (2.36)

i=1
Out =u(Net —Threshold) (2.37)
Out =sgn(Net) (2.38)

1

t=———————— (2.39)
1+exp(—Net)

Learning or adaptation of weights in an artificial neural network can be realized in four
distinct methods, 1) Supervised Learning [35], 2) Unsupervised Learning [36], 3)
Reinforcement Learning and 4) Competitive Learning. In the present work mainly supervised
learning procedures have been adopted. In case of supervised learning, it always requires a
trainer who would feed the network with output-input instances [37]. To illustrate further, an
input vector X and a target vector T is provided and the objective is to adapt the weights in
such a way that the output is T. Usually, in the first iteration the weights are adjusted
randomly and then the error E=T-X is calculated and the weights are updated at the successive

iterations to move closest to the output T.

Non-Linearity Out

Fig. 2.5 Artificial Neural Network

Amongst classical supervised learning algorithms, Back Propagation [38] is considered
as one of the most efficient and well known algorithm. It is formulated by employing a feed-
forward architecture of neurons, having a number of layers (input, output, intermediate) and
each layer containing a number of neurons. Each neuron is responsible to produce a weighted
sum of the inputs associated with it from the previous layer and finally passing on the
summation of all these results to the non-linear segment. The error computed at the output
layer can be expressed as (2.40), where T; and Out; signifies the target and output produced at

i-th neuron of the output layer.
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E= %Z(Ti —0ut,)® (2.40)

Steps of Back Propagation algorithm can be listed as follows,

1. Initialize instance i=1.

2. Supply input components for the i-th instance to the input of the neural net; make a
forward pass and compute the outputs.

3. Calculate the corresponding error vector E; by considering the componentwise
difference between the output vector and the target vector as E; =T; —O;, V],
where E;j;, Tjjand O;; denote the j-th component of i-th error vector, target vector and
output vector respectively.

4. Repeat steps 2 and 3 for i=1 to n.

5. Determine the root mean square value of error, denoted by Error, whose j-th

component is defined as,

6. Back propagate the error from the RMS value of the error components of the last
layer to the preceding layers and adapt the weights of the network layerwise starting

from the last layer.

7. Repeat steps 2 to 6 until Z:(Errorj)2 is negligibly small or the maximum iteration
vij

limit is reached.

Weight adaptation is also an important aspect in case of artificial neural networks, among
numerous methods the traditional Gradient Descent Learning has been utilized here.

» Gradient Descent Search (GDS)
According to Gradient Descent Learning [39] the weights are adapted [40] using the

following rule,

W, = W+aW (2.41)

oE . . . .
where, aW= —77%. Here, E is the error, w denotes the weights and # is the learning rate

(0< u<1). Employing this rule, there is an extreme tendency of getting trapped at local
minima. To avoid dealing with this limitation, a momentum term (mc) has been incorporation

in the equation which helps the solutions to slide through the local minimum points on the
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error surface and reach a global minimum. The modified weight adaptation rule is formally

known as Gradient Descent Search with Momentum (GDS-M) and can be expressed as,

oOE
wW=mc.aw,__ +(1-mc)yn— 2.42
A A ( )U&N (2.42)

prev

where aw__ denotes the previous weight alteration.

prev
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Chapter 3

Evolutionary Perspective for Optimal
Selection of EEG Electrodes and
Features

This chapter proposes a novel evolutionary approach to the optimal selection of
electrodes as well as relevant EEG features for effective classification of cognitive
tasks. The problem has been formulated in the framework of a single objective
optimization problem with an aim to simultaneously satisfying three criteria. The first
criterion deals with maximization of the correlation between the features of
Electroencephalogram (EEG) sources before and after the selection of optimal
electrodes. The second criterion is concerned with minimization of the mutual
information between the features of the selected EEG electrodes. The last criterion
aims at maximization of the ratio of the difference between the selected features of the
EEG sources between and within any two cognitive tasks. A self-adaptive variant of
Firefly Algorithm (FA) referred to as SAFA, is proposed to solve the above
optimization problem by proficiently balancing the trade-off between the
computational accuracy and the run-time complexity. The chapter is divided into five
sections. Section 3.1 presents a brief introduction and describes the related works in
this particular research genre. Section 3.2 provides a detailed description of the
proposed framework. Section 3.3 recapitulates the traditional FA and presents the
proposed self-adaptive FA (SAFA). The experimental results are reported in section

3.4. Section 3.5 concludes the paper.
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3.1 INTRODUCTION

Brain computer interfacing (BCI) [1] is a multi-dimensional field of research, concerned with
cognition, neurophysiology, psychology, sensors, machine learning, signal detection and
processing, to name a few. Now a day, BCI [2] stands alone as the only modality of control
and communication for patients suffering from diseases like amyotrophic lateral sclerosis,
paralysis, cerebral palsy, and amputees [1]. Its contributions in medical fields range from
prevention to neuronal rehabilitation for serious injuries. BCI addresses analyzing,
conceptualization, monitoring, measuring, and evaluating the complex neuro-physiological
behaviors detected and extracted from a set of electrodes over the scalp or from those
implanted inside the brain.

These BCI interfaces bypass the natural pathways of neuro-muscular control and thus
aim at serving an alternative means of communication/control in case of failure in
neural/motor functioning. Several interfacing methodologies including invasive implants,
semi invasive implants like electrocorticography (ECoG) [3] and non invasive modalities like
electroencephalogram (EEG) [4], magnetoencephalogram (MEG) [5] and functional magnetic
resonance imaging (fMRI) [6] have emerged in order to implement BCI successfully. EEG is
the preferred technology for measuring brain activities for most BCI researchers because of
its non-invasiveness, portability, easy availability, and high temporal resolution.

The basic BCl module consists of three steps, including i) pre-processing of the EEG
signals dealing with artifact removal, identification of relevant electrodes and frequency
bands of EEG signals, ii) feature extraction, and iii) classification, concerned with
identification of different mental states. The classified results thus obtained, lead to the
generation of the control signals required to drive an assistive device. The classification
accuracy relies on the extent of detour the redundant information. This chapter addresses two
crucial factors for effective classification of cognitive tasks using EEG based BCI systems,
including,

» Optimal selection of electrodes [5] to facilitate faster processing of EEG signals

for different cognitive tasks,

» Optimal selection of relevant EEG features to enhance the performance of a

classifier.

The optimal selection of electrodes [5] is essentially influenced by the estimation of
cortical sources. The EEG devices acquire raw cortical current signals, generated from
different independent sources, through neuronal firing in outer cortex of the brain. These
signals are then transformed to respective voltage signals by passing through different

resistive devices. Finally, the voltage signals are recorded by placing electrodes at specified
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scalp regions. Due to volume conduction, the signal acquired at the scalp electrodes is found
to contain components of different sources. Moreover, for a particular cognitive task every
electrode placed on the scalp cannot provide relevant information, in fact at times electrodes
generate redundant information. Hence, optimal electrode selection is very important for
signal analysis and relevant decision making in the following steps. Otherwise overlapping
information will not only degrade performance metrics, but it involves processing of same
signal components more than once, which negatively affects the time complexity as well.

Only optimal electrode selection [7] is not sufficient for a successful EEG based BCI
implementation [8]. One of the significant concerns in BCI research is to deal with the high
dimensionality of the features. Often it is observed that due to the presence of a large number
of redundant features in the feature set, the accuracy of the classifier is greatly decreased.
Researchers are now taking keen interest to select fewer discriminate features from the high
dimensional EEG feature vectors for different cognitive tasks without sacrificing the
classification accuracy. The chapter proposes a novel evolutionary approach to automatic
selection of optimal set of EEG electrodes and EEG features (from the high dimensional
feature space). The principle of evolutionary electrode and feature selection is outlined next.
In this chapter, the possible selection of EEG electrodes is realized by optimizing the scoring
function, which deals with

» Maximizing the association between the estimated source signals corresponding to

the original set and the reduced set of electrodes, and

» Minimizing the mutual information between two selected electrodes.

The first criterion reduces the loss in information of the cortical sources corresponding
to a cognitive task after reducing the number of electrodes. The second criterion aims at
identifying the relevant electrodes conveying unique information of specific cognitive tasks,
thus discarding the redundant information.

The design philosophy adopted for the optimal selection of EEG features is to identify
the set of features that are capable

» To uniquely represent a specific class of cognitive tasks and

» To effectively differentiate between any two classes.

It is realized by jointly serving the following two criteria. First, the selected j-th
features of the data points in a given class should be close to each other. Contrarily, the
difference between the means of the selected j-th feature of any two classes should be as high
as possible.

A self-adaptive variant of the traditional firefly algorithm (FA) [9] is proposed here to

select an optimal set of appropriate EEG electrodes and features by jointly optimizing the
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above-mentioned objectives. FA is selected here partly heuristically and partly due to its
established performance with respect to computational accuracy and run-time
complexity[9]. The self-adaptive variant of FA [10] assists the potential candidate solutions
(of the optimization problem) to confine their search in their local neighborhood in the
parameter space. On the other hand, the inferior members are equipped with global
exploration capability.

The present work aims at improving the work proposed in [11] in three important
aspects. First, the work proposed in [11] is primarily concerned with the optimal electrode
selection [7] for a specific cognitive task. However, in this chapter, we aim at selecting the
optimal electrodes for effective classification of different cognitive tasks [12]. This is a more
realistic scenario of practical BCI applications. Second, Pearson correlation coefficient is
utilized in [11] to capture the degree of relationship between the information conveyed by the
original set of electrodes and the reduced number of selected electrodes. This correlation
measure is found to be only sensitive to the linear relationship between two variables,
incompetent to model non-linear or monotonous relationships. In other words, a zero value of
Pearson coefficient does not always imply independence between two variables. Thus, it may
fail to proficiently capture the dependence between two EEG sources. This is here
circumvented by using an alternative measure of correlation, referred to as the distance
correlation coefficient [13]. Third, the present work also attempts to select the optimal
selection of EEG features along with the EEG electrodes. This improves the classification

accuracy.

3.2 PROPOSED METHODOLOGY

This section provides a detailed overview of the proposed framework (Fig. 3.1). The proposed
method involves a training data set T, which is pictorially illustrated in Fig. 3.2, for a specific
cognitive class K. The training dataset consists of L data points, each having information of N
electrode (sink) signals. Each sink signal is represented as a F-dimensional feature vector.
The chapter aims at the optimal selection of M (< N) electrodes and D (< F) features for
effective classification of C cognitive tasks. It is to worth mentioning that K.=[1, C]. Here
Si ' and S;° denote the k-th feature of the i-th electrode and the corresponding source for the

t-th data point in the class K..

3.2.1 Independent Component Analysis as a Source Localization Tool

There are many sources inside human brain, which produce current signals due to neuronal

firing during any cognitive task. The voltage signals recorded by the EEG electrodes (also

Brain Localization and Feature Extraction Using Computational Intelligence Techniques



Chapter 3|pPage 43

referred to as sink signals) placed on a human scalp are essentially mixtures of these source
signals. In brain imaging, the problem of estimating the locations and distributions of the
cortical sources, based on the voltage readings of the EEG electrodes, remains as an ‘ill-posed’
blind signal separation problem. Independent component analysis (ICA) [14] provides a
solution to this problem [11] by transforming a multivariate signal (for instance, EEG signal)
into a linear combination of independent non-Gaussian subcomponents (for example, non-
Gaussian source signals).

D<F
N Source 1; Source Source
N Sink Signals catures Features
Signals R Feature .| Feature b Comelat
7| ICA » Extraction "| Selection . OmEiZton =
_-USOUICE FSOUICE r
M(=N)EEG Signals eatures
electrode/Sk | TC'A y Feature Featwe |
selection Extraction : >
Selection | #
5 pr | E ™
. i g
N Sink s FSink o
. M Sink Features gatures
Slgnals S gnal g Mutual L |
> Feature — Feature \ > Information
Extraction Selection - 'J’D{ FSi
Features
Evolutionary Optimization |
Algorithm )

Fig.3.1 Overview of the Proposed Scheme

Let, P=[R,P,,...Py]Tand Q=[Q,,Q,,....QyI" be the N source and sink signals in
time domain. ICA deals with representing each Q; as a linear combination of 5J- for j=[1, N],
given by

QI ZWI,1P1+W|‘2P2+ ..... +WI,N PN =

Mz

w, P, fori=[L,N]  (3.1)

1

—_
Il

or Q=WP (3.2)

with w;; representing the degree of dependence of Q on ﬁj based on their distance and W

denoting the mixing matrix with elements for i, j=[1, N]. ICA aims at determining the source
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signals by identifying the optimal mixing matrix, obtained by the minimization of the mutual
information or the maximization of the non-Gaussianity of the estimated source signals. The
members of former family use measures like K-L divergence and maximum entropy while the
latter family utilizes kurtosis, negentropy and so on. In the present chapter, we employed a
variant of ICA based on the Infomax algorithm [11] that uses the maximum entropy measure.
Once the mixing matrix W is estimated, the source signals can be derived by multiplying the
observed sink signals with the inverse of the mixing matrix, also known as demixing matrix
V=W, by

P=W1Q=VQ (3.3)

3.2.2 Feature Extraction

EEG signals of the sinks for two different cognitive tasks, as well as the sources, have been
represented using five well-known features. The feature set consists of common spatial
pattern feature (CSP) [7], two time domain features, including adaptive autoregressive (AAR)
Parameters [11][15], and Hjorth parameters [11], a frequency domain feature, including
power spectral density (PSD) [11] and a set of time-frequency correlated features, including

discrete wavelet coefficients [11].

3.2.3 Optimum Features and Electrode Selection using Evolutionary Approach

The performance of any real world optimization algorithm [16], as in the present context,
greatly relies on the judicial formulation of the objective function. In the present scenario, the
optimal selection of M (< N) EEG electrodes and D (< F) salient EEG features for
classification of two cognitive tasks is realized based on three significant performance
characteristics. The first two characteristics deal with the optimal selection of electrodes, while
the third one is concerned with the selection of optimal feature.

1.For a specific cognitive class K. and t-th data point, the correlation between the D
features of the source signals estimated from the optimally selected M electrodes and that

of the original N electrodes should be maximized.

One of the major objectives in the present context is to preserve the relevant information
of the recorded EEG signals for accurate classification of cognitive tasks, even after selecting
the optimal set of M electrodes out of N. A higher degree of association between the sets of
source features corresponding to the original N and the selected M (< N) sink signals indicate
an efficient representation of the original number (N) of sink signals with the reduced number

(M) of sinks signals. The degree of relationship here is captured by distance correlation [13]
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between the feature space of M and N source signals. The distance correlation is an index in [0,
1] representing the statistical dependence between two sets of source features.

Distance correlation between any two sets of D-dimensional source features, R"®and F?tj"‘ , (for

t-th data point of cognitive class K;) is determined by,

go=— S (3.4)
Y Javixav, '
1 [D
where dC;j=—.| Z A,B, (3.5)
Y D\kl=t T
1 D
dVI Y 2 Akzl
(DR R
and 1 o (3.6)
_ 2
;= 3, B

with the components of the matrix A being determined by,

a, =|RE—Ri|, fork,I=[1F]

and _

(3.7)

The components of matrix B are determined similarly as in (3.7), however, using the

features of F?tj'c. Here ||.|| denotes the Euclidean norm. A value of ¢;;=0 is an implication of

independence of R'®and F?tj"’. Distance coefficient is here adopted as a measure of

correlation between source features, instead of Pearson correlation coefficient, to overcome
its incapability to characterize non-linear or monotone dependency [13]. An accurate selection
of optimal electrodes will increase the distance correlation, indicating that the source features

corresponding to the original and reduced set of electrodes co-vary with each other.

2.For a specific cognitive class K. and t-th data point, the mutual information between the

D features of two selected electrodes should be minimized.

From the point of view of the present problem, in order to maximize the unique

information content of two maximally distinct selected sinks, the redundant information is to

be reduced. There are possibilities that for a particular feature, any two electrodes residing in
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close proximity are providing similar information. Therefore, inclusion of any one between the
two electrodes (instead of considering both) will serve the purpose with reduced computational
complexity. The similarity in the information content of two sink feature sets is modeled here
by their mutual information (MI).

Based on information theory, MI [17] is used to identify the amount of uncertainty

about one sink feature vector S'°given knowledge of the other sink feature vector §§'° (for
cognitive class K. and t-th data point). It equals zero if they are independent. Thus, more the
mutual information between them, less the uncertainty in S'¢ given the knowledge of §§'C or
vice versa and hence, only one of them should be selected. Hence MI;;* is utilized here as a

dependence measure of S{°on S}°and vice versa, given by

MILS = H, —H;; 3.8)
D
Hi=-2 pi(k)xlog, pi (k) (3.9)
D
Hyj ==X pi;(K)xlog, py; (k) (3.10)

where, the average information or entropy H; is the uncertainty in S before observing §}'C
and the conditional entropy Hij; represents the uncertainty in S'® after observing §§C Here
pi(k) is the probability of each feature in S, p;;(k) is the joint probability of S'¢ and §}'C
and py;(K) is the transition probability from S¢toS}°.

3.For a specific cognitive task K., the similarity between the M source signals represented
by the selected D features should be high. Contrarily, for better separability between two
cognitive tasks, the difference between their respective source feature vectors should be

maximized.

This objective is concerned with the optimal selection of D features out of F features of
the source signals corresponding to the selected M (< N) sink signals. This aims at discarding
the redundant information of the selected source signals for classifying two specific cognitive
tasks. Let L be the number of data points (source EEG feature vectors) of any cognitive task.

This is accomplished here in two phases. First, it tries to minimize the difference
between the selected D (< F) features of the source signals (corresponding to the selected M<
N sink signals), for all data points within a specific class K.. The design philosophy is that if

the k-th feature is selected as a unique representative feature of the class K., then it should
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provide a high degree of similarity between the k-th feature of the i-th source for any two data
points within the same class K.. This is done for all classes c=[1, C]. This is realized here by

minimizing

"
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3y = (R —Rye)”. (3.11)
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The second part aims at maximizing the ratio of the mean to the standard deviation
between the selected D (< F) features of the source signals (corresponding to the selected M<
N sink signals), between any two classes. This ensures that the selected feature is capable

enough to discriminate between any two classes. This is here realized by maximizing

C C DM, — _
— d d
To = 2 5 2y R/ R o) @12
d=c
— L
where RS, _1 RY (3.13)
' Lt=t "
R —R%)?
ot = Rk~ Rk (3.14)

L

represent the mean and the standard deviation of the k-th feature of the i-th electrode over L
data points in a specific class K, for k=[1, D], i=[1, M] and K=[1, C].

With these three considerations, a composite objective function is formulated in (3.15),
maximization of which yields the optimal sets of electrodes and features for classification of

C cognitive tasks.

CLNM .. CLMM te JB
J=2XYXYX47-4X XX X Myj+4— (3.15)
c=1t=li=1 j=1 clt=li=1j<l, Jw
J#l J#

A1 and A, are constants which are set in a manner so as to have all terms in the right hand side
of (3.15) in the same order of magnitude. In our experiment, 1; and 1, are respectively set as
10 and 20.

Fig. 3.3 pictorially represents a four dimensional candidate solution Y for the present
optimization problem with N=5 electrodes and F=4 features. Y; and Y; denote the values of M
(<N) and D (< F). Y, and Y, are decimal values within [1, 2"~1] and [1, 27—1] respectively.

The binary decoding of Y, and Y, are used to identify M electrodes and D features. For

Brain Localization and Feature Extraction Using Computational Intelligence Techniques



Chapter 3|pPage 49

example, let Z, (or Z,) be N (or F) dimensional binary string, obtained by decoding Y, (or
Ys). Intuitively, Z, = 1 (Z4, ;= 1) indicates that the j-th electrode (or feature) selected or je[1,
N] (or je[1, F]). It is noteworthy that the number of ones in Z, (or Z,) should be equal to M
(or D).

3.2.4 Classification

Classification [18] is considered as an important step in EEG based research problems. A
classifier primarily segregates unknown data samples into considered class labels after being
trained with similar features. In context of BCI research, a classifier aims to distinguish
between different brain activities after being optimally trained by following any ‘learning’
algorithm. While classifying EEG signals obtained from the electrodes placed on the scalp,
every researcher strives to achieve high accuracy. There are numerous kinds of classifiers
available which lets a user to choose the most suitable classifier according to the requirement
of the problem. In the present chapter, we have used non-linear support vector machine
(SVM) classifier with suitable kernel function for each of the tasks conducted. Three kernel

functions, including

_ Y2€ [1, _ Y4€ [1,
EM o M R
3 T5% 2 E

Binary Decoding ﬂ Binary Decoding
Loy Zop L3 Zrs Lps ZynZlay Zsz  Zag

1 1 0 1 0 0 1 1 0

3 selected electrodes: 1, 2, 4 2 selected

Fig. 3.3 lllustration of Encoding a Candidate Solution for N=5 and F=4

> Gaussian radial basis function:

K(X,, X,) =exp(=A[ X, = X,|) for 2>0

» Homogeneous polynomial function:

K(X,, X,) = (X,.X,)l where | denotes the number of polynomials

» Hyperbolic tangent function:

k(X,, X,)=tanh(kX,.X, +C) ek<0and ¢>0.
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To determine the efficacy of the proposed methodology, the SVM classifier is trained
with the selected features of the selected electrodes (and corresponding sources). The testing
data set is also prepared with the selected feature-based information contents of the selected
electrodes and the sources.

3.3 SELF-ADAPTIVE FIREFLY ALGORITHM

The optimization problem of optimal selection of electrode positions and EEG features for
classification of cognitive tasks here has solved using a self-adaptive variant of the traditional
firefly algorithm (FA) [19]. In this section, first an overview of the traditional FA is provided.
Next, we propose the self-adaptive variant of FA, referred to as SAFA [20], which adaptively
tunes its control parameters to balance the trade-off between the computational accuracy and

the run-time complexity effectively.

3.3.1 Firefly Algorithm

In firefly algorithm (FA) [9], a possible solution of an optimization problem is encoded by the
position of a firefly in the parameter space and its light intensity signifies the fitness of the

respective solution. An overview of FA is given next.

1. Initialization: Initially, a population P(t) of NP, D-dimensional firefly positions, Y;(t)
={yi1(t), vi2b), ..., Vip(®} for i= [1, NP] is uniformly randomized in the search range
Y™ Y™ where Y™ ={y,™" v, L vp™ and Y™ ={y,™ v," L vp™™ 3 at the
current generation t = 0, given by

miny (3.16)

Y, , (0 =y]" +rand(0,x (y]™ ~ v,

for j=[1, D] and i=[1, NP] where rand(0, 1) is a uniformly distributed random number in [0,
1]. The objective function value f(Y;(0)) of Y;(0) is evaluated for i= [1, NP].

2. Attraction to Brighter Fireflies: Now the fireflyY;(t) is attracted towards the positions of

the brighter firefliesY;(t) for i, j= [1, NP] but i# such that f(Y;(t)> f(Y;(t) (for
maximization problem). Apparently, the attractiveness fi; of Y;(t) towards\?j (t) decreases

exponentially with the distance between them, denoted by d;; as given in (3.17).

B.i=5 exp(—;/xdi’f‘j), m>1 (3.17)
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where S, represents the maximum attractiveness felt by Y;(t) at its own position (i.e., at d;; =

di;= 0) and y denotes the light absorption coefficient, which controls the rate of change of fi;
with d;;. Intuitively, y governs the convergence speed of FA [9]. A setting of y=0 is concerned
with a constant attractiveness of g, for all fireflies, while y approaching infinity implies
complete random search [9]. The possible range of y is found to be [0.01, 10] in the existing
literature. In (3.17), m is a pre-defined positive non-linear modulation index. The distance

between Y;(t) and YJ- (t) is computed using the Euclidean norm as follows.
di ; Yt -Y; Ol (3.18)

This step is repeated for i, j=[1, NP].
3. Movement of Fireflies: The firefly at positionY; (t) flies towards a more attractive location
Y;(t) (in the parameter space) of a brighter firefly (i.e., f(Y;(®)> f(Y;(t)) for j= [1, NP] but

i#f following

Y:neXt(t) :Y‘;cur(t)_hgi’j ><(Y1— (t)_Y:(t))+ax(F—0.5)

Y_;cur (t) « Y_;next (t) (3.19)

where Y,¢Ur (t) is initialized with Y (t) before its movement and r denotes a D-dimensional

random position vector with its d-th component uniformly distributed in [0, 1] for d=[1, D].

The movement of the i-th firefly, governed by (3.19), is carried on for j=[1, NP], but i# such
that f(fj (t)) > f(Y;(t)) . This step is repeated for i= [1, NP]. The first term in (3.19) represents
the firefly’s position after its last movement. The second term in (3.19) denotes the positional
change of Y;(t) due to the attraction towards YJ- (t) . Apparently, this term has no contribution
towards controlling the movement of the brightest firefly and hence, it may be stuck at the

local optima in the parameter space. This problem is overcome by inducing a random

movement of the fireflies with a step-size of ae (0, 1). The upgraded position of the i-th
firefly, after being controlled by the brighter ones, is represented by Y; (t+1) for i=[1, NP].

4. Convergence: After each evolution, the steps 2 and 3 are repeated until one of the
terminating conditions is satisfied. The conditions include restricting the number of maximum

generations, preserving error limits, or the both, whichever occurs earlier.
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3.3.2 Self-Adaptive Firefly Algorithm (SAFA)

The population members of the traditional FA are equipped with the exploitation capability
capable to escape the local optima due to their random movements with step-size a in (3.19).
Intuitively, the step-size (a) profile governs the convergence of fireflies towards global
optimum. However, in traditional FA, a constant value of «a is used for the random movement,
irrespective of the position of the fireflies in the parameter space. A setting of large value of a
may result in the deviation of a quality firefly from the global optimum, while a small value
of a may take a relatively long time to effectively orient a poor firefly towards the global
optimum. The exploitation capability of the traditional FA, being a decisive factor of its
performance, here has been farther improved by self-adapting the step-size parameter o within
a range [a™", 1) based on the relative position of a firefly with respect to the current best
firefly position. This is realized by setting

| ygest (t) — Yia(®]

max min
d —Yd

A g = a™ 4+ (1—a™") x rand(0,1) x (3.20)

for d=[1, D]. The step-size is now treated as a D-dimensional vector as symbolized by g;
={ai1(t), aiz(t), ..., aip()} with its d-th component o; g [0™", 1) for d=[1, D]. Here Y*(t)
=Ly (), v, ..., Yo" (t)} the best position of the firefly in the t-th generation and |.|
represents the absolute value. The dynamic in (3.20) guarantees that a firefly atY; (t) , close to

~ . min

Yt (t) | should exploit the local neighborhood with a small step-size aiq~ ¢™" to prevent the

exclusion of the global optimum. Contrarily, an inferior firefly, far away from Y(t), should

take part in the global search (with step size «; 4 approaching unity for d=[1, D]) to explore the
potential zones in the parameter space.

Moreover, a simple strategy is proposed to update the values of y in each generation,
based on the knowledge of its potential values that were able to generate better firefly

positions in the last generation. At every generation, the light absorption coefficient y;(t) of

each individual fireflyY; (t) is independently generated as

7(t) = Rayleigh(,/2/77 (t)) (3.21)
where Rayleigh(,fZ/frﬂt)) is a random number sampled from a Rayleigh distribution with

mean y(t) (scale parameter ,fZ/zr;?(t)). The value of y(t) is reproduced if it is beyond its
allowable range [0.01, 10].
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Let ys(t) be the set of the successful light absorption coefficients of all fireflies of the
current generation t producing better positions for the next generation t+1.

75 () ={r (1) fori =[L NP]: (Y (t+D) > f (G (1)} (3.22)

Here, 7(0)is initialized to be 0.5. After every generation, it is updated as

7 (E+1) =wx () + 1= W) x 22, (75 (1)) (3.23)
where z40u(.) denotes the power mean [21], given by

(M) = = Ay @ (3.24)

reys(t)

with |S| denotes the cardinality of set S. The weight factor w in (3.23) is randomly selected

from [0.7, 1]. The weighted sum of j(t) and w,(ys(t)) helps in the effective tuning of y(t+1)

based on the successful values of the light absorption coefficients in the past and present
generations respectively. The positive constant n in (3.24) is taken as 1.5 after wide variety of
experiments to avoid premature convergence at local optima. The design philosophy adopted
here relies on the principle of selecting large diversified values of y from the Rayleigh
distribution (having longer tails than the normal distribution) when the population is far away

from the global optimum.

3.4 EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

This section describes each step of the proposed framework with the obtained readings
arranged in a tabulated manner. Apart from that, the performance of the proposed system has
been analyzed with respect to certain standard methods in terms of different performance

indices.

3.4.1 EEG Signal Acquisition

Fifteen different binary classification experiments are carried out for this particular
framework, in order to validate the obtained results for any kind of cognitive task without loss
of generality. In each case, ten healthy subjects aged between 22 and 30 years have
participated (five male and five female) in the experiments. The experiments are undertaken

in multiple sessions, each of 2 minutes duration and every subject is asked to perform each
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session 10 times. It is thus evident from Fig. 3.2 that the number of data points L in each
cognitive task equals to (5+5)x10=100. All the signals are recorded using a stand-alone EEG
machine manufactured by Nihon Kohden (200 Hz sampling frequency) comprising N=19
electrodes, placed using the standard international 10-20 electrode placement method [22], as
shown in Fig.3.4. A; and A, are considered as the reference electrodes.

TABLE 3.1 ALGORITHM FOR SAFA INDUCED FEATURE SELECTION

Procedure SAFA _Induced Electrode Feature Selection

Input: L data points, each comprising the EEG signals of N electrodes for each cognitive task class K,
for c=[1, C], F EEG features, non-linear modulation index m.
Output: Optimally selected M (< N) electrodes and D (< F) features.

Begin

1. Initialize a population P(t) of NP, 4-dimensional firefly position vectors Y; (t) at generation t=0 using
(3.16) and Fig. 3.3 for i=[1, NP].

2.Set 7(0) «0.5.

3. Decode Y, (0) using Fig. 3.3 and evaluate f (Y; (0)) using (3.15) for i= [1, NP].

NP
4. Set Ybest(0) « arg[max f(Y, (0))] .
i=1

5. While termination condition is not reached do
Begin
. Set yy(t)—NULL.
Il. For i=1to NP do
Begin
(i) Select p;(t) using (3.21).
(ii) For j=1to NP, j#i do
Begin
If £(Yj()> f(Y;(t)) Then do

Determine Y;"(t) using (3.19) and (3.20).

End If.
End For.

(iii) SetY; (t+1) < ;"X (t).
(iv) Decode Y, (t +1) using Fig. 3.3 and evaluate f(Y;(t+1) using (3.15) for i= [1, NP].
(V) If f(Y;(t+1) > f(Y;(t) Then

Set ps(t)y—ys(OU 7i(®).

End If.
End For.

. Set Ybest(t) earg(rrl;‘gx f (Y, (t))j.
i=1

V. Set t—t+1.
V. Determine 7 (t+1)from (3.23).
End While.
6. Decode YPst(t) using Fig. 3.3

7. Return optimally selected M (< N) electrodes and D (< F) EEG features.
End.
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TABLE 3.2: EXPERIMENTS CONDUCTED FOR PROPOSED SCHEME

Index Description

Experiment 1 Left hand and right hand motor execution
Experiment 2 Left hand and right hand motor imagery
Experiment 3 Left leg and right leg motor execution
Experiment 4 Left leg and right leg motor imagery
Experiment 5 Tongue and finger motor execution
Experiment 6 Happiness and sadness emotion recognition
Experiment 7 Happiness and anger emotion recognition
Experiment 8 Happiness and fear emotion recognition
Experiment 9 Happiness and disgust emotion recognition
Experiment 10 Disgust and fear emotion recognition
Experiment 11 Disgust and anger emotion recognition
Experiment 12 Disgust and sadness emotion recognition
Experiment 13 Anger and fear emotion recognition
Experiment 14 Anger and sadness emotion recognition
Experiment 15 Sadness and fear emotion recognition

Table 3.2 presents an overview of the cognitive tasks undertaken during different
experiments for the concerned problem. From Table-3.2, it can be seen that the experiments
are not limited to only motor execution or motor intention based tasks [23], but the list also
includes several experiments of segregation of five basic emotions, including happiness,
sadness, anger, fear and disgust. To conduct experiments related to emotion recognition,
certain video clips are shown to the users with sufficient amount of relaxation interval in
between two clips corresponding to two different emotions. The clips of small duration are
chosen such that it takes minimal time for the user to understand the clip and to experience
such emotions freely.

While performing the experiments the subjects are asked to sit on a chair with arms at
rest position and eyes stable. After a certain interval, a cross appears on the screen along with
a beep sound; thereafter the subjects are instructed to perform the required tasks according to
commands appearing on screen. The structure of a stimulus used for left and right hand motor

execution task has been shown in Fig. 3.5 as an example.
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3.4.2 Preprocessing

The acquired EEG signals are passed through certain pre-processing steps in order to
remove the artifacts generated due to eye blinking or spurious pick-ups from the power
supply. The responses to the experiments undertaken are better captured by the rhythmic brain
activity in the frequency band of 4-40Hz. Hence, to filter the signals within the specified
frequency band, a 6-th order elliptical filter is used with 1dB pass-band ripple and 50dB stop-
band ripple.
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Fig. 3.5 Queue for stimulus presentation for left and right hand motor execution

3.4.3 Feature Extraction

In this step, five well known features for EEG based research have been considered including
temporal features like Hjorth parameters [3], AAR parameters [3], frequency domain features
like PSD [3], time-frequency correlated features like discrete wavelet coefficient [3] and CSP
features [2]. In this case, AAR parameters of 6-th order have been calculated using Kalman

filter as the estimator with an update coefficient of 0.0085. PSD features have been extracted
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using Welch method with 50% overlapped signal segments using a Hamming window. For
wavelet coefficients, Daubechies 4-th order mother wavelet has been used.

3.4.4 Optimal Feature and Electrode Selection using Optimization Algorithm

A potential solution of this optimization problem of selection of the optimal set of EEG
electrodes [24] and EEG features is encoded as a four dimensional firefly position (Fig. 3.3).
Using a set of such firefly positions, the proposed SAFA is executed. In each generation of
SAFA, three steps are followed to determine the objective function value of a firefly position.
First, each firefly position is decoded using Fig. 3.3 to obtain M (< N) and D (< F). The
source signals, corresponding to the selected M (< N) electrodes, are estimated using ICA.
The selected D (< F) features are then extracted from the selected M (< N) sources and sinks.
The fitness of the solution is then determined using (3.15). Maximization of (3.15) using
FASA ultimately provides the optimal set of electrodes and EEG features for the effective
representation of C cognitive tasks i) without dropping out any useful information and ii)

without any redundant information.

3.4.5 Experimental Results

Table 3.3 reports the mean (standard deviation within parenthesis) of the following measures
as obtained by the proposed SAFA-based realization over 50 independent runs, each with
4x10* maximum number of function evaluations. The performance metrics include

» The average of the distance correlation coefficients between the selected D features

of the selected M and the original N set of sources,

» The average of the mutual information between the selected D features of the

selected M and the original N set of sinks, and

» The average value of Jg /Jw due to the selected M sources, each with D features
over 50 runs and for all possible combinations of fifteen cognitive tasks. It is
evident from Table-3.3 that for emotion-based experiments, frontal and prefrontal
electrodes have been chosen as the optimal ones apart from a few other channels. It
justifies the effectiveness of the proposed scheme as it is known from elementary
neuro-physiological knowledge that frontal and prefrontal brain area are majorly

responsible for emotion based task executions.

A comparative analysis of the proposed SAFA with other existing algorithms, including
self-adaptive artificial bee colony (SAABC) [25], traditional ABC [26] and traditional

differential evolution (DE) [27], are undertaken in Table 3.4 with respect to the mean (standard
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deviation within parenthesis) objective function values of the optimal solutions (using (3.15))
over 50 independent runs. All the algorithms commence from the same initial population of
size 50. The maximum number of function evaluations for each run of an algorithm is set equal
to 50x10*. Their control parameters are set in a manner to have their individual best
performance in the present context after a wide variety of experiments. The parameters of
SAFA including o™, S, and m are respectively set as 0.2, 1 and 1.5. The limit cycle for
SAABC and ABC is set to 50. A crossover rate of 0.9 is used in case of DE/current-to-best/1.

The statistical significance level of the difference of the 50 samples of the optimal
objective function of any two competitive algorithms is verified by the Wilcoxon rank sum test
[28] with a significance level 0=0.05 [29]. The p-values obtained through the rank sum test
between the best algorithm and each of the remaining algorithms over all combinations of
cognitive tasks is reported in third brackets in Table3.4. Here NA stands for not applicable
covering the cases of comparing the best algorithm with itself. The null hypothesis of this
statistical test is concerned with the equivalent performance of all the competitor algorithms. If
the p-value, corresponding to the relative performance analysis of the i-th and j-th algorithms,
is less than «, then the respective null hypothesis is rejected. The reported results in Table 3.4
clearly indicate the superiority of the proposed SAFA to its contenders in a statistically
significant fashion over most of the combinations of cognitive tasks. SAABC, which yields the
best objective function values for three cases (including experiments 7, 11 and 14) attain the
second best rank. However, for experiment 11, the statistical test indicates an insignificant
dominance of SAABC over SAFA. It is noteworthy that DE based realization of the problem
outperforms the proposed SAFA for task 9, however, insignificantly.

It is also remarkable from Tables 3.3 and 3.4 that the performance of each algorithm
remains better for selection of optimal electrodes and EEG features for different classes of
motor intensions or motor imagery rather than emotion recognition. An obvious reason may be
that the emotional stimuli produce the brain rhythms essentially in « and @ bands, but here the
signals are band-pass filtered as a whole in the 4-40 Hz band. It may have resulted in a
degraded performance of an algorithm as compared to other cognitive tasks.

The comparative analysis of the competitor algorithms is also undertaken with respect
to the classification accuracy of three different SVM classifiers [30], considered in this
chapter. This is accomplished by first creating a testing dataset for each task combinations in
Table-3.2. The testing dataset is created by following the same principle as in section 3.4.1.

Then for an algorithm, say i, we obtain optimal set of M electrodes and D features. Then these
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TABLE 3.3.A: PERFORMANCE OF SAFA BASED SELECTION OF OPTIMAL EEG
ELECTRODES AND FEATURES FOR COGNITIVE TASK CLASSIFICATION FOR

EXPERIMENTS 1 TO 14

) Number
) Number of | Optimal
Experiment of ) Mutual
Selected Electrode Correlation | Jg/Jw )
Index o Selected Information
Electrodes | Positions
Features
C3, C4, Cz, P4, 320.51 11.09 | 12.66
1 5 545
P3 (0.047) (0.068) | (0.043)
288.75 9.43 10.06
2 4 C3,C4,Cz, Pz 412
(0.013) (0.027) | (0.031)
C3, C4, Cz, P3, 373.89 18.23 | 20.65
3 6 755
P4, Pz (0.057) (0.024) | (0.075)
180.76 8.39 8.85
4 3 P3, P4, Pz 323
(0.062) (0.061) | (0.028)
C3, C4, P3, P4, 331.87 16.51 | 16.78
5 5 563
Pz (0.023) (0.053) | (0.011)
FP1, FP2, Cz, 270.57 12.64 | 11.57
6 4 472
Fa (0.039) (0.038) | (0.027)
225.64 8.57 9.68
7 4 FP1, C3,Fz, F3 | 397
(0.032) (0.014) | (0.017)
FP1, FP2, Fz, 321.65 11.67 | 10.89
8 5 513
F3, C3 (0.076) (0.032) | (0.072)
FP1, F3, F4, O1, 365.45 17.85 | 18.95
9 6 781
C3,Cz (0.083) (0.011) | (0.069)
265.88 8.58 9.98
10 4 T3,FP1,F3,F4 | 456
(0.028) (0.045) | (0.083)
0,, FP2, Fz, F3, 318.77 11.96 | 13.46
11 5 529
F4 (0.048) (0.087) | (0.071)
200.45 7.43 8.93
12 3 FP1, FP2, Fz 293
(0.022) (0.069) | (0.059)
T3, FP1, F3, F4, 322.68 10.08 | 12.89
13 5 527
FP2 (0.059) (0.052) | (0.081)
FP1, Pz, Fz, T3, 354.05 18.79 | 19.58
14 6 746
F4, T4 (0.017) (0.047) | (0.079)
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TABLE 3.3.B: PERFORMANCE OF SAFA BASED SELECTION OF OPTIMAL EEG

ELECTRODES AND FEATURES FOR COGNITIVE TASK CLASSIFICATION FOR

EXPERIMENT 15

Number ] Number
) Optimal
Experiment | of of . Mutual
Electrode Correlation | JB /JW )
Index Selected o Selected Information
Positions
Electrodes Features
T3, FP1, 278.92 11.23 11.87
15 4 468
FP2, F4 (0.086) (0.033) (0.066)

TABLE 3.4.A: COMPARISON OF THE PROPOSED ALGORITHM WITH OTHER

STANDARD EVOLUTIONARY ALGORITHMS BASED ON OBJECTIVE FUNCTION

VALUES FOR EXPERIMENTS 1 TO 7

Experiment
SAFA SAABC | ABC DE
Index
0.2562 0.2068 0.0167 0.1583
1 (0.056) (0.049) (0.011) (0.027)
[NA] [0.0034] | [0.0053] | [0.0016]
0.2963 0.2477 0.0543 0.1948
2 (0.095) (0.064) (0.031) (0.072)
[NA] [0.0048] | [0.0074] | [0.0031]
0.3549 0.3249 0.0851 0.2057
3 (0.025) (0.112) (0.105) (0.087)
[NA] [0.0073] | [0.0084] | [0.0027]
0.3688 0.2911 0.1049 0.2648
4 (0.145) (0.194) (0.162) (0.121)
[NA] [0.0046] | [0.0033] | [0.0051]
0.3344 0.3105 0.1078 0.2420
5 (0.271) (0.127) (0.186) (0.191)
[NA] [0.0053] | [0.0082] | [0.0154]
0.3231 0.2865 0.0989 0.1997
6 (0.084) (0.073) (0.085) (0.066)
[NA] [0.0049] | [0.0064] | [0.0129]
0.3825 0.3941 0.2732 0.3475
7 (0.094) (0.105) (0.147) (0.194)
[0.0044] | [NA] [0.0018] | [0.0003]
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TABLE 3.4.B: COMPARISON OF THE PROPOSED ALGORITHM WITH OTHER
STANDARD EVOLUTIONARY ALGORITHMS BASED ON OBJECTIVE FUNCTION

VALUES FOR EXPERIMENTS 8 TO 15

Experiment
SAFA SAABC ABC DE
Index
0.3376 0.2951 0.0611 0.2559
8 (0.034) (0.072) (0.128) (0.136)
[NA] [0.0059] [0.0011] [0.0046]
0.2931 0.2883 0.2691 0.3259
9 (0.241) (0.262) (0.177) (0.167)
[0.0564] [0.0077] [0.0003] [NA]
0.3596 0.3115 0.1572 0.2754
10 (0.184) (0.179) (0.086) (0.109)
[NA] [0.0165] [0.0234] [0.0196]
0.3104 0.3155 0.2158 0.2795
11 (0.097) (0.116) (0.123) (0.152)
[0.0602] [0.0007] [0.0097] [0.0197]
0.3963 0.3386 0.1652 0.2964
12 (0.096) (0.188) (0.192) (0.271)
[NA] [0.0217] [0.0194] [0.089]
0.3713 0.3494 0.1922 0.2278
13 (0.290) (0.306) (0.327) (0.315)
[NA] [0.0204] [0.0028] [0.0011]
0.3353 0.3686 0.2263 0.3281
14 (0.224) (0.219) (0.254) (0.278)
[0.0189] [0.0173] [0.0184] [0.008]
0.3533 0.3467 0.0476 0.2343
15 (0.172) (0.245) (0.239) (0.241)
[NA] [0.0309] [0.0061] [0.0149]

D-dimensional M source and sink feature vectors of the training dataset are used to train the
SVM individually. After completing the training cycle, the D-dimensional M source and sink
feature vectors are extracted from the testing set and are used to verify the classification
accuracy of the trained SVM. This is repeated for all four competitors with i=[1, 4] for all
three variants of nonlinear SVM. Fig. 3.6 plots the classification accuracy obtained by
individual SVM classifier due to selection of optimal set of EEG electrodes and features by
each contender algorithm. The plot clearly reveals that the proposed SAFA here too

outperforms its contenders, however, marginally for SAABC [25].
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Fig. 3.6 Classification Accuracy of SVM Classifiers Due to Training with EEG Electrodes and

Features Selected by (a) SAFA), (b) ABC, (c) SAABC and (d) DE
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3.5 CONCLUSION

The chapter proposes a novel evolutionary optimization approach to the simultaneous
selection of significant electrodes and relevant EEG features for classification of cognitive
tasks in EEG based BCI paradigm. The present work can get extreme appreciation, because
till date separate techniques of electrode and feature selections are adopted by the researchers,
but a combined methodology of simultaneous dealing with these two important aspects of
EEG signal processing has not been used in large scale. It is noteworthy that the efficiency of
classification of cognitive tasks is enhanced by a great extent using the proposed framework.
The main novelty of the work lies in the formulation of the problem in an optimization
framework and in solving the problem using the proposed SAFA with an aim to satisfy three
criteria. 1) To minimize the loss of information of the cortical sources for a cognitive task by
discarding a specific set of redundant electrodes, the correlation between the EEG sources
before and after the electrode selection should be as high as possible (in the feature space). 2)
To ensure that only relevant EEG electrodes to be used for characterizing the mental states of
cognitive tasks, the mutual information between the selected electrodes should be as low as
possible indicating their independence (in the feature space). 3) The optimal set of features is
selected by identifying the features that well differentiate between EEG sources of two
cognitive tasks, while representing a specific cognitive task uniquely. To analyze the relative
performance of SAFA with other existing evolutionary algorithms, three variants of non-
linear SVM [4] classifier (including Gaussian radial basis function, homogeneous polynomial
function and hyperbolic tangent function) are individually trained with the selected feature
sets of the selected EEG electrodes and the corresponding EEG sources, as obtained by
individual competitor algorithms. Experiments undertaken with SAFA reveal the statistically
significant superiority of the proposed method over other existing evolutionary algorithms,
with respect to classification accuracy of the SVM classifier, irrespective of the non-linearity.
Despite the superiority of the above discussed methodology there exist ample scopes of
improvement that can be carried out in future in order to reach closer to the desired objective.
In the present scenario, the data obtained from the undertaken experiments have been
exploited to compute merely five different types of features although the resulting features
belong to very high dimension, hence the proposed work can be extended further in case of
larger types of features and finally the classification accuracy obtained collectively after
considering all the feature set is likely to provide relatively unbiased and fair conclusion.
Moreover, although the list of experiments tabulated in Table 3.2 includes a wide variety of

experiments, but it has majorly emphasized on emotion based experiments, so it is wise to
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include other experiments that empowers any motor execution or motor imagery movements

apart from the few basic ones mentioned here.
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Chapter 4

CSP & Its Regularization

This chapter primarily aims at describing the fundamental aspects of a well known
feature extraction algorithm formally termed as Common Spatial Pattern
(CSP).Firstly, it establishes the requirement of feature extraction in a rehabilitative
BCI system. Then after briefly recapitulating the reasons behind the introduction of
spatial filter, it describes the CSP methodology in details incorporating the future
research directions regarding the improvement of CSP. As every entity has got its
pros and cons, CSP too comes with its own set of limitations. To overcome these
issues, several regularization techniques have been presented by different research
enthusiasts throughout the world, thus researchers proposed a bunch of novel
algorithms that enhances the existing framework in terms of most of the performance
metrics, which are broadly classified to one category that is formally termed as
Regularized CSP(RCSP).Section 4.1 presents a brief introduction and section 4.2
summarizes the existing works that are closely relevant to this chapter. Section 4.3
describes CSP algorithm from mathematical point of view and section 4.4 presents
CSP methodology from optimization aspect. Section 4.5 describes the methods
adopted for regularizing CSP and the existing algorithms and finally section 4.6
introduces the novel penalty terminologies as an extension of existing RCSP

algorithms.
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4.1 INTRODUCTION

A Brain Computer Interfacing (BCI) system [1] primarily attempts to translate a user’s
intentions into control commands without using the brain’s normal output pathways of
peripheral nerves and muscles. These days BCI is considered as one of the most developing
research disciplines due to its growth, implementation of cutting edge and novel
methodologies and scopes of improvement which bridges the theoretical gap between large
numbers of research fields including medicines, psychology, signal processing, machine
learning and so on. Since BCI interfaces mainly deal with brain rhythmic signals only, it can
provide help to people suffering from several disabilities where the patients cannot instruct an
assistive device with the help of muscular actions, but the cognitive components of the
patients are not damaged and thus he/she can obtain the required service simply by using a
BCI interface that is capable of decoding his/her thinking and executing the specific action.
There are different modalities that are available through which brain signals can be acquired,
including both invasive as well as non invasive implants. In this chapter we are considering
one of the most common and user friendly non invasive modality termed as
Electroencephalogram (EEG), which is reliable, easy to acquire and portable also.

EEG signals [2] are acquired by placing external electrodes on scalp following a
standard electrode placement rules, but the EEG signals acquired from human scalp are highly
contaminated by noise, moreover the oscillatory components of EEG signals are often found
to be extremely non stationary because of the presence of sharp waves, spikes, electrical
discharges etc. In fact, at times the amount of noise is so high that actual signal attributes are
likely to be buried away in the noise. Hence, it is important to extract the useful components
from the concerned signals for further analysis, because of these issues feature extraction is
considered to be one of the key steps in an EEG based BCI system. Technically, a feature is a
distinctive or characteristic measurement, a transform or a recognizable structural component
that is extracted from a segment of a pattern. Usually, extracted features are meant to
minimize the loss of the fundamental components that are embedded in a signal or a pattern,
and to simplify the need of exploiting multiple information sources to describe larger amount
of data with precision. In other words, the feature extraction phase primarily takes care of
three important aspects,

» Reducing system implementation complexity
» Reducing cost of information processing
» Reducing the requirement of further information compression.
Literature show several feature extracting mechanisms have been adopted by the

research fraternity in the past yielding moderately good experimental results including time
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domain features [3] (AAR parameters, Hjorth parameters), frequency domain features (PSD,
FFT) and time frequency correlated features (Wavelet coefficients). In case of basic BCI
design, the number of electrodes considered and the number of subjects participating in the
experiment is assumed to be relatively small, hence apparently the task looks relatively
simple, but in case of larger data the complexity increases. Although from preliminary neuro
physiological knowledge [4] we are aware of the particular brain regions that are likely to be
responsible for a particular cognitive task, but there are high possibilities that even the
surrounding brain regions may have a contribution in that particular task, however small it is.
For example, for a motor execution task instead of C; and C, the optimal electrodes for a
particular subject may be FC; and FC,, or CP; and CP, etc. So, to obtain complete
information for further analysis, it is recommended to use larger number of electrodes that
covers maximum of the scalp regions so that none of the relevant information is missed out.
Besides having a large number of electrodes, the optimal frequency band for different subjects
may vary which may lead to a large amount of data and more importantly increasing the
number of channels may incorporate redundancy also. In order to deal with such issues, the
concept of spatial filtering has been introduced.

Spatial filtering basically derives a reduced number of new channels which are formed

by linear combination of the original ones, following the equation (4.1),
X'= > WX =wX (4.1)

Here w signifies the weight vector and X is the data obtained from the original electrodes
placed upon human scalp. In this context, some of the basic spatial filters can be described in
terms of the electrodes shown in Fig 4.1 [5].

The Fig. 4.1 depicts a set of 75 electrodes placed on different regions of human scalp
following a standard electrode placement scheme including the reference electrodes. For a left
hand and right hand motor imagery task, the electrodes that are considered for an experiment
has been coloured red. In this chapter, only Bipolar and Laplacian filters has been described
amongst the basic spatial filters and further the results obtained from them has been
illustrated. Using the electrodes shown in Fig. 4.1 the Bipolar and Laplacian filter can be

implemented as (4.2) and (4.3) respectively [5],

C,=FC,-CP, (4.2)

C,=4*C,-FC,—C,-C,—CP, (4.3)
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Fig 4.1 Electrodes Placed on Human Scalp Using Standard System

These spatial filters mainly emphasizes on localized activity, they help to extract the
relevant information corresponding to any cognitive task. For example, due to volume
conduction the information the signal originating from a specific source within the brain often
gets scattered over more number of electrodes placed on scalp, in these cases spatial filtering
can be employed to identify actual sources in brain localization problems.

Lotte et al. in his lecture [6] at BBCI Winter School of Neurotechnology has presented
the performance of the above two basic spatial filters on BCI competition 1V, dataset Ila using
LDA classifier. This particular dataset comprises of EEG recordings from 9 different subjects
performing left hand and right hand motor imagery tasks. After extracting the band power
features the accuracy attained with Laplacian C3-C4 and Bipolar Cs-C,4 has been tabulated in
Fig.4.2.

It is clearly revealed from Fig 4.2 that the accuracy obtained with the spatial filters
clearly surpasses that obtained from the original C;-C,4 electrodes, for all the subjects. The
average classification accuracies for Cs-C,, Laplacian Cs-C, and Bipolar Cs-C, are computed
as 60.7%, 68% and 70.5% respectively. However, in this case, Bipolar Cs-C; has
outperformed its other contender nearly in each case, but the results may not be the same for
all cognitive task based experiments. Moreover, barring the performance attained for few
electrodes the average accuracy obtained for all the three methods have not been satisfactory,
as in most of the cases the accuracy obtained has been under the minimum threshold value of
70% which will not allow these filters to be implemented in any real time online systems.

Hence, it is required to move on to more advanced variants of spatial filtering and thus
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Common Spatial Pattern has been introduced as a member of the supervised spatial filtering
family to deal with the limitations of its predecessors.

In this chapter, we are focussing upon CSP as a feature extractor algorithm. From the
pattern recognition point of view, an EEG based BCI system comprises of the following
phases as shown in Fig. 4.3 [7].
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Fig. 4.2 Classification Accuracy Obtained with LDA Classifier for Basic Spatial Filters
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Fig. 4.3 BCI Overview

CSP is one of the most efficient feature extraction methods that enable a researcher to

transform the acquired signals in a linear subspace such that the projected signals are
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maximally discriminate. CSP algorithms provides the best results in deciphering motor
imagery signals such as, left hand and right hand movements [8]. For binary classification
problems, CSP can be defined as a linear spatial filter that seeks a projection direction such
that the variance of the spatially filtered signals of one class is maximized and those of the
other class is minimized. The reason behind the usage of the variance of the signals lies in the
fact that variance is actually nothing but the band power of the signals, hence dealing with
variance is supposed to yield better results. Basically, CSP algorithm attempts to derive
optimal spatial filters that can best discriminate two different populations of EEG signals, in
this approach simultaneous diagonalization of the covariance matrices has been used and in
recent days, it is employed successfully for classifying movement related trials or EEG motor
imagery.

4.2 RELATED WORKS

Due to the poor spatial resolution of EEG signals [9], CSP is considered to be a preferred
alternative for enhancing the system performance and information transfer rate as well.
Fukunaga et al. first introduced the concept of CSP [10] as an application of Karhunen Loeve
Transform for classification and it was employed by Koles et al. later to detect the abnormal
components of EEG scalp potential [11]. Ramoser et al. in [12] proposed a novel way
estimating spatial filters using CSP algorithm and also stated the spatial filters for
multichannel EEG analysis are capable of extracting discriminate information from two
classes of EEG data and the recognition accuracies obtained after conducting experiments
signify the proposed scheme as a promising one for EEG based BCI design. Lemm et al. in
[13] attempted to alleviate the adverse impacts of non stationarity and artifacts in EEG based
BCI system by embedding a finite impulse response filter in the CSP methodology, termed as
Common Spectral Spatial Pattern (CSSP) and EEG recordings from the experiments of
imagined limb movements have shown noticeable improvement in terms of Information
Transfer Rate. Although CSSP provided certain improvement over the classical CSP
algorithm, but first order FIR filters lacks sufficient flexibility. To overcome this drawback
Dornhege et al. presented a novel techniqgue Common Sparse Spectral Spatial Pattern
(CSSSP) for simultaneous optimization of spatial and spectral filters in the periphery of CSP
analysis [14]. To avoid the overfitting problem, the authors incorporated a regularization term
to sparsify the solution that leads to an increase of the computational complexity. Since
computationally expensive systems are not feasible to be implemented in online real time
mechanisms, Tamioka et al. [15],[16] proposed an alternate version of CSP that exploits the
temporal features by optimizing spectral filters in the frequency domain by considering the

square root of the Rayleigh coefficient as the objective function. Motivated by these
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techniques, later Wu et al. [17] later developed a novel algorithm termed as Iterative Spatio-
Spectral Pattern Learning (ISSPL) that utilizes the concepts of statistical learning theory to
optimize spatio-spectral filters.

After the introduction of CSP, gradually the needs of generalization of the algorithm is
noticed, as to test the efficacy of an algorithm it is important to check how far it is performing
on the testing data from the training data. Hill et al. in [18], compared the classifiability of the
three brain signal acquisition methods, namely EEG, magnetoencephalography (MEG) and
electrocorticography (ECoG) and after conducting a comparative study on the performance of
spatial filters in each of the three sensor types, the authors inferred that spatial filtering
enhances performance by a great deal in EEG, improves a little in ECoG and practically has
no positive impact in MEG. It is also found due to overfitting problem CSP appears to be
redundant to detect ERD in MEG and ECoG signals. Reuderink et. al. described the
generalization of CSP over time, number of trials and subjects, but he could not conclude
clearly regarding the actual reason of the overfitting problem observed with CSP [19]. The
complexity of the EEG signal creates hindrance in the process of exploring the reasons for
overfitting of CSP. The complexity of CSP can also be described from different aspects,
firstly the nonstationarity of CSP does not entirely come from a single trial, so it consists of
the between trial nonstationarities also. Further, still now there is no clear idea of the actual
mechanism of brain that yields such signals for a particular cognitive task, hence the entire
procedure is treated as an output from a black box, with no exact formulation of brain system.
Moreover, the classification accuracy attained from various classifiers also varies amongst
different subjects which lead to more confusion. In order to deal with these issues, the concept
of regularization of CSP [20]-[22] has been introduced and from the past two decades the
researchers are delving further to generate new ideas that can enhance the performance of
spatial filtering in modern day BCI paradigms.

Lotte et al. in [23] has presented a unified framework based on the theoretical concepts
of designing Regularized CSP algorithm, along with revisiting the already established RCSP

algorithms, the researchers also formulated certain new algorithms.

4.3 CSP ALGORITHM FOR BINARY CLASSIFICATION PROBLEMS

CSP is a decomposition method that derives the spatial filters that generates maximally
discriminate variance of the EEG signals in two different conditions. Basically, CSP maps the
samples in a new space based on the covariance matrix of the signals [8]. Let us consider a
task of discriminating between left hand and right hand motor imagery signals using CSP as a
feature extractor. This can be seen as a simplified exemplary solution of the optimization

criterion of the CSP algorithm: maximizing variance for the class of right-hand trials and at
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the same time minimizing variance or left-hand trials. To illustrate mathematically, let Xy
denotes the band pass filtered EEG recordings of k-th trials having a dimension of CxT,
where C and T denotes the total number of electrodes and the number of time samples per

electrode in each trial respectively. Now, Yy € (1, 2) denotes the class label of the k-th trial.

The covariance matrix corresponding to both the classes can be calculated as,

z1(|<:Yk=1) = (kakT) and ZZ(k:Yk:Z) = (X, X;) (4.4)

The aim of CSP is to derive the coefficients of the weight matrix W and the elements
(lying in the closed interval [0, 1]) of diagonal matrix D, using simultaneous diagonalization
such that,

WEXW =1 and WX,W' =1-D (4.5)

The derivations are carried out by first employing whitening transformation of (

2., +2.,) and calculation of P such that,

P, +X,)P" =1 (4.6)

Now, using CSP analysis two more calculations are carried out to define another two

matrices,

S,=PY,P" and S,=PY,P’ 4.7)

Moreover, a orthogonal matrix R and diagonal matrix D is calculated in terms of S;

using the rules of spectral theory such that,

S/ =RDR" and S] =R(I-D)R’ (4.8)

given, (S; + S; = I). It is needless to say, that the decomposition is possible due to the positive

definiteness of the (2., +2,). Here, it is quite remarkable to notice that the projection given

by the p-th row of matrix R offers a relative variance equal to d, (p-th element of diagonal
matrix D) for the trials corresponding to class 1 and a relative variance of (1- d,) for trials
corresponding to class 2. It is evident that if dj is close to 1 then it is the case of maximization
of variance of the filtered signals corresponding to class 1 trials and obviously, (1- d,) close to

zero also signifies the same case. Finally, the weight matrix W can be obtained as,

W=R'P (4.9)

Brain Localization and Feature Extraction Using Computational Intelligence Techniques



Chapter 4|page 75

Using the weight matrix W, the EEG recordings of Xy is transformed in a subspace

using,

Z, =WX, (4.10)

The rows of W are basically spatial filters. In order to obtain the feature set that can be
fed to the classifier for further proceedings in terms of signal analysis, using the normalized

variance, the features are extracted as,

f, = log[Zs); (4.11)

2.4

In this case, p varies from 1 to 2m, which basically corresponds to first m and last m

rows of Z,according to the largest Eigen values of each condition.

4.4 CSP ALGORITHM AS AN OPTIMIZATION PROBLEM

The CSP algorithm is highly successful in detecting ERD/ERS effects in motor imagery based
BCI systems. The working principle of basic CSP algorithm can also be described from the
pattern recognition aspect, incorporating the concept of optimization of an objective functions
that is best suited for a particular problem. From this perspective, CSP algorithm attempts to
obtain optimal spatial filters that maximizes the variance of EEG band pass filtered signals for
one class while minimizes the same for the other class. Mathematically, CSP seeks to find the

filters w that extremize the following objective function [23],

WX Xw - w'Cw
w' X, X,w  w'C,w

J(w) = (4.12)

Here, T denotes the transpose operation, X; is the data matrix of i-th class, and C; is the

centred spatial covariance matrix from class i. To be precise extremizing (4.12), basically
indicates extremizing w'C,wsubjected to constraintw'C,w=1. Employing Lagrange’s

multiplier method, the constrained optimization problem reduces to extremizing the following

function,

L(A,w) =w'Cw—A(w'C,w-1) (4.13)

To compute the filters w that extremizes the above function, it is required to equate the

derivative of the function with respect to w to zero. Mathematically,
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S—Vb =2wW'C,—2AW'C, =0 (4.14)
= C,w=AC,w (4.15)
=C,'Cw=Aw (4.16)

This is a mere Eigen value decomposition problem that is the spatial filters are the
Eigen vectors of M =C, lCl, corresponding to largest and lowest Eigen values to generate

the maximally discriminate outcome.

4.5 REGULARIZED CSP METHODOLOGY (RCSP)

Since recorded EEG signals are likely to be contaminated with noise and artifacts, to deal
with the sensitivity of CSP to overfitting and noise, it is always recommended to regularize it
by adding prior information [24]-[27]. Now, the regularization of CSP algorithms can be
primarily categorized into two levels,

» Regularization at the covariance matrix estimation level

» Regularization at the objective function level.

4.5.1 Regularizing Covariance matrix estimates

The CSP algorithm depends majorly on the covariance matrix estimates of both the classes, so
if such estimates suffer from the issues of noise or small training sets, then there is high
probability that those matrices to be poor or non reliable estimates of the mental states
involved and thus leading to poor spatial filters. In such cases, it is always wise to improve
the estimates by adding prior knowledge to it in the form of regularization. The regularized

covariance matrix estimated can be calculated as,

C,=(1-»)C, +7I (4.17)

where, C, =(1-B)s,C, + 3G, (4.18)

Here, C, denotes the regularized spatial covariance matrix estimate for class c, Cq is the

initial spatial covariance matrix, s. is a scaling parameter (a scalar), y and g are two user
defined regularization parameters in the closed interval [0, 1] and G signifies the ‘generic’

covariance matrix. The generic matrix is developed exploiting the information collected from
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the EEG signals that have been recorded previously and it provides a rough estimate
regarding how the covariance matrix corresponding to a specific cognitive task should be. It is
seen clearly in (4.17) and (4.18) that using the regularization parameters y and f, (4.18)
reduces the original covariance matrix close the generic matrix and further, (4.17) shrinks the
intermediate covariance matrix estimate to the identity matrix, to nullify the effect of an
estimation bias that could have been generated as a result of a small training set and also to
obtain a more stable estimate. To employ RCSP using this method, one has to replace the

covariance matrix with its regularized estimates having one or two regularizing parameters.
4.5.2 Regularizing the CSP objective function

As discussed in section 4.4, the CSP algorithm primarily aims to find spatial filters that can
extremize the objective function (4.12). In case of RCSP, a penalty function is added to the
denominator containing another regularization parameter o, to outlaw solutions that do not

satisfy a predetermined constraint. Formally, the objective function can be expressed as,

w'Cw
w'C,W+aP(w)

Jo(w) = (4.19)
Generally, in our studies, we have calculated the spatial filters considering quadratic
penalty functions of the form, P(w)= w'Kw where the matrix K represents the aspect of the

constraints that needs to be satisfied. So (4.19), can be written as,

w'C,w
L wy=— "G (4.20)
w (C, +aK)w
Following a similar approach, the Lagrangian equation in this case becomes,
L. (1, W) =w'Cw—A(W' (C, +aK)w-1) (4.21)

Thus the filters w that maximize (20) are the Eigen vectors corresponding to the largest
Eigen values of, M, =(C, +aK)’lC1. However, it is remarkable to note that unlike (4.12),

to derive the optimize filters (4.20) is not being extremized. The reason can be explained as,
minimizing (4.20) is essentially equivalent to maximizing the denominator, which contains a
penalty term, will eventually maximize the penalty also and that is extremely undesirable,
since the concept of penalty is introduced to deemphasize the filters not satisfying the
constraint. In order to calculate the filters maximizing C, and minimizing C,, the objective

function is slightly modified as the positions of the variances corresponding to both the
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classes are swapped and the filters are the Eigen vectors corresponding to the largest Eigen

values of, M, = (C, +aK)™C,.
4.6 Improvising the existing RCSP Algorithms

Among the existing RCSP algorithms, till date Weighted Tikhonov Regularised CSP
(WTRCSP) has been found to be the most efficient one amongst all the variants of RCSP
algorithms that are presently available for EEG signal processing. However, in this case, the
CSP algorithm is regularized at the objective function level where the penalty is assigned
according to the usefulness of a specific electrode. To illustrate further, if an EEG electrode is
likely to provide relevant contribution then those filters are given small penalty, on the other
hand negligibly contributing electrodes are penalized greatly to improve the quality of the
solution. According to WTRCSP, the penalty assigned to an electrode is calculated as the
inverse of the average absolute value of the normalized weight of the corresponding electrode

in CSP filters obtained from data acquired by other subjects, using (4.22),

I S L -
S 2xNx|Q]i% 4 | M

where Q is the total number of subjects participating in the experiment and Wij refers to the j-

th spatial filter (out of Eigen vectors corresponding to N largest and N lowest Eigen values)

corresponding to the i-th subject. Finally the penalty term is calculated as,

P(w) =w' D, w where D,, = diag(w) (4.23)

In (4.22), electrode usefulness is calculated after providing equal priority to each
subject considered for the experiment, but it is important to note that all subjects do not
provide equal performance, moreover number of trials acquired from different subjects,
subject specificness, inter trial variance etc. all of these parameters have immense impact in
this scenario and so neglecting these factors can generate degraded results.

> Firstly, (4.22) is modified to incorporate more constraints such that each subject is
weighted using the number of trials he has performed. It is needless to say, a subject
having more number of trials is likely to provide more promising results than another
one having relatively lesser number of trials. In this way, the subjects having more
number of trials are given more priority while deemphasizing the other subjects with

lesser number of trials, as shown in (4.24),
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v |

ws (1) =[ Z

2xN ><|Q| ieQ Nt c J—l HW ‘H] (424

Here, Nci and N . denote the total number of trials corresponding to subject i and the

total number of trials considering all the subjects.
» Secondly, the weights are defined as the Kullback Leibler divergence (K L

divergence) between subject’s data and can be expressed as,

PRSI SR S |1V PO
2xN ><|Q| |(Iei2mr)ne§2 Z x KL(m,i) 1_1 ‘W ‘H

where Z = Y KL(m,i) and the K L divergence can be mathematically expressed as,
meQ

det(C!)

det ( ; )) tr(Cc_ Cc )_Ne] (4.26)

KL(m, i) = —[| 9 — =y

where C' and CCi denote the covariance matrices corresponding to m-th and i-th

subject respectively and N, denotes the number of considered electrodes, while det
and tr respectively denote trace and determinant.
» Finally, the subject weights are defined according to inter trial variance, that is the

subjects having high intertribal variance are given less priority as shown in,

4.27
e 0=l N NX|Q|.EQ HW I 420
1
where S—i L %eiE[NZ X -m ] (4.28)
m=1 Nt n=1 p=1

Here, C is the number of classes, N; and Ns denote the number of trials and number of

samples respectively and m denotes the mean vector obtained over all the trials.
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4.7 CONCLUSION

This chapter basically recapitulates the background for the emergence of CSP along with

showing innovative avenues for improvising the existing technologies in this domain. After

revisiting the backdrop of Regularised CSP (RCSP), it also provides interesting insights about

different aspects of cognitive penalty computation and finally three novel penalty terms have

been derived as an extension of the well known Weighted Tikhonov Regularised CSP
(WTRCSP) and the application of the same has been illustrated in Chapter 5.
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Chapter 5

Detecting Motor Imagery EEG Signals
Using CSP

This chapter provides an insight to the role of CSP algorithm as a feature extration
procedure in the context of EEG motor imagery signal detection. It addresses two
distinct perspectives of motor imagery signal discrimination and each one of them
have different highlighted sections in the work that has been carried out. Section 5.2
introduces a novel scheme of motor imagery classification using a Regularised
variant of CSP using an ensemble of k-NN classifiers, and the main focus of the work
lies in the regularization of CSP objective function by adding subject specific trial
information into it. Section 5.3 proposes another novel scheme of deciphering motor
imagery EEG signals, this time the focus has been shifted to the classification phase.
The major novelty lies within an ADE induced sparse network following the principles

of traditional artificial neural network.
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5.1 INTRODUCTION

Brain Computer Interfacing (BCI) has been emerged as one of the most interesting research
disciplines during the past few decades because of its outstanding contributions towards
rehabilitative applications that provide aid to the patients suffering from diseases like
Amyotrophic Lateral Sclerosis (ALS), Locked-in syndrome or Brain stem stroke [1]. As more
and more research enthusiasts are investing their physical and intellectual resources in this
domain, the researchers are enlightened about the limitations of the concerned technology and
they are coming up with novel ideas to obtain the desired output either by solving those
drawbacks or by circumventing the limitations using certain intelligent strategies. BCI systems
enable us to instruct a machine with brain activation patterns thus not requiring the peripheral
nervous system for conveying any message. Electroencephalogram (EEG) is a non-invasive
modality that is comprised of multivariate data corresponding to neuronal electrical potentials
at sampled time intervals measured from scalp electrodes [2]. For EEG driven BCI systems,
motor imagery (M) is found to be one of the most popular paradigms to stimulate a subject’s
brain potentials. It is accompanied by neuronal power enhancement or attenuation of signals
generated during performing imagined body part movements, such phenomena are formally
termed as Event Related Synchronization (ERS) and Event Related Desynchronization (ERD)
respectively [3]. To deal with the drawbacks of EEG paradigm, the researchers have
introduced the concept of spatial filtering with an aim to project the acquired raw brain signals
in a subspace such that it brings out the most discriminative components of those signals.
Common Spatial Pattern (CSP) [4] is an efficient as well as discriminative spatial filter
that yields the most discriminative features corresponding to a binary classification problem,
such that variance of the filtered signals of one class is maximized and those of the other class
is minimized. This feature extraction algorithm was primarily formulated in the context of
EEG/MEG analysis considering two classes only and it generated extremely precise
classification accuracies when applied to BCI systems utilizing MI paradigms (for example left
hand and right hand motor imagery). Despite its efficiency and adaptability, CSP lacks
robustness while dealing with noisy data and outliers, which in turn degrades the system
performance. To deal with these issues, researchers have designed a novel framework of
adding prior information to the existing CSP methodology in terms of regularization
parameters to ensure improved performance against outliers. This new variant of CSP, termed
as Regularized CSP (RCSP) has outperformed the traditional one by a large extent in most of

the cases.
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5.2 DISCRIMINATING MOTOR IMAGERY EEG SIGNALS USING RCSP
ALGORITHM

Common Spatial Pattern is considered as one of the most efficient feature extraction methods
for rehabilitative BCI paradigms. In the past many researchers have devoted their financial
and intellectual resources in the said domain with an aim to regularize the concept of CSP by
adding prior information in order to reach closer to the desired objective. In this section, a
novel penalty term has been introduced as an extension of one of the most popular variants of
RCSP algorithms, formally termed as Weighted Tikhonov Regularized CSP. The proposed
strategy has been implemented for deciphering four class Motor Imagery signals recorded
from different users while performing four imagined movements of right hand and left hand.
An ensemble classifier comprising of k-NN layers has been used for the classification purpose
and finally, the efficiency of the proposed framework has been tested against the traditionally

used standard classifiers and in each case the designed algorithm outperformed the others.

Literature shows Ramoser et al. first introduced CSP as an optimal spatial filter that can
generate maximally different features that leads to reliable discrimination of single trial left
and right hand MI signals [5]. As mentioned earlier, CSP was initially formulated for binary
classification problems; later its multiclass extensions have been proposed and found to
generate good results. Kang et al. in his attempt to consider the changes of subject specific
spatial distributions of ERD/ERS in time domain in particular frequency bands, designed an
optimal spatial filter by decomposing the raw EEG signals in a space-time-frequency feature
space [6]. Wentrup et al. proposed a novel multiclass extension of traditional CSP by
incorporating mutual information based Information Theoretic Feature Extraction (ITFE)
methodology after inferring that CSP using simultaneous diagonalization procedure is
equivalent to Independent Component Analysis (ICA) [7]. Moreover, after introduction of
RCSP, in [8]-[10], although the researchers presented different possible aspects of the same,
but they were unable to express the entire concept in a unified presentation instead of
expressing different regularized formulations. Lotte et al. in [11] formulated a unified
framework after accumulating almost all the existing regularization concepts and introduced a
few improvised frameworks and presented a detailed analysis of all the methodologies by
applying those on standard datasets acquired from BCI competition.

The present section mainly addresses two major issues. Firstly, CSP is known to be a
user specific spatial filter, which does not take into account any other subject’s data while
performing the same cognitive task except the concerned subject. Due to this reason, often the
performance of CSP is degraded drastically in case of users having lesser number of trials.
Further, for a particular cognitive task not all scalp regions are supposed to provide relevant

signals, hence it is wise to rank the EEG electrodes in order of their usefulness corresponding
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to a particular cognitive task. In the present scenario, a penalty function, considering the above
two aspects has been derived which on one side penalizes the channels which are supposed to
contribute less corresponding to a specific cognitive task and on the other hand it judiciously
focuses on the subjects having more number of trials while deemphasizing the other subjects.

5.2.1 Proposed Methodology

Literature shows already many researchers have devoted their extraordinary efforts in order to
derive different penalty terms that covers various aspects of the drawbacks faced while using
an EEG based BCI system, but none of them could satisfactorily merge the methodologies so
that one unified framework can take care of all the limitations with efficiency. These issues

motivated us to delve into the matter and come up with a solution that can serve the purpose.
5.2.1.1 Novel Penalty Term

As mentioned in [11], out of the penalty terms that has been applied so far, CSP with Weighted
Tikhonov Regularization (WTRCSP) is found to generate the best performance in terms of
several performance indices like accuracy, robustness etc.

As stated earlier, for a particular cognitive task not all scalp regions will be contributing
equally, but again choosing only a smaller subset of electrodes may lead to loss of relevant
information which can have a negative impact on the system performance. Instead, it is an
intelligent way to rank the electrodes according to their usefulness for a concerned cognitive
task and then introduce the concept of penalty by deemphasizing the channels having lesser
contribution and focusing more on the channels that are likely to provide relevant data.

Similarly, not all subjects provide optimal data which can degrade system performance
especially for the subjects having lesser number of trial recordings. In this paper, we propose a
novel penalty, formally termed as Composite WTRCSP which computes the usefulness
coefficient of every channel considering each and every subject’s data weighted by a term
depending on their individual number of trials. Earlier, similar work has been introduced in
regularization of CSP at covariance matrix estimate level, but combining these two genre of
regularization to cover all the aspects is not an easy work, in fact that leads to an increased
system complexity which is not acceptable.

In the proposed framework, a quadratic penalty term P(w) is considered, where K is a
diagonal matrix such that K=Diag(Ug) and Diag denotes the diagonalize operation. Ug(i)
signifies the level of penalty assigned to the channel i. Using preliminary neurophysiologic
knowledge it is often possible to assign penalty values to the concerned electrodes, but
theoretic explanations may not always fit well to all the subjects participating in the

experiment and due to this inexact information the system performance can be deteriorated.
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Hence, in this work, the penalty values have been obtained using other subjects’ data, which is
nothing but the inverse of the normalized average absolute weight of the electrode obtained
from the composite weighted spatial filters corresponding to other subjects. The mathematical

formulation can be expressed as,

_ 1 N, 2L W, | .
Vo = (2>< f x|Q ; A\ ,Z_:‘ Hw'] M) (5.1)

Since the more will be the usefulness of an electrode, the less is supposed to be the

assigned penalty; to carry out this purpose inverse operation is chosen. 2 is the set of all the
subjects participating in the experiment, and w!denotes the weight of j" spatial filter of i"

subject obtained using CSP. N; and Ny respectively denote the total number of trials of i"
subject and the total number of trials conducted for all the subjects. The usefulness coefficients
are calculated in a way such that the information obtained from the subjects having more
number of trials are given more priority in comparison to the subjects having relatively lesser
number of trials, thus this modified Composite WTRCSP is likely to reflect the channel

usefulness more accurately than previous one.
5.2.1.2 Ensemble of k-NN Classifiers

In supervised learning problem Ensemble classifier is an important part as it trains a number
of individual classifiers in co-operative manner. It is seen that depending upon the distribution
of the training data, all the training data are not learned well by any single classifier and
accuracy on test dataset becomes poor [12]. A better approach is to use number of classifiers
as a group where each individual classifier is called base learners. Base learners are taught
separately and decision obtained from base learners are combined to generate a single
decision. Base learners may be heterogeneous or homogenous, to perform a classification task

with coordination [13].

A classification problem can be stated as mapping between set X and set Y where
X={(X, Y1), (X5, ¥5)-....(X,, ¥, ) }is set of n training data and each instance belongs to some
unique domain. Y is label data in integer form such that Y = {1,2,....K} Here, the objective is
to find the function which maps each element of set X to set Y.

k-NN can be regarded as such function for mapping, where the method consists of

storing k-patterns which are nearest to the test pattern under consideration and then it

calculates the Euclidian distance of the test pattern from all other patterns. For any two vector

X;and X, in the same feature space, Euclidean distance D is calculated as [14],
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D21,2 = (X1 - Xz)(X1 - Xz)’ (5.2)

The most probable classes get the nomination from previously selected k-nearest
neighbours and the class which gets the most nomination is selected as the class of that
particular test pattern [15]. K is very important parameter of the k-NN classifier as the local
density of data is controlled by it and of course it is much smaller than the training sample
size. The distances from the test sample to other samples are stored in ascending order such

that D1, < D2,y <....Dn(,, where D1, is the distance from the nearest neighbour and so

on. The density estimate of k-NN is given as follows [16];

A k

The ensemble classifier performs the two prime tasks, first it infers the classes from
individual classifiers and second it generates a combination rule which ultimately decides the

class based on the results of individual classifier.

Out of many combination rules, this section uses random subspace method for

constructing ensembles [17]. Here the method generates random subspaces from original

feature space to train the base learners. Suppose X = {X; , X;,....X;, } be the n input feature. To

generate a random space ensemble with D number of classifiers, D number of samples each
size of W is drawn at random, this is done without replacement and over uniform distribution
X. This method requires two parameters for constructing ensemble, first the number of
ensemble size and other one is cardinality of subspace. The final decision is taken based on
majority vote. It needs to be mentioned here that subspace method is more useful than any
other rules which modifies the input training data, as k-NN is stable with the modification of

input data but sensitive to any input perturbation [16].
5.2.2 Experimental Setup

This section provides a detailed description of various experiments that were undertaken to
detect the efficacy of the proposed framework. EEG data was acquired from 8 healthy
subjects having undergone no such major diseases in the recent past. As EEG signal is subject
specific, so equal number of participants were chosen from both the gender (male & female).
Age group of all the subjects were between 22-30. Objective and methods of the experiment

were made clear to them prior to the experiment. A consent form was also signed by them
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stating their willingness to participate in the study. All other ethical and safety issues were
maintained according to the Helsinki Declaration of 1972, revised in 2000 [18].

The main objective of the section is to introduce a novel approach on RCSP to decode
the motor imagination signal, therefore motor cortex along with parietal and temporal region
of brain has been considered for acquiring EEG signals. 6 electrodes viz. C3, Cz, C4, P3, Pz,
P4 were placed over the scalp. EEG amplifier has the sampling frequency of 200 Hz and
made by NIHON-KOHDEN and all the electrodes were made of AgCI.

STAR'XREADY l MOTOR IMAGERY NBLAN MOTOR IMAGERY

> < > <>
S5s 5s

5s 10 s 2s

Fig.5.1 Experimental Setup and Visual Stimuli

Channel locations

Fig. 5.2 Electrode Locations
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5.2.2.1 Design of Visual Stimuli

To maintain the synchronisation of response timing, visual stimuli were shown to all subjects
and they had to perform the imagination task accordingly. This section employs four class
motor imagery given as, right arm stretch about shoulder, left arm stretch about shoulder, left
arm fold about elbow, right arm fold about elbow. Each of the instruction appears on the
screen randomly but with equal duration of 5 seconds. Between each such command a blank
screen appears for 2 seconds duration. At beginning a ‘start’ screen appears for 5 seconds
followed by a mark screen of 5 seconds to make subjects concentrate on study. Each subject
performed 5 such sessions in each trial, but since the proposed methodology of RCSP
concerns mainly about penalizing subjects having lesser number of trials, so in order to check
the adaptability of the proposed framework, the subjects were asked to perform unequal
number of trials unlike the traditional ways of equal trials. Fig. 5.1 and Fig. 5.2 depict the

stimuli timing diagram and electrode placement of the experiment respectively.
5.2.2.2 Preprocessing of EEG Signals

Raw EEG data is contaminated with various artefacts due to eye blinking and head movement.
Power spectral density of raw data reveals that signal power is dominant in the frequency range
0.1-32 Hz, an elliptical bandpass filter of order 10 has been employed to extract the desired

frequency range.

TABLE 5.1 AVERAGE CLASSIFICATION ACCURACY(%) OF THE EMPLOYED
ENSEMBLE CLASSIFIER IN COMPARISON WITH OTHER STANDARD CLASSIFIERS

Classl Class2 Class3 Class4
(Left (Right (Left (Right
Hand Hand Hand Hand
Classifier Shoulder | Shoulder | Elbow Elbow
Stretch) | Stretch) | Stretch) | Stretch)
Proposed
Ensemble | gg o7 86.72 82.35 81.48
Classifier
k-NN 82.65 83.79 80.86 79.53
Classifier
MLP SVM 1 7 39 72.22 70.68 71.21
Classifier
Naive Bayes
Classifier 65.47 66.07 62.49 61.13

» CAR Filtering

Common average referencing has been done to spatially filter the EEG signal and to get

rid of local interference caused by neighbour electrodes. The mean of all the channels are
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subtracted from each individual channel to eliminate the influence of far field sources. If raw
signal of 6 electrodes is designated as a; (t) wherei =1,2,...6, then CAR filter can be defined

by following formula,

1 6
a(t) - 5 > a(t) (5.4)
i1

5.2.2.3 Feature Extraction

In the present work, after introduction of the novel penalty term based Composite WTRCSP,
only the largest two spatial filters out of six spatial filters have been used for filtering purpose.
After obtaining the spatially filtered signals, final feature set is computed as the logarithm of
the variance of the filtered signals.

5.2.2.4 Classification

Table 5.1 provides a tabulated description of the mean classification accuracies obtained class
wise after employing the described Ensemble classifier and studying the results mentioned in
Table 5.1, it is quite clear that the Ensemble classifier outperforms the other standard

classifiers in terms of precision and thus validates our preference for the same over the other

classifiers.
a0
Classification
20
Metrics

70 4
_ 60 -
£ .
B 50 - M Proposed Ensemble Classifier
[
E B k-MN Classifier
g 40
g SV MLP Classifier

30 +

W Maive Bayes Classifier
20 4
10 4
|:| -
Sensitivity  Specificity Typel Type 2
Error Rate Error Rate

Fig. 5.3 Classification Metrics
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Fig.5.3. presents a detailed description regarding the performance of the Ensemble
Classifier in terms of Sensitivity, Specificity, Type 1 Error Rate and Type 2 Error Rate in
comparison with three other standard classifiers. In the present work, Sensitivity, Specificity,
Type 1 Error Rate and Type 2 Error Rate are defined as,

Sensitivity = T.ruePosmve . (5.5)
TruePositive + FalseNegative

TrueNegative

Specificity = - —
TrueNegative + FalsePositive

(5.6)

TypelError = FalsePositive 5.7)

FalsePositive + TrueNegative

FalseNegative
FalseNegative + TruePositive

Type2Error = (5.8)

It is evident from Fig.5.3 also that the chosen classifier surpasses its competitors in terms of

the specified parameters by a large margin.
5.2.2.5 Statistical McNemar’s Test

In this section, McNemar’s test [19] has been employed for detection of the performance of
two classification algorithms for correctly classifying data samples. Suppose, using a common
input phylogenetic sequence, the outputs generated by the algorithm A and algorithm B are fa

and fg respectively. Let n, be the number of data samples misclassified by algorithm A but
not by algorithm B and n,be the number of data samples misclassified by algorithm B but

not by algorithm A. Then, a statistic termed as Z score is defined by using the following
equation,

7 _ (ng —ny|-0)° (5.9)

nOl + nlO
Here Z has been evaluated in order to denote a comparator statistic of misclassification
between the proposed Ensemble classifier (Algorithm A) and any of the above mentioned
competitor algorithms (Algorithm B). In Table 5.2 the null hypothesis has been rejected, if Z>
3.84, where 3.84 is the critical value of the chi square distribution for 1 degree of freedom at
probability of 0.05. It can be clearly seen from the results that the proposed classification

algorithm outperforms the other competitors except k-NN classifier.
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TABLE 5.2 STATISTICAL ANALYSIS OF CLASSIFIERS USING MCNEMAR’S TEST

Reference Algorithm: Proposed Ensemble Classifier

Classifier Parameters used

algorithm used for McNemar’s Comments on

for comparison test Z Acceptance/Rejection of
using desired n n Hypothesis

features d=50 o

MLP SVM 87 | 120 4.946 | Rejected

Naive Bayes 90 | 121 4.265 | Rejected

k-NN 97 | 116 1.521 | Accepted

This chapter introduces a novel penalty term in the objective function of RCSP based
BCI systems such that the concerned system emphasizes on the subjects having performed
larger number of trials while computing the usefulness coefficients of different electrodes and
thus penalizing the subjects having relatively lesser number of trials. The proposed
framework has been implemented in a system considering the reduced numbers of chosen
electrodes placed on certain specific scalp regions that are likely to provide relevant signals
while performing a chosen cognitive task (MI) according to prior neurophysiological
knowledge, but to detect the efficiency of the said system it is equally important to employ
the proposed methodology in a system considering a larger number of electrodes placed on
the entire scalp following any standard electrode placement system. Moreover, the newly
derived penalty term takes into account subject-specificness, while there are several other
important aspects that should be addresses while dealing with such a system. Further, the
mean classification accuracy of (88%) can be considered only to be fairly good in this
research discipline, hence further efforts should be devoted to enhance the accuracy precision

as far as possible.

5.3 DECIPHERING MOTOR IMAGERY EEG DATA USING PROXIMITY
BASED ADE INDUCED SPARSE NETWORK

This chapter proposes a novel approach for classification of four class motor imagery data
using a sparse neural network classifier. EEG signals were recorded using 19 different
electrodes placed on scalp excluding the reference electrodes, from 9 different subjects
corresponding to imagined movements of left hand, right hand, foot and tongue. The
proposed framework presents a novel Adaptive Differential Evolution based weight
adaptation scheme and implemented the said scheme in a classical Back Propagation neural
network (BPNN). The features were extracted using Common Spatial Pattern (CSP)
algorithm, and the Principal Component Analysis (PCA) was employed as a dimension
reduction tool. Further, to validate the performance of the proposed methodology, the

concerned classifier performance has been compared with other standard classifiers. From the
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experimental results, it is concluded that CSP filtered signals along with the designed
classifier outperforms the other traditionally used procedures. Apart from improving the
classification accuracy by the newly designed classifier, the proposed framework also checks
the impact of physiologically generated artifacts (eye movement) upon the system
performance by conducting the concerned procedures without removing those artifacts and
infers that such artifacts have negligible impact in case of motor imagery based cognitive
tasks.

Due to cost efficiency, high time resolution, less environmental limits and most
importantly its wide application in decoding mental states using pattern classifiers,
electroencephalogram (EEG) is always preferred in practical BCI applications compared to
other non-invasive modalities [20] like fMRI, fNIRS etc. Motor Imagery is one of the most
popular paradigms used in EEG based BCI system. Motor imagery based BCI is basically
formulated using a pattern recognition approach [21], where a subject issues a command by
imagining a movement of a particular limb, which in turn causes a change in the rhythmic
activities in specific locations of brains corresponding to the concerned limb. After extracting
relevant features from raw EEG signals it is easy to detect the subject’s mental state with the
help of a classifier that has been trained using similar features with known class labels.

To check the accuracy of the entire BCI system, electrodes are placed over the entire
scalp area as skipping any particular area may lead to the loss of information. While recording
EEG signal readings from the subjects corresponding to any cognitive task, the resulting
signals are often contaminated by artifacts and noise. A common source of such noise is
artifacts generated due to eye blinking. To avoid dealing with such noisy data, different filters
[22] are used for raw EEG data preprocessing to lessen the impact of noise. But, there is a
specific kind of artifact generated due to eye movement (blinking, flutter) that has very
minimal impact on system performance.

Moreover, in EEG based BCI research, feature extraction is a key step, but irrespective
of the feature type selected, the resulting data dimension is always found to be pretty high.
Hence, various data dimension reduction techniques are introduced which enable analysts to
avoid working with higher dimensional data thus reducing system complexity. The final step is
related to classification which assigns a particular class label to an unknown data with the help
of an already trained classifier.

Because of the growing interest in this particular domain, a large number of research
groups have put their efforts in this area. Literature show that Pfurtscheller et al. first used
EEG classification on Motor Imagery based Event Related Desynchronization (ERD) for a
BCI application [2]. Later, Ramoser et al. used the common spatial pattern algorithm for

feature extraction, in a single trial motor imagery based BCI [5]. Popescu et al. proposed a new
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EEG cap consisting of dry EEG electrodes avoiding the bottle-neck of time consuming gel
application and also considering much less number of electrodes than a standard EEG setup
[23]. Lal et al. proposed a novel channel selection method based on recursive elimination of
least contributing electrodes according to the classification accuracy with respect to a classifier
like Support Vector Machine (SVM) [24]. Wang et al. used common spatial pattern algorithm
(CSP) to obtain the spatial patterns corresponding to hand and foot motor imagery and further
channels were selected based on the CSP spatial filter co-efficient [25].

Much work has also been carried out with an aim to enhance the efficiency of the
classifiers in various real time applications. Heerman et al. employed Back Propagation Neural
Network (BPNN) for multispectral image data classification purpose by applying it to
simulated as well as real satellite imagery [26]. Paola et al. presented a detailed comparison
between Back Propagation Neural Network (BPNN) and maximum likelihood classifiers in
terms of working principle to find out how these two algorithms perform differently on the
same image [27]. Qin et al. developed a self adaptive Differential Evolution algorithm, where
prior assumption of the learning rule and the parameters were no longer required, they were
adapted through learning experience only [28].

Although this chapter also attempts to classify motor imagery signals [29], it majorly
emphasizes on two aspects of EEG motor imagery classification. Firstly, the artifacts generated
due to eye movements, blink or eyelid flutter has minimal impact on the classification of motor
imagery signals, since the noise generated for the above mentioned physiological processes has
maximum impacts on electrodes placed close to eye (prefrontal electrodes). With the
elementary neurophysiological knowledge, it can be said easily that in case of motor imagery
classification, motor cortex electrode signals generate more relevant information than the other
channels, so conducting experiments without artifact removal does not have a major impact on
system performance. Secondly, the paper proposes a novel weight adaptation approach for
designing a neural network classifier which can recognize the class of an unknown motor
imagery signal after being trained by similar data acquired from various subjects. The
highlighted part of the approach lies in rejection of the links having minimum weight without
sacrificing the accuracy. A variant of Differential Evolution has been developed and employed
in order to collect the optimized weights. Differential Evolution has been preferred over other
alternatives because of its rapid rate of convergence and high performance precision. The
proposed framework may find tremendous appreciation in the field of cognitive task based
BCI systems, because accurate classification of motor imagery signals still remains a
challenging one. Apart from that, the paper employs common spatial pattern (CSP) feature
extraction algorithm and Principal Component Analysis (PCA) for dimension reduction

purpose.
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5.3.1 Preliminaries

This section provides an elementary idea about the working principle of the Differential
Evolution (DE) algorithm and Artificial Neural Network (BPNN).

5.3.1.1 Differential Evolution

Differential Evolution is undoubtedly belongs to the category of popular evolutionary
algorithms because of its ease of use, low complexity, higher speed of convergence, less
requirement of parameters and most importantly high precision [30]. The Differential

Evolution Algorithm used here is can be explained as follows,

1) Initialization: Initialize a population of NP D dimensional members (X, ) as trial

solutions to an optimization problem. The i" data point of the population is expressed as,

Xie =[X 61X 6w X 6] (5.10)

where G is the generation number. The vectors are chosen by maintaining a uniform

distribution of the entire range of X so that the DE algorithm can easily search for the

global optima. So the k™ data point of the i'" vector can be defined as,
X0 = Xiemin Tk *(Xk,max - Xk,min) (5.11)
where G=0 denotes the initial population, r, denotes a uniformly distributed parameter

in [0,1], and

Xk,min € Ymin Z{Xl,min ' X2,min yreeny XD,min} (512)

Xy max € Xmax =X s X max -+ X0 e} (5.13)

2) Mutation: For each candidate solution, 3 helping agents called target vectors are
generated to the present generation from the parent vector. Now, a mutant vector termed as
donor vector is generated using differential mutation operation and finally an offspring is

formed by recombination of donor and target vectors, known as trial vector.

Xio =X +F(X  —X, ) (5.14)

where X, X, and X, are helping agents, such that the indices m, n and o are chosen

randomly [1,NP] so that they are mutually different and also different from base index i.
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The donor vectors are chosen from the current population only. The value of F is assumed
in (0, 1).

3) Recombination: To boost up the population after mutation, the donor vector interchanges
its components with the trial vector depending upon the value of a randomly generated

number. Basically, For each pair of fﬁand X, ' we randomly generate a no in (0, 1)

and if it is greater than Cr we considerX—i', otherwise we take X,

to form the target

vector X, ;"= [Xi’,i,e ) X;,i,G’ ------- , X‘I'D,i,G]'

4) Selection: From each pair of 7, and X; " , allow only one member to enter the

population of the next generation using the following policy, if f(fi) < f(X;s") then

Xiga=Xig else X,s,, = X" depending upon fitness function value. Thus DE allows

the fittest chromosome to generate offspring to the next generation, hence using this
procedure the fitness value of the population either improves or remains same but never

WOrsens.

5.3.1.2 Artificial Neural Network

The applicability of artificial neural network has been explored by the research professionals
by employing the architecture in various domains including computer technology, satellite
communication, biology, psychology etc. The purpose and the methods of application varied
but the central idea remained similar in each of these cases. The development of artificial
neural networks is primarily based upon parallel processing technique. The initial steps
include selection of appropriate neural network architecture depending on the problem
parameters and then tuning the said network to generate desired output. Every neural network

follows certain ‘learning’ paradigms for training purpose using numerous examples.

Back Propagation Neural Network (BPNN) is one of the most popular neural networks used
these days for classification purpose. The mostly used network topology consists of multiple
layers with connections established between neurons of adjacent layers only such that flow of
information remains in one direction only, such type of networks are termed as feed forward
network. The layer through which data is fed into the network is termed as input layer, the
layer from which processed information is retrieved is termed as output layer and the
intermediate layers are called hidden layers.

Fig. 5.4 presents a detailed overview of a three layer Back Propagation Neural Network
(BPNN), where x;; is the connection between the i" node of the input layer and " node of the
hidden layer and y;; is the connection between the i" node of the hidden layer and j" node of

the output layer. The main element of a network is the processing node, which serves basic

Brain Localization and Feature Extraction Using Computational Intelligence Techniques



Chapter 5|page 97

two purposes. Firstly, it calculates the weighted sum of the input activations and then passes
the summation through an arbitrary activation function to generate the output response using
the equation,

Input Layer Hidden Layer Output Layer

Fig. 5.4 Architecture of Back Propagation Neural Network (BPNN)

net, = Zvvijapj +bias, (5.15)
J

where, w; signifies the weight between current i" node and previous j™ node, whereas a,;
denotes the input activation from previous node for pattern p and bias; is the bias term
corresponding to the current node. Further, net;is passed through a nonlinear function to

produce the output activation response a

1

et,,

Ay = e
1+e

oi (5.16)

A Back Propagation Neural Network is trained using numerous samples after
configuring input and output pattern according to the problem requirements. The easiest
approach is to assign one input node to each input channel and one output node to each of the

desired class labels. As an input pattern is fed to the network the connections are modified in
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order to produce the output activation response close to the desired output as much as
possible. The patterns are repeatedly fed to the networks until it completely learns it. The
main aim of the Back Propagation Learning algorithm is to minimize the sum of the error E
between the output activity response and the desired response.

E= ZZ(tpi -0,,)? (5.17)

where, pand idenotes the patterns and output nodes respectively. The weights are adapted in

a way such that above mentioned error is minimized and the network learns the pattern, so
that it can recognize a similar pattern by assigning the concerned class label to it, in the

testing phase.

5.3.2 Proximity Based ADE

In this section, Proximity based Adaptive Differential Evolution (PADE) algorithm is

proposed. The algorithm is based on a few observations.

5.3.2.1. Mutant Vectors based on Success Rate

S. Basu Roy et al. [31] has used controlled mutation to search for better donor vectors. The
main reasons for using more than one type of mutation vectors’ choice technique within a
single algorithm are that

> DE/rand/1 technique has more exploration capability since it uses random vectors from

the pool of population vectors for perturbation. This nature makes this technique a

useful tool to pull out algorithm from local minima with a limitation of less

convergence ability.

> DE/best/1 or DE/target-to-best/1 techniques use best vectors of the generation. Thus,
the algorithm is guided towards the direction of the best solution found so far. It is
highly probable that the new offspring vector may be guided towards local minima
with high convergence rate.

The effort towards finding a better optimal solution by creating a stand-off between
exploration and exploitation is the main reason behind proposing this novel mutant vectors’
selection technique. We have defined a mutation control parameter (M) used in the next
generation depending on the success rate (SR) of current generation. Success rate is defined
by the ratio of number of successfully generated offspring vectors which are carried to the
next generation to total population. This success rate is used to find M according to the

logarithmic rule, expressed as,
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M =log,(1+ SR) (5.18)

This strategy has a strong potential for better donor vector selection than the traditional
family of DE algorithm.

5.3.2.2. Proximity based Scale Factor Adaptation

We have seen the traditional use of fixed scale factor [32] or use of adaptive scale factor [31],
[33] generated randomly using some statistical distribution. Without depending upon the
random generation of a scale factor from any statistical distribution, we propose an approach
for selecting a scale factor for each target vector i depending upon the success rate and the
distance of the candidate vector from the best population vector, which is mathematically

formulated as,

F.(n) = SR.F.(n—1) + (1 SR).(L—e "o, (5.19)

where, F,(n) is the scale factor the current generation. So in best case scenario when SR is 1,

the old scale factors are carried over to the next generation without alternation. In the worst
case, scale factor for each target vector is regenerated according to the distance formula.

These changes are incorporated on the main DE frame.

5.3.3 System Overview

This section describes the basic steps of a four class motor imagery classification system.
5.3.3.1 Feature Extraction

This step mainly deals with extracting features from preprocessed EEG signals. There is no
standardized feature set for EEG signal analysis, depending on the requirement of the
problem, researchers usually choose a type of or a combination of features from a pool of
time domain, frequency domain or time frequency correlated features. All the above
mentioned feature types carry relevant information, but since classifying motor imagery data
is still considered to be a challenging problem, hence it is necessary to deal with efficient data
set [16]. So, we have used Common Spatial Pattern (CSP) algorithm for feature extraction
purpose. CSP is a spatial filtering technique that represents the EEG signals as a linear
combination over the number of channels taken into consideration. Moreover, unlike other
feature sets CSP is directly applicable to multichannel data while on the other hand, to extract
other feature types like wavelet coefficients from multiple electrode EEG signals, the
extraction technique needs to be applied individually on each channel to serve the purpose.

CSP basically aims to map the data samples in a linear subspace such that the variance is
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maximized in one condition for one class and minimized for the other class, to yield more

discriminate filtered signals which can be easily classified by the classifier.
5.3.3.2 Dimension Reduction

Dimension reduction is also a key step in the proposed framework, since feature extraction
generates a huge dimensional feature set (here after termed as ‘data points’) of the order of
several thousands approximately; hence it becomes very difficult to use that large
dimensional data for classification purpose. So, several data point reduction techniques have
been introduced in order to deal with such problems. In this chapter, we have used Principal
Component Analysis (PCA) [34], to extract ideal data points for each subject corresponding
to each class. The steps of PCA in this context have been briefly outlined as follows,

1) Let A :{x—f,x—;, ..... ,X—nﬁ}denotes the set of m extracted features from k" subject for

each class, where X ={x', X',,......, X, }denotes a d- dimensional vector and k e[1 K]
—k

where K is the maximum number of subjects for each class. Firstly, for each data point X , a

—k —
mean subtracted vector X ‘i is constructed, where X*is the mean of all data points of X

X5 =X =X XS =X, X — X} (5.20)

2) A matrix D,of mxddimension is constructed containing the newly formed mean

subtracted vectors. Next, the data covariance matrix is formed as

(5.21)

Finally, the first principal component P—C,; is obtained by Eigen value decomposition, which

is nothing but the Eigen vector corresponding to the largest Eigen value.
D, =[X ¥, X%, ., X "] (5.22)
3) Each member of the matrix D, is projected along the first principal component to

obtain class representative principle component ¢T< using the equation,

4 =PC, xD, (5.23)

Thus, we obtained a reduced dimensional data points for each subject. If there are K subjects

and R classes, then the entire procedure needs to be repeated K xR times.
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5.3.3.3 Classification

In order to classify motor imagery signals, we have used neural network with sparse
architecture. In sparse neural network, some of the neurons of each layer are not connected to
the nodes or neurons of the next layer. The training phase of the network has been divided
into two sub phases — weight adaptation and weight tuning.
> Weight Adaptation. The weights of ANN have been adapted using a proximity
based adaptive differential evolution (PADE) algorithm. The dimension of the
population vectors is same as the number of total weights present in the
network. The vectors are changed iteratively such that the error defined in
equation (5.17) is minimized. After adaptation, 15% connections having low
absolute weight values are ignored to get the sparse architecture assuming that
they have low contributions towards classification.
» Weight Tuning. After the sparse architecture is achieved, the weights of the
existing connection are gone through fine tuning by basic back propagation
(BP) algorithm to increase the accuracy using the same error equation (5.17).
The necessity of this step is that it put more emphasis on the existing
connections assuming that they have significant contribution in the
classification of MI data.
In this approach though the network has gone through the training phase twice, the less
complex NN architecture is found. The pseudo code for weight adaptation using proposed

PADE algorithm along with the training procedure is outlined in Table 5.3.

5.3.4 Experimental Results and Statistical Analysis

This section aims to provide detailed description of the different steps of the cognitive task
based experiments that have been undertaken to check the performance of the proposed
framework and validate the performance of the designed neural network classifier with other
standard classifiers.

5.3.4.1 Experimental Setup and EEG Signal Acquisition

To record EEG signals, the subjects were asked to sit on a chair comfortably with hands kept
in relaxed position. At the beginning of the experiment a beep sound is heard followed by a
relax phase of 5 seconds, after which an arrow directed in (left, right, up or down) appears on
screen to instruct the subjects to perform the specific motor imagination. The arrow stays on
screen for 10 seconds followed by another relaxation phase of 5 seconds and a beep sound to

indicate the end of trial.
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Fig.5.5 Experimental Setup

TABLE 5.3 PSEUDO ALGORITHM FOR SPARSE NETWORK WEIGHT
ADAPTATION

1. Initialization:
a. Initialize NP number of weight vectors whose dimensions are equal to the total number of weight
present in the neural network.
b. Initialize F = 0.8 and CR = 0.7 and Mutation factor M = 0.5 and
calculate the fitness value of equation (5.10) of each individual population vector.
c. Initialize success rate SR = 0.
2. Mutation:
If iteration>1
Choose scale factor for each target vector according to equation (5.19).
End if
if rand(0,1] > M
Choose DE/rand/1/bin
Else
Choose DE/target_to_best/1/bin for donor vector selection
End if
3. Crossover:
Recombine donor vector with the target candidate vector to generate offspring vector.
4. Selection :
Find the best vector between candidate and offspring.
If the offspring is better according to the minimum objective function value, increase the success rate
by (1/NP).

5. Repeat step 1.c to 4 for all the NP vectors.

6. Choose control parameter M using equation (5.18).

7. Repeat step 1.c to 5 for a predefined number of iteration.

8. Find out the best weight vector after all the iteration completes.

9. 15% weights between each two consecutive layer with low values are ignored and connections are
terminated to get sparse network.

10. Fine tune the weights of the existing connections with BP algorithm to get better accuracy
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A pictorial presentation of a trial is shown in Fig. 5.6. To predict the extent of impact of
artifacts generated due to eye movement, the subjects were not restricted to keep their eye
movement stable while performing the imagined movements for the concerned cognitive

tasks.

EEG signals are acquired using a stand alone EEG machine (manufactured by Nihon
Kohden) with 19 Ag/ AgCI (FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, O2) electrodes placed on different scalp locations according to standard 10-20
electrode placement rule. Here A, and A, have been considered as the reference electrodes
and the sampling frequency is 200Hz. Fig. 5.5. describes the entire experimental setup briefly.
Fig. 5.7 presents 19 unique component scalp maps of different brain locations obtained by
performing ICA, where the red colour indicates highest activation whereas the blue colour

denotes lowest activation.

5.3.4.2 Frequency Band Selection

From the experimental results and elementary neurophysiological knowledge we have seen,
the maximum change in the brain signals occurs in the range of 4-30 Hz. Hence in this case,
to extract the signals of the above mentioned frequency band, a bandpass elliptical filter of 4™

order has been used.

Beep Beep
RELAX MI TASK RELAX
Ssec 10sec Ssec

Time Scale

Fig. 5.6 Time Division of a Particular Trial of a Class

5.3.4.3. Experimental Results

Fig. 5.8 presents the classification accuracy of the newly designed proximity based
ADE induced sparce neural network classifier and validated it with other standard classifier in
terms of average classification accuracy. From the figure, it is easily noticed that subject 2 has
outperformed all the subjects and the proposed classifier provides better performance even in
the presence of artifacts generated due to eye movement infering that such artifacts have

minimal impact on motor imagery based classification tasks. In case of all the subjects, RBF
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Fig. 5.7 Component wise Scalp Maps for All the Electrodes Number wise Arranged as, F3, Fz,
F4, P4, P3,01, 02, C3,Cz C4,F7,F8, T3, T4, T5, T6, Fpl, Fp2, Pz
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Fig. 5.8 Subjectwise Comparison of the Performance of the Proposed Classifier with Other
Variants of Neural Network Classifiers in Terms of Mean Classification Accuracy
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SVM has been found to be the closest competitor of the proposed classifier, and Linear SVM
generated poor performance for all the subjects for this problem.

Along with classification accuracy, it is equally important to keep an eye on the
misclassification rate of the proposed classifier. Hence we have included the confusion matrix
in Table 5.4 corresponding to the four cognitive tasks which tabulates the readings obtained
using the newly designed classifier. The large entries on the diagonal positions indicate the
satisfactory performance index in all the four classes, besides the misclassification rate is also

smaller in the proposed strategy.

In Table 5.5, the average classification accuracies obtained for four classes using
different set of EEG features have been tabulated. In this case, we have validated CSP with
other standard temporal, frequency and time frequency correlated features. From the
experimental results, it is readily understood that amongst the four classes left hand (class 2)
has been detected most accurately. Among all set of different features, Common Spatial

Pattern (CSP) provided the best performance among the five well known features.

TABLE 5.4 CONFUSION MATRIX OF THE COGNITIVE TASKS USING PROPOSED
FRAMEWORK

Predicted Class
Left Hand | Right Hand | Tongue | Foot
Left Hand | 92.278 3.125 1.562 | 3.037
Right Hand | 4,983 91.184 1.273 | 256
Tongue 4.237 5.175 89.578 | 1.01
@)
S | Foot 4123 5.247 0.149 | 90.481
(&)
<

In Table 5.6 the null hypothesis has been rejected, if Z> 3.84, where 3.84 is the critical
value of the chi square distribution for 1 degree of freedom at probability of 0.05. It can be
clearly seen from the results that the proposed classification algorithm outperforms the other

competitors except RBF SVM.
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TABLE 5.5 AVERAGE CLASSIFICATION ACCURACY OBTAINED WITH DIFFERENT EEG
FEATURES FOR THE FOUR CLASSES

Cognitive tasks undertaken presented as
classes
EEG
Features CI?SS 1 Class 2 Class 3 Class 4
(Right (Left (Tongue) | (Foot)
Hand) Hand)
AAR 72.56 74.78 64.57 68.92
Hjorth 78.48 79.21 70.12 69.25
PSD 80.56 82.36 75.61 76.44
DWT 82.39 84.85 78.37 80.29
CSP 89.67 92.61 83.45 86.78

5.4 CONCLUSION

This section basically infers three important findings, 1) using Common Spatial Pattern (CSP)
as the feature extraction tool generates better performance than any other feature extraction
technique, 2) the usage of the novel proximity based ADE induced neural network classifier
has enhanced the classification accuracy by quite a great extent, 3) the artifacts generated due
to eye movements while EEG data recording have negligible effect on the overall system
performance, because without removing such artifacts we have acquired quite a high accuracy
(92%) for each of the classes. Hence, the proposed framework should definitely be

recommended for application of real time systems where high precision is required.

TABLE 5.6 STATISTICAL ANALYSIS OF CLASSIFIERS USING MCNEMAR’S TEST

Reference Algorithm: Proximity based ADE induced sparse neural network

classifier

Classifier Parameters used for

algorithm used McNemar’s test Comments on

for comparison Z Acceptance/Rejection

using desired Ny, Ny of Hypothesis

features d=50

LSVM 87 120 4,946 Rejected

kNN 90 121 4.265 Rejected

RBF SVM 97 116 1.521 Accepted
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Chapter 6

Conclusion

This chapter revisits the primary goal of the thesis and briefly highlights the findings
and contributions of the work to substantiate the extent to which the objective of the
thesis is accomplished. Following this, the future course of the work is discussed
which are open for research to interested readers for the extension of the algorithms

that have been developed as a part of this thesis.
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6.1 SUMMARY OF THE WORK

The thesis has provided interesting insights into different aspects of developing modern day
HCl based system. The research is primarily concentrated in exploring different
computationally intelligent techniques that can be utilized judiciously to build more efficient
modalities of HCI. Throughout the thesis different principles of CI discipline have been
studied and analysed to find new avenues of innovative applications. While traditional pattern
recognition and optimization algorithms are studied for some applications, novel algorithms
and methodologies are also proposed supported by appropriate experiments and results.

In today’s world research enthusiasts are extremely engrossed in exploring divergent
applications of EEG signals including medical diagnosis, rehabilitative application or brain
rhythm detection. The concept of utilizing the postulates of Cl in EEG based BCI systems has
fascinated the researchers since a long time. The present thesis enlightens about certain
improvised applications of the concerned research genre which can help in enhancing system
performance. A wide variety of EEG signal based features have been contemplated for
different applications.

Chapter 1 provides the background for the current work by generating a rough sketch
about the motivations behind each of the chapters and the possible outcomes of the research.
Firstly, it starts with a brief introduction and gradual evolution of the BCI research and
mentions the importance of CI discipline along with its functional definition. Next, the need
of brain localization is discussed and by delving deeper into the research domain the thesis
provides a tabulated list of the related trends of contemporary research that is carried out in
the same discipline. After that, various brain signal measuring modalities have been surveyed
and after conducting a detailed research the superiority of EEG signals has been established
due to its numerous advantages over the other standard techniques. To study EEG signals it is
important to know about the functionality of human brain which is addressed in the later
section. Finally, amongst different EEG modalities Motor Imagery has been illustrated along
with the highlighted research works for detection of Ml signals.

Chapter 2 basically serves as a handbook for the remaining parts of the thesis. The next
few chapters address different improvised techniques for the successful implementation of the
Cl postulates in EEG based BCI paradigms. To test the efficacy of the proposed scheme, it is
always recommended to compare the performance outcomes with the existing best
techniques. Due to space constraint it is not possible to describe each component of the
existing methodologies in detail, but to understand the advantage of the proposed scheme

over others it is required to know the attributes of both the schemes very well. For this reason
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Chapter 2 presents the standard tools and techniques that are used later in the thesis, mainly
the feature extraction methods and classification algorithms have been described thoroughly.

Chapter 3 emphasizes on the impact of optimization in EEG based BCI system. EEG
signal acquisition devices basically record brain activities through Ag/AgClI electrodes placed
throughout the human scalp. From elementary neurophysiological knowledge it can be known
that for specific cognitive tasks distinct regions of human brain are activated. So for particular
mental state classification, it is wise to deal with relevant EEG electrodes and thus reducing
the computational overhead and enhancing the accuracy as well. Similarly selection of
relevant features can also be justified citing same reasons. Now, separate selection of
electrodes and features is possible, but that increases the system complexity and increases the
probability of carrying redundant information or incomplete information. Hence, it is always
wise to select the optimal EEG features and electrodes simultaneously to deal with these
issues. This chapter presents the evolutionary perspective of optimal EEG feature and
electrode selection by proposing a novel variant of Firefly Algorithm termed as Self Adaptive
Firefly Algorithm to optimize an objective function formulated while satisfying the
constraints with SVM playing the role of the classifier. The selection of ABC for this problem
is its fast convergence without the possibilities of local minima.

Chapter 4 is focussed on the extension of existing EEG feature extraction techniques in
spatial domain. Due to the non-stationary behaviour of EEG signals, the spatial resolution is
very poor. To address this issue spatial filtering is introduced as an alternative way to
spatially represent EEG signals. The initially introduced spatial filters suffer from the
drawback of overfitting and lack of robustness. Finally, Common Spatial Patterns (CSP) was
introduced to overcome the limitations of basic spatial filters and CSP produced revolutionary
results motor imagery detection problem. Initially, CSP was developed to detect abnormalities
in EEG signal and later it was utilized as a feature extracting tool with high performance. As
every other invention, gradually the drawbacks of CSP became more and more pronounced
leading to the ways of regularizing CSP and thus RCSP algorithms were introduced. After
exploring the details of RCSP algorithm, improvised methodologies are suggested with
applications of those techniques in M1 detection described in Chapter 5.

Chapter 5 is an extended portion of Chapter 4 with the highlighted applications of the
methodologies proposed in the previous chapter in MI detection problems. It puts stress on
two distinct cases of MI detection and in each case it emphasizes on different phases of the
pattern recognition chain usually adopted for EEG based BCI applications. The first section
proposes an RCSP based novel feature extraction strategy with a high classification accuracy
obtained with an ensemble of k-NN classifiers. Unlike the previous section, the later section
deals with enhancing the accuracy of the classifying framework adopted by incorporating

Adaptive Differential Evolution in traditional Back Propagation network.
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The thesis has addressed the preliminary issues for the mentioned objective. However,
there is a long way to traverse before the complete system can be presented as a stand-alone
unit for practical applications. The major challenges that can be addressed and combated are
addressed in the next section and form an open area of research for the extension of this work.

6.2 FUTURE DIRECTIONS

> Instead of adopting a single objective approach a multi objective evolutionary
algorithm sounds to be a more justified alternative in this case. More importantly, as
the experiments conducted indicate binary problems so utilizing a standard genetic
algorithm or heuristics based Ant Colony Optimization could have make more sense.

» The problem discussed in Chapter 3 resides in discrete search space, so it is wise to
use Genetic Algorithms or other alternatives that deal with the problem in discrete
search space only. But using the discussed approach basically transformed it into a
real coded problem that is an inverse genotype-phenotype mapping has taken place
which could have resulted in Hamming cliffs and thus making the optimization
problem harder than the original one.

» All the contender algorithms considered are not well suited for black box
optimization with such objective functions; instead state of the art evolutionary
algorithms should have been used for real coded optimization purpose.

» In Chapter 5 instead of utilizing both the linear transforms CSP and PCA, alternative
efficient measures should be preferred which singlehandedly serves the purpose.

» The channel similarity measures can be modified by introducing fuzziness into them
for extending it into a fuzzy based similarity metric.

» One of the biggest disadvantages of EEG is its poor spatial resolution and hence
source localization is not easy. On the other hand, devices like fNIRS have better
spatial resolution and are also available at low cost. Thus, fNIRS and EEG signals
can be coupled by means of some data fusion techniques to explore the advantages of

both i.e. to achieve high temporal resolution as well as good spatial resolution.
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Appendix A

Statistical Methods Used

This appendix describes different statistical methods adopted throughout the thesis
and also illustrates about different statistical tests that have been conducted to

validate the system performance.
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A.1 CLASSIFICATION METRICS

This section primarily describes the confusion matrix used to measure the efficiency of a

classifier and derived results from it.
A.1.1 Confusion Matrix and Classification Accuracy

A confusion matrix is a square matrix that signifies the association between the user intended
classes termed as “Actual Classes” and the original classifier estimated classes termed as
“Predicted Classes”. Any element C(i, j) of a confusion matrix C basically denotes the
number of samples belonging to class i that have been predicted as to belong to class j by the
classifier. It is needless to say the diagonal elements represent the number of samples those
are correctly classified and the off diagonal elements provide a measure of incorrect
classification. A general NxN confusion matrix and a 2x2 confusion matrix have been shown
in Figure A.1. The overall classification accuracy CA can be calculated from a NxN matrix
for a N class problem using (1) and the one vs all classification accuracy for a particular class

i can be obtained as CA(i) using (2).
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Fig. A.1(a) An NxN Confusion Matrix, (b) 2x2 Confusion Matrix
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A.1.2 Type | and Type Il Error

The Type | (TEy) and Type 2 (TE,) for class i are computed using (3) and (4). TE; denotes the
false positive error rate that is the number of samples that donot belong to a class but are
misclassified to belong to the class. Contrarily, TE, denotes the false negative error rate that is
the number of samples those actually belongs to a specific class but mistakenly calssified to
belong to certain another class. In both the cases, ideally these two error should be zero.

>
TE, (1) = (W) (A3)
2. C )

TE, (i) = (EJCW) (A4)

A.2 STATISTICAL TEST

In this section, McNemar’s test has been illustrated for detection of the performance of two
classification algorithms for correctly classifying data samples. Suppose, using a common
input phylogenetic sequence, the outputs generated by the algorithm A and algorithm B be f,

and fg respectively. A null hypothesis is stated as follows,

Prxlfa(¥) = F()]=PRe [T () = f (X)] (A.5)

where f(x)be the experimentally induced sign in order to map a specific point x onto sign
classes K, such that f(x)is one of the K=4 classes. Let n, be the number of data samples
misclassified by algorithm A but not by algorithm B and n,, be the number of data samples

misclassified by algorithm B but not by algorithm A. Then, a statistic termed as Z score is

defined by using the following equation,

2
7 — (|n01_n10|_1) (A6)
nOl + nlO
At the end of test, depending on the obtained Z scores it is decided whether the null
hypothesis is accepted or the alternative hypothesis are rejected. Here Z has been evaluated in
order to denote a comparator statistic of misclassification between the reference algorithm

(Algorithm A) and any of the above mentioned competitor algorithms (Algorithm B).
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Appendix B

User Guide to Run the Source Codes

This appendix provides a step by step guide to run the source codes from MATLAB to
execute different works described throughout the thesis.
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B.1 ASSOCIATED SOFTWARE INSTALLATION

> Install MatlabR2012b software for all computations.

> EEGLAB (eeglab 13.5.4b) software has been used for EEG analysis carried out
throughout the thesis for deriving scalp source/sink components, activation regions in
brain, ERD/ERS etc. To use this software EEGLAB path needs to be added to Matlab
path. Apart from the data files, it is necessary to have additional event files containing
electrode locations(.locs), sampling frequency, class labels, duration of stimulus of
time stamps and so on.

B.2 PREPROCESSING AND FEATURE EXTRACTION

» The Feature.m file carries out the entire feature extraction task and another function
named Filtering.m performs the filtering task. For using the EEG data acquired from
different subjects, the recordings must be transformed into a proper format no. of
channelsxno. of time samples. The data is accompanied with necessary event files
stored in associated Target folder. In this case, the code is written forl9 channels, if
fewer channels or Emotiv has to be used the channel information needs to be
organized properly to get the desired output.

» Filtering has been executed by a tenth order butterworth filter, followed by Common
Average Referencing (CAR). The filtered signal outputs can be easily obtained by

running the codes after modifying the necessary parameters as per requirement.
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Fig. B.3 Feature Extraction (PSD)

» The features that are extracted include Adaptive Autoregressive Parameter, Hjorth
parameter, Power Spectral Density (Fig. B.3), CSP (Fig. B.4) and Discrete Wavelet
Transform (Fig. B.1).

» For AAR the update coefficient and the order can be changed as per requirement.
Similarly, for PSD, the frequency range, the width of the Hamming window and
percentage overlap is chosen by the user as per requirement. For CSP, the number of

lowest and largest Eigen vectors is also determined by the user only. For DWT, the
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mother wavelet and the order of decomposition need to be modified as per desired

frequency range.
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Fig. B.5 Classification (BPNN)

» The Classifiers.m file contains the code of all the classifiers including SVM, k-NN,

LDA, Naive Bayes and Neural Network (Fig. B.5). To select any one classifier the

function call lines of the other classifiers need to be commented off. If there are no
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different datasets for Training and Testing, then separate chunks of available data

must be assigned to the folders Trainl and Test1, using cross validation. Another file

containing the class labels according to the training samples in proper format is

required to be fed to the classifier for proper training.
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Fig. B.7 Optimum Electrode Selection (Firefly Algorithm)

The file Feat_select.m employs PCA that transform the input features to the
desired dimension of output before feeding to the classification step.
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Fig. B.8 Electrode Selection (EEGLAB)

> In these works, confusion matrix (Fig. B.6) and classification accuracies have
been tabulated in most of the cases. But the sensitivity, specificity and ROC

curves can also be obtained.

ML R

)
fhe I8t Yew lust Tock Dudtcp Wedow el

JUWe & \AN09¢4-Q 08 sD

atrrm &
oo et

IR

850
Ee
gL

R Y

| B e w0220
e W Tem M oy

Canwt

= '

: {(3 acscom b ot
] & ;—'1 o1 \;u.:u. <lal onixr
|4 4 CLRPENTSHT 1 | 1
3 & Flename none I; CSINTIIUY O 0 o
Chasneds per varme t.m “lul tascrr

j P epech o LASTCOM pos_tepopetMIGR

j i e |
4 fipachn 4 dwatd NS ekl ML 100
L) Surphey rn ()
”‘ Epech st (sec)

J Epech end (sex)

Covrand bty ¥
cleas

CEERE AP Y

Fig. B.9 Electrode Selection (Scalp Maps)
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B.4 OPTIMAL EEG ELECTRODE AND FEATURE SELECTION

» The Optimal_Loc.m file needs to be executed along with loading the required
datasets. The objective function values with respect to function evaluations can
be plotted after running the function Fire_opti.m, as shown in (Fig. B.7).

» From the selected scalp locations the corresponding source activations within the
brain can be viewed. EEGLAB has to be initiated by running eeglab.m in the
EEGLAB folder. The data and the channel location file have to be loaded into
eeglab (Fig. B.8). Then ICA has to be run to find the source components
corresponding to the channel components provided. One such sample is
illustrated in Fig. B.9.
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