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PREFACE 

 
The primary motif behind the formulation and development of Brain-Computer Interfaces is to 

provide aid to the patients suffering from several motor disabilities and thus cannot interact 

with the surrounding environment; hence the only possible way of survival for them is to 

instruct an assistive device that is capable of reading and decoding oscillatory activities 

occurring inside the cognitively intact brain. The thesis is focused on the application of 

different computationally intelligent tools that enhances the system performance in the 

concerned research domain. Two major problems rather two phases of a problem have been 

mainly addressed in the thesis, firstly, Brain Localization and the other one is Feature 

Extraction. There are different modalities for acquisition of brain signal waves, among them 

EEG is found to be the most suitable for the applications discussed in the thesis.  

The first segment proposes a novel framework for selection of optimal EEG electrodes and 

feature set as well. A variant of the traditional Firefly Algorithm, formally termed as Self 

Adaptive Firefly Algorithm (SAFA) has been employed as an optimization tool to serve the 

purpose. From elementary neurophysiological knowledge it is well known that not all brain 

regions contribute equally for all sort of cognitive tasks, hence it is extremely important to find 

out the specific regions of human brain that is activated for a specific task. Again, redundant 

information is also undesirable for any problem as that leads to a huge computational expense, 

so selection of features also plays a key role in EEG based BCI systems. 

The second segment designs an EEG based BCI system from pattern recognition 

perspective and emphasizes on the impact of feature extraction in such a system. Due to the 

poor spatial resolution of EEG signals spatial filtering has been emerged as one of the most 

efficient ways of spatially representing EEG signals. In this case, CSP has outperformed the 

other basic spatial filters in terms of most of the performance metrics. CSP basically projects 

the raw EEG signals into another subspace such that the projected signals are maximally 

discriminate. A regularized framework has been developed to compensate for the drawback of 

overfitting and lack of robustness. The efficacy of the designed framework has been tested by 

implementing for classification of EEG motor imagery paradigms. Two distinct methodologies 

have been adopted stressing on different phases of a pattern recognition based approach and in 

both the cases CSP has been utilized as a feature extracting tool. With respect to EEG based 

BCI system design the novelty in the present research lies in the process of bypassing 

peripheral muscular activities with the help of an assistive machine that can detect mental 

states easily. Sufficient experimental data acquisition has been carried out in laboratory and the 

efficiency of the proposed scheme has been validated by conducting standard statistical tests. 

 

 



 

 

vii 
 

TABLE OF CONTENTS 

 
 

CHAPTER-1:      INTRODUCTION 

 

1.1. Introduction to Brain Computer Interfacing                           2 

1.2. Computational Intelligence                    4 

1.3. Brain Localization for BCI                                   6 

1.4. Brain Signal Measurement Techniques                                  9 

1.4.1. Electroencephalogram                                                  12 

1.5. Motor Imagery                                15 

1.6. Principles of Computational Intelligence       16 

1.6.1. Pattern Recognition                                                      16 

1.6.2. Optimization                                                                 18           

1.7. Objective of the Thesis                                                        18 

1.8. Organization of the Thesis        19  

 

 

CHAPTER-2:      STANDARD TOOLS AND TECHNIQUES 

 

2.1. Feature Extraction Methods for EEG Signal Processing    22 

2.1.1. Autoregressive Parameters       22 

2.1.2. Adaptive Autoregressive Parameters      24 

2.1.3. Hjorth Parameters        25 

2.1.4. Power Spectral Density       25 

2.1.5. Wavelet Decomposition Based Features     27 

2.2. Classification Algorithms         29 

2.2.1. SVM Classifier        29 

2.2.2. k-NN Classifier           32 

2.2.3. Naïve Bayesian Classifier                     33 

2.2.4. Ensemble Classifier                      34 

2.2.5. Artificial Neural Network                  34 

 

 

CHAPTER-3:       EVOLUTIONARY PERSPECTIVE FOR OPTIMAL  

SELECTION OF EEG ELECTRODES AND FEATURES 

  

3.1. Introduction          40 

3.2. Proposed Methodology                    42 

3.2.1. Independent Component Analysis as a Source  

Localization Tool        42 

3.2.2. Feature Extraction        45 

3.2.3. Optimum Features and Electrode Selection Using  

Evolutionary Approach       45 

3.2.4. Classification         49 

3.3. Self Adaptive Firefly Algorithm        50 

3.3.1. Firefly Algorithm        50 

3.3.2. Self Adaptive Firefly Algorithm (SAFA)     52 

3.4. Experimental Results and Performance Analysis     53 



 

 

viii 
 

3.4.1. EEG Signal Acquisition             53 

3.4.2. Preprocessing           56 

3.4.3. Feature Extraction        56 

3.4.4. Optimal Feature and Electrode Selection  

 Using Evolutionary Algorithm      57 

3.4.5. Experimental Results        57 

3.5. Conclusion                                                           64 

 

 

CHAPTER-4:       CSP AND ITS RECULARIZATION 

  

4.1. Introduction          68 

4.2. Related Works                               72 

4.3. CSP Algorithm for Binary Classification Problem     73 

4.4. CSP Algorithm as an Optimization Problem     75 

4.5. Regularized CSP Methodology (RCSP)      76 

4.5.1. Regularizing Covariance Matrix Estimates          76 

4.5.2. Regularizing CSP Objective Function      77 

4.6. Improvising the existing RCSP Algorithms     78 

4.7. Conclusion                                                           80 

 

 

CHAPTER-5:       DETECTING MOTOR IMAGERY EEG SIGNAL 

USING CSP 
  

5.1. Introduction          83 

5.2. Discriminating Motor Imagery EEG Signal Using RCSP 

  Algorithm                                             84 

5.2.1. Proposed Methodology        85 

5.2.1.1. Novel Penalty Term        85 

5.2.1.2. Ensemble of k-NN Classifiers      86 

5.2.2. Experimental Setup         87 

5.2.2.1. Design of Visual Stimuli       88 

5.2.2.2. Preprocessing of EEG Signals      89 

5.2.2.3. Feature Extraction        90 

5.2.2.4. Classification        90 

5.2.2.5. Statistical McNemar’s Test       91 

5.3. Deciphering Motor Imagery EEG Data Using Proximity  

   Based ADE Induced Sparse Network        92 

5.3.1. Preliminaries          94 

5.3.1.1. Differential Evolution       94 

5.3.1.2. Artificial Neural Network       96 

5.3.2. Proximity Based ADE        98 

5.3.2.1. Mutant Vectors Based on Success Rate     98 

5.3.2.2. Proximity Based Scale Factor Adaptation     98 

5.3.3. System Overview         99 

5.3.3.1. Feature Extraction        99 

5.3.3.2. Dimension Reduction       99 

5.3.3.3. Classification       101 

5.3.4. Experimental Results and Statistical Analysis    101 



 

 

ix 

 

5.3.4.1. Experimental Setup and EEG Signal    

              Acquisition       101 

5.3.4.2. Frequency Band Selection     103 

5.3.4.3. Experimental Results     103 

5.4. Conclusion                                                          106 

 

 

CHAPTER-6:       CONCLUSION 

 

4.1. Summary of the Work        110 

4.2. Future Directions        112 

 

 

APPENDIX: A       STATISTICAL METHODS USED         i  

APPENDIX: B       USER GUIDE TO RUN SOURCE CODES     iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

x 

 

LIST OF FIGURES 

 

 
Fig. 1.1. Overview of BCI System     3 

Fig. 1.2. Computational Intelligence Family   5 
Fig. 1.3. 

Fig. 1.4. 

Volume Conduction Effect of Human Brain  

Overview of an EEG Based BCI System  

7 

7 

Fig. 1.5. Neurophysiological working mechanism of EEG 10 
Fig. 1.6. 

 

Fig. 1.7. 
 

Brain Signal Measuring Techniques(Invasive & Non-

Invasive) 

Functional Areas of Human Brain 

 

11 

14 

   

Fig. 2.1. Working Principle of DWT Decomposition 28 

Fig. 2.2. Signal Decomposition Using DWT 28 
Fig. 2.3. Linear SVM Classification, H1 doesnot classify the data, 

H2 classifies with less margin but H3 classifies with 

maximum margin 

 

 

30 
Fig. 2.4. k-NN Classification with k=3  32 

Fig. 2.5.   Artificial Neural Network 35 

 
 

Fig. 3.1. Overview of the Proposed Scheme 43 

Fig. 3.2. Training Dataset for Cognitive Task Kc 44 

Fig. 3.3. Illustration for Encoding a Candidate Solution for N=5 and 
F=4 

 
49 

Fig. 3.4. Electrode Positions According to 10-20 Electrode 

Placement System 

 

56 
Fig. 3.5. Queue for Stimulus Presentation for Left and Right Hand 

Motor Execution 

 

56 

Fig. 3.6. Classification Accuracy of SVM Classifiers Due to 

Training with EEG Electrodes and Features Selected by (a) 
SAFA), (b) ABC, (c) SAABC and (d) DE 

 

 
62 

 

 
Fig. 4.1. 

Fig. 4.2. 

 
Fig. 4.3. 

 

 

Fig. 5.1. 
Fig. 5.2. 

Fig. 5.3. 

Fig. 5.4. 
Fig. 5.5. 

Fig. 5.6. 

Fig. 5.7. 
 

 

Fig. 5.8. 

 
 

 

Electrodes Placed on Human Scalp Using Standard System 

Classification Accuracy Obtained with LDA Classifier for 

Basic Spatial Filters 
BCI Overview 

 

Experimental Setup and Visual Stimuli 
Electrode Locations 

Classification Metrics 

Architecture of Back Propagation Neural Network (BPNN) 
Experimental Setup 

Time Division of a Particular Trial of a Class 

Component wise Scalp Maps for All the Electrodes 
Number wise Arranged as, F3, Fz, F4, P4, P3, O1, O2, C3, 

Cz, C4, F7, F8, T3, T4, T5, T6, Fp1, Fp2, Pz 

Subject wise Comparison of the Performance of the 

Proposed Classifier with Other Variants of Neural Network 
Classifiers in Terms of Mean Classification Accuracy 

 

70 

 

71 
71 

 

 

88 
88 

90 

96 
102 

103 

 
 

104 

 

 
104 

 



 

 

xi 
 

Fig. A.1 

 
 

 

Fig. B.1. 

Fig. B.2. 
Fig. B.3. 

Fig. B.4. 

Fig. B.5. 
Fig. B.6. 

Fig. B.7. 

Fig. B.8. 
Fig. B.9. 

(a) A N×N Confusion Matrix, (b) A 2×2 Confusion 

Matrix 

 

Feature Extraction 
Feature Extraction 

Feature Extraction 

Feature Extraction 
Classification 

Classification 

Optimal Electrode Selection 

Optimal Electrode Selection 
Optimal Electrode Selection 

 

 

 

 

ii 
 

 

v 

vi 
vi 

vii 

vii 
viii 

viii 

ix 
ix 

 

 

LIST OF TABLES 

 

 
Table. 1.1. Highlights of the Trends in EEG Source Localization 

Research   

 

8 
Table. 1.2. 

 

Table. 1.3. 
Table. 1.4.  

Relative Drawbacks of Other Brain Signal Recording 

Interfaces Other Than EEG 

EEG Frequency Bands 
Related Works in Motor Imagery Detection  

 

12 

14 
17 

   

   

Table 3.1. Algorithm for SAFA Induced Electrode Feature 
Selection 

 
  54 

Table 3.2. 

Table 3.3. 
 

 

Table 3.4. 

Experiments Conducted for Proposed Scheme 

Performance of SAFA Based Selection of Optimal 
EEG Electrodes and Features for Cognitive Task 

Classification 

Comparison of the Proposed Algorithm with Other 
Standard Evolutionary Algorithms Based on 

Objective Function Values 

55 

 
 

59 

 
 

60 

   

   
Table 5.1.    Average Classification Accuracy (%) of the 

Employed Ensemble Classifier in Comparison With 

Other Standard Classifiers 

 

 

89 
Table 5.2.   Statistical Analysis of Classifiers Using McNemar’s 

Test  

 

  92 

Table 5.3.  
 

Table 5.4.  

 

Table 5.5. 
 

Table 5.6. 

Pseudo Algorithm for Sparse Network Weight 
Adaptation 

Confusion Matrix of the Cognitive Tasks Using 

Proposed Framework  

Average Classification Accuracy Obtained With 
Different EEG Features for the Four Classes 

Statistical Analysis of Classifiers Using McNemar’s 

Test 

 
102 

 

105 

 
106 

 

106 



C h a p t e r  1 | P a g e  1 

 

Brain Localization and Feature Extraction Using Computational Intelligence Techniques  

  
  

  
  
 

Chapter 1 

 

 
Introduction 
 

This chapter primarily emphasizes upon the main objective of the thesis as a whole by 

introducing the necessary preliminary concepts. It attempts to provide an insight to 

the rudimentary concepts of man-machine interaction along with its scopes of 

possible applications of BCI to develop an intelligent interface to cater to the human 

needs. Section 1.1 recapitulates the steps of evolution of a basic BCI device and states 

its attributes with a functional definition. Section 1.2 introduces Computational 

Intelligence (CI) as a new research discipline and establishes a link of application of 

CI techniques in the present work. Section 1.3 delineates the prerequisite concepts of 

brain localization and reports the recent trends of research in the domain. Section 1.4 

describes different brain signal measuring modalities and justifies the reason of 

choosing EEG as the preferred technique for the present work by reporting its 

superiority over the existing methodologies. Section 1.5 highlights one of the most 

popular EEG paradigms, termed as Motor Imagery (MI) and presents the related 

works in the domain of MI detection. Section 1.6 provides a rough outline regarding 

the possible applications of the thesis. Finally section 1.7 and 1.8 presents the 

objective and organization of the thesis briefly. 
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1.1 INTRODUCTION TO BRAIN COMPUTER INTERFACE (BCI) 

A BCI [1] system primarily aims at establishing a platform for successful communications 

between a human being and an assistive machine, preferably a computer and is employed in a 

large number of applications. The preliminary concept of BCI [2] has been evolved through  

well known American TV series Star Trek that was aired long back in 1966. The series 

presented a character that suffers from locked in syndrome where the body is paralyzed after 

losing the voluntary control of the muscles but the person is cognitively intact, that is a 

functionally active brain is trapped in an inactive body that is not able move its organs. In 

such a scenario, the only possible modality to communicate with the environment for survival 

is to employ an assistive device that can read brain signals and decode them into executing 

necessary control commands. Such a device is termed as BCI [3].  

Back in 1960, such an idea of controlling a device using brain signal patterns seemed to 

be entirely based on fantasy, despite the successful attempts of German scientist Hans Berger 

to record and measure brain electrical potentials from human scalp in 1929. Moreover, the 

technology available to measure and process of brain signals for analysing user intensions 

was very limited. The first BCI was introduced by Dr. Grey Walter in 1964. Unfortunately, 

Dr. Walter did not involve himself in publishing this revolutionary development; instead he 

simply discussed the basic matters while presenting a talk to Ostler Group, London. During 

those days and even since the turn of the century, there were very limited number of research 

enthusiasts who invested their valuable intellectual resources in this particular research 

domain and it is needless to say that there were very few labs actively dedicated for research 

conducted in the field of BCI. But the situation has changed these days, extensive research 

carried out in the field of neuroscience over the last decades has led to much better 

understanding about the working principle of human brain. Now a day, with the help of novel 

signal processing algorithms and the rapid development of computing power have enabled 

successful implementation of BCI systems in real time applications [4]. Unlike earlier days, 

today thousands of research groups are participating in active BCI research and as an obvious 

consequence; every day there is more BCI related papers, conferences, public talks, media 

articles and so on. More importantly, BCI is no longer considered as science fiction and thus 

BCI has succeeded in achieving its initial goal of proving the worth of rehabilitative 

applications of BCI for patients suffering from motor function disabilities. 

Normally for performing a task involving control or communication, firstly the process 

is initiated with the user’s intent which in turn triggers a complex operation of activating 
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specific brain areas that contribute for the specific control task and next signals are 

transported through the motor pathways to the corresponding muscles that perform the 

physical movements required to complete the task. A BCI system provides an alternative path 

way by recording the brain signal pattern according to a user’s intent and then translating the 

recorded brain activity into effective control instruction for real time applications. 

Deciphering these brain signal patterns into active commands require the tools of pattern 

recognition and signal processing which can be employed by using a computer. Since the 

processed signals originate from the human brain and because of the involvement of a 

computer in the procedure, the system is aptly termed as “Brain Computer Interface”. A BCI 

system possesses three mandatory attributes, 

 It records signal rhythms directly from human brain (invasively or non-

invasively) 

 It must send feedback to the user for real time signal processing 

 While recording brain signal potentials the user must involve himself in 

intentional control. 

 

 

Fig 1.1 Overview of BCI System 
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Fig 1.1 depicts a detailed description of the fundamental concepts of BCI through 

different interfaces using a diagram. As shown in the diagram, a user can interact with the 

hardware directly through an interface. A man-machine interface environment always has a 

feedback component incorporated in the input-output chain that evaluates and controls the 

data which traverses from the user to an assistive computer and comes back to the user as well 

in the form of a recurrent loop. 

Although most researchers have accepted the formal terminology and the relevant 

concepts of BCI, but there is no universally accepted formal definition of BCI, in fact many 

variants of the same are found in the BCI literature. According to Wolpaw, “A direct brain-

computer interface is a device that provides the brain with a new, non-muscular 

communication and control channel”, in the words of Donoghue, BCI can be defined as, “A 

major goal of a BMI (brain-machine interface) is to provide a command signal from the 

cortex. This command serves as a new functional output to control disabled body parts or 

physical devices, such as computers or robotic limbs”. 

1.2 Computational Intelligence 

Computational Intelligence (CI) [5] is originally an invention of Professor Lotfi A. Zadeh. 

Since its initiation the discipline has undergone numerous alterations both in its content as 

well as organization. The elementary definition of CI emphasizes on fuzzy logic, genetic 

algorithm, neural networks and probabilistic reasoning along with the study of their 

intersecting regions. Gradually, the periphery of CI expanded and today’s definition of CI is 

greatly motivated by the biologically inspired models of machine intelligence. Modern 

concepts of CI are mainly concerned with granular computing, neural computing, 

evolutionary computing and their impact and interaction with artificial life, chaos theory and 

others, as shown in Fig. 1.2. 

According to Prof. James Bezdek CI can be defined as, “A system is computationally 

intelligent when it: deals with only numerical (low level) data, has pattern recognition 

components, does not use knowledge in the AI sense; and additionally when it (begins to) 

exhibits i) computational adaptivity, ii) computational fault tolerance, iii) speed approaching 

human like turnaround and iv) error rates that approximate human performance.”  

In the present context, computational adaptation typically refers to the ability of a 

system to tune its parameters following certain optimizing criterion and depending upon the 

temporal changes in its input and output variables. Most of the Artificial Neural Networks 

(ANN) follows this attribute. Further, computational fault tolerance is more or less common 
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characteristic in parallel and distributed environment since computational resources are 

replicated at each of the distributed unit in such a way that even if a few units are damaged or 

malfunctioning then that would not cause the whole system to shut down, as resources are 

available at each unit. It is important to note that while ANN and fuzzy logic is controlled by 

their inherent fault tolerance mechanisms, but belief networks or genetic algorithms can be 

configured in this way to get the benefit of computational fault tolerance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

The other two important aspects of Bezdek’s definition is related to computational 

speed and error rates, as it is often seen that accuracy is sacrificed to achieve higher speed 

which is extremely undesirable in this context. Both ANN and fuzzy logic produce 

considerably quicker responses against any input excitation, moreover unlike traditional 

systems fuzzy logic has provisions for firing multiple rules ensuring the partial matching of 

the available facts with antecedent clauses of those rules. Hence fuzzy logic is less susceptible 

to error and has got high computational speed as well. Similarly, ANN has provisions for 

updating multiple neurons concurrently yielding high computational speed and the parameters 

are altered wisely at each step satisfying certain constraints such that error rate is minimized. 

The parallelly constructed structure of Genetic Algorithms(GA) and belief networks increases 

the computational speed and their inherent filtering component takes care of the accuracy 

issues and enhances the same to the greatest possible extent. To justify the first clause of 

Neuro 

Computing 
 

 
 

Evolutionary 

Computing 
 

Artificial life, Chaos 

Theory and others 

 Fig. 1.2 Computational Intelligence Family 

 

 

 

 

 

Granular 

Computing 
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Bezdek’s definition it is important to note that all of fuzzy logic, GA and ANN deals with 

numerical data, they have certain pattern recognition components and none of them use 

traditional AI concepts, hence from this point of view fuzzy logic, GA and ANN are reliable 

members of CI family. 

Basically, computational intelligence emerged as an alternative to deal with the 

shortcomings of traditional Artificial Intelligence (AI). Gradually, the limitations of AI 

became more and more pronounced over the decades when AI became incompetent to serve 

the demand of search, optimization and machine learning in i) information systems with large 

biological and commercial databases, ii) factory automation for steel, aerospace, power and 

pharmaceutical industries. Almost at the same time, the contemporary model of non 

traditional machine intelligence including rough sets, fuzzy logic, chaos theory, artificial 

neural networks, genetic algorithms etc. proved their worth and efficiency to deal with the 

drawbacks of AI and thus the limitations of traditional AI opened up new avenues for the non 

conventional model of various engineering applications. This new discipline is termed as 

Computational Intelligence. 

1.3 BRAIN LOCALIZATION FOR BCI 

EEG signals despite having an excellent temporal resolution suffers from the drawback of 

poor spatial resolution because of the limited number of recording sites over the human scalp 

and also due to the shielding effect of the skull. Due to volume conduction effect, the source 

signals inside the brain often gets scattered and as a result many electrodes placed in the 

closed proximity of that specific scalp region records components of the concerned source, as 

shown in Fig. 1.3. It is considered as a challenging problem in the domain of neuroscience to 

predict the active regions of brain from the recorded potential distributions. Estimation of 

original sources is apparently a tricky problem because there can be an infinite combinations 

of internal currents that can result in creating such potential distributions over human scalp.  

A BCI can be briefly defined as a machine learning device that can detect and decode a 

certain set of patterns from the control signals directly acquired from a user’s brain. In the 

context of BCI, the fundamental concept behind source localization lies in the mapping of 

multichannel EEG signal into a higher dimensional subspace that is comprised of multiple 

sources that are modelled either as current dipoles or monopoles. Further, the source 

localization can be proved as an efficient tool for classifying EEG signals as well, instead of 

employing the traditional machine learning algorithms utilizing source localization a user can  
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Fig 1.3 Volume Conduction effect of Human Brain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.4 Overview of EEG Based BCI System 

exploit two neuro physiological postulates by reconstructing the sources of recorded scalp 

potentials,  
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Table 1.1 HIGHLIGHTS OF THE TRENDS IN EEG SOURCE LOCALIZATION RESEARCH 

Author and Year of 

Publication 

Highlights 

Zarghami et al.(2015) 
Transfer-Function-Based Calibration of Sparse EEG Systems for Brain Source 

Localization 

Shirvany et al. (2014) 
Particle Swarm Optimization Applied to EEG Source Localization of 

Somatosensory Evoked Potentials 

Hammond et al. (2013) 
Cortical Graph Smoothing: A Novel Method for Exploiting DWI-Derived 

Anatomical Brain Connectivity to Improve EEG Source Estimation 

Shirvany et al. (2012) 
Investigation of Brain Tissue Segmentation Error and Its Effect on EEG Source 

Localization 

Yitembe et al. (2011) 
Reduced Conductivity Dependence Method for Increase of Dipole Localization 

Accuracy in the EEG Inverse Problem 

Antelis et al. (2010) 
DYNAMO: Dynamic Multi Model Source Localization Method for EEG 

and/or MEG 

Barton et al. (2009) Evaluating the Performance of Kalman-Filter-Based EEG Source Lcalization 

Noirhomme et al.(2008) Single-trial EEG Source Reconstruction for Brain-Computer Interface 

Xu et al. (2007) Lp Norm Iterative Sparse Solution for EEG Source Localization 

Rodriguez-Rivera et al. 

(2006) 
MEG and EEG Source Localization in Beamspace 

Qiu et al. (2005) 
A Feasibility Study of EEG Dipole Source Localization Using Particle Swarm 
Optimization 

Gutierrez et al. (2004) Estimating Brain Conductivities and Dipole Source Signals with EEG Arrays 

Rodriguez-Rivera et 

al.(2003) 

Statistical Performance Analysis of Signal Variance Based Dipole Models for 

MEG/EEG Source Localization and Detection 

Schimpf  et al. (2002) Dipole Models for the EEG and MEG 

Sclabassi et al. (2001) EEG Source Localization: a Neural Network Approach 

. 
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 Lateralization of electrocortical activities (for example, a stronger arousal of left 

sensorimotor cortex due to movement of right hand because of the contra lateral 

working mechanism of human brain) 

 Spatially representative distributions of different extremities in motor as well as 

sensorimotor cortex region. 

In the later stage, this phenomenon yields activations that are spatially discriminate 

during real as well as imaginary movements of various extremities and thus source 

localization can be used as an efficient tool for differentiating brain signals which in turn can 

enable a BCI system to classify multitude of conditions. 

Further, BCI systems based on the concept of source localization are resistant to the 

local variations of EEG signals and hence can be chosen as a robust alternative to deal with  

such situations. To use the traditional machine learning algorithms it is often required to train 

the algorithms a large number of times because of the variations in EEG signal patterns over 

time instances as well as different subjects, which can result in a high run time complexity as 

well. 

Contrarily, as long as the spatial locations of different electrodes remain constant, such 

trivial variations won’t affect BCI systems designed for source localization. In the present 

work, we have proposed an extension of the source localization based upon Independent 

Component Analysis (ICA) [6]. By employing ICA, we can decompose the EEG signal 

recorded into N maximally independent components where N is the maximum number of 

electrodes. 

1.4  BRAIN SIGNAL MEASUREMENT TECHNIQUES 

In order to measure the neuronal activity occurring inside human brain, several devices [26] 

with different working mechanisms are available [7].  

Firstly, Electroencephalogram (EEG) [8] devices are used to detect electrical signals 

originating within human brain. Due to neuronal firing, an ionic decomposition occurs that 

yields a state leading to the formation of dipoles and as a result negative charges are found to 

be accumulated over the motor cortex. Due to the attractive and repulsive forces that act in 

between these ions, volume conduction occurs as a result of which information is transported 

across the brain to maintain resting potential and to propagate action potential, as shown in 

Fig. 1.5. There are a variety of electrode options that are available in the market which are 

capable of recording these signals from human scalp. For example, tin (Sn) electrodes, gold 

plated (Au) electrodes, silver or silver chloride (Ag/AgCl) electrodes etc. can serve the 
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purpose. But in most of the cases, Ag/AgCl electrodes are preferred over others due to its 

longevity, cost effectiveness, precision and ease of use. More importantly, the signal recorded 

from human scalp has its amplitude in the order of microvolts (µV), to deal with signals at 

this amplitude level becomes extremely difficult. Hence, a mandatory operation performed by 

every EEG device is the amplification of the original scalp recording to a certain threshold 

limit. Further, to employ and analyse these signals using a digital computer requires 

digitization of the same that is an analog to digital converter is also embedded as a part of 

EEG acquisition device. Finally, a band pass filter is employed to extract the signals within 

the range of 0-70 Hz, which is usually considered as the maximum range of EEG [9] 

recordings. 

Functional Magnetic Resonance Imaging (fMRI) [10] is another modality that utilizes 

the difference in magnetization occurring due to oxygenation and de-oxygenation of blood as 

the prime measure. Hence, the coupling between cerebral blood flow and neuronal arousal has 

a major influence in this method. Despite its precision of locating sources of neuronal firing 

inside human brain there remains a time lag between actual firing and the detection of the 

concerned source. This temporal delay does not allow these FMRI systems to be employed in 

real time on line applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5 Neurophysiological Working Mechanism of EEG 

 

Magnetoencephalography (MEG) is another brain rhythm recording device that 

considers the magnetic fields arising out of the electrical signals originating within human 

 

Y1(t)=w11X1(t)+ w21X2(t)+w31X3(t) 

Intra-cortical 

Electrodes 
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brain as their primary metric. Because of the sensitivity involved with these kinds of signal, 

extremely expensive high quality equipments are recommended to carry out these 

experiments successfully. So, high cost is the reason which stops it from gaining wide 

popularity. 

Electrocorticography (ECoG) [11] is another device which has maximum of the 

attributes similar to EEG in terms of working mechanism, but the difference lies in the 

procedure of implanting the electrodes on/inside human scalp. Unlike EEG, in ECoG systems 

the electrodes are placed inside the cortex that is over the exposed area of human brain, to 

enhance the information content. Since, for such electrode placements a user needs to undergo 

craniotomy (surgery on skull), it is not always a feasible method for real time applications. 

For similar reasons, in spite of having excellent temporal and spatial resolutions of the 

brain signals acquired through the electrodes placed deep inside human brain, intra-cortical 

electrodes [12] are not always considered as the preferred alternative for most of the lab based 

experiments. In fact, the invasiveness greatly limits the applicability of these electrodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6 Brain Signal Measuring Interfaces (Invasive & Non invasive) 

 

Functional Near-Infrared Spectroscopy (fNIRS) [13] is a hemodynamic technique 

based functional neuroimaging method where the transmission/scattering characteristic of the 

near Infrared (NIR) radiation has been employed and it is inferred that oxygenated 
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haemoglobin molecules and deoxygenated haemoglobin molecules absorb and scatter the 

light at different portions of NIR spectrum [26]. Hence, the degree of attenuation or the signal 

strength of the light received back from the target tissue measures of the oxygen concentration 

in different regions of brain and thereby locates the source of neuronal firing. 

Fig. 1.6 [26] illustrates the different equipments that are popularly used to record brain 

signal rhythms. From the above discussion, it can be inferred that invasive recording 

techniques combine excellent signal quality, very good spatial resolution, and a higher 

frequency range; moreover these recordings are less vulnerable to artifacts. Further, the 

cumbersome application and re-application of electrodes is unnecessary for invasive 

approaches. Despite having these advantages, invasive methods have a serious limitation of 

surgery requirement. From ethical and financial perspective, neuro surgery is often considered 

as an impractical solution other than the users who depend upon BCI for communication. In 

fact, in certain cases, these needs can be fulfilled by non invasive techniques thus avoiding the 

complexity of risky surgeries. More importantly, long term stability of these approaches is 

also doubtful which motivated us to consider EEG as the most suitable bio-modality to carry 

out lab based experiments for analysing brain activities. 

 

TABLE 1.2 RELATIVE DRAWBACKS OF OTHER BRAIN SIGNAL RECORDING 

INTERFACES OTHER THAN EEG 

Measuring 

Interface 

Limitations 

fMRI 

Exorbitant, large sized and immobile interface, aggravates 

claustrophobia in the users while recording 

MEG 

Exposure to high intensity (> 1 Tesla) magnetic fields, bulky 

and stationary device 

ECoG 

Invasive technique, requirement of risky surgery for 

implantation of electrodes  

fNIRS 

Poor temporal resolution, less depth of penetration and 

recording of limited sites over the human scalp 

 

1.4.1 Electroencephalogram (EEG) 

 

Electroencephalography [14] refers to the well established procedure of recording EEG 

signals from human scalp using electrodes that has been used in the clinical and research 
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setup since last few decades. EEG signal acquisition system is comparatively light weight, 

cost efficient and easy to apply. EEG based BCI systems (Fig. 1.4) possess exceptional 

temporal resolution that is those systems can detect changes within a predefined interval of 

time with precision. On the other hand, EEG signals suffer from poor topographic resolution 

and more importantly they are susceptible to be disturbed by noise and artifacts (for example, 

bioelectrical signals originated because of the eye movement or eye blink 

(Electrooculographic activity or EOG), or from body muscles (Electromyographic activity or 

EMG)). 

The primary attributes of EEG signals can be listed as, 

 EEG signals are extremely non-stationary in nature because of the asynchronous 

neuronal firing over certain period of time. 

 EEG signals are non-periodic and non-Gaussian in nature. 

 The amplitudes of EEG signals lie within the range of [-10µV, 10µV]. 

 Usually, the frequency band in the range 0.5-70 Hz is referred to as EEG bandwidth.( 

Table 1.3) 

 EEG signals are primarily determined by the arousal of different brain regions. The 

cerebral cortex which covers the outer part of the cerebrum, which is responsible for 

major part of information processing inclusive of thoughts and action, is primarily 

segmented into four components termed as “lobes”. Each lobe is responsible for 

carrying distinct set of functions; Fig 1.7 depicts a clear picture of brain partitioned 

into functional components. To conduct an EEG based experiment, it is extremely 

important to have a prior knowledge about the operations of the different regions of 

the cerebral cortex in order to acquire relevant signals corresponding to a particular 

cognitive task. 

 Frontal lobe: Creative thought, problem solving, intellect, judgment, attention, 

abstract thinking, physical reactions, muscle movements, coordinated movements and 

personality. The prefrontal region is responsible for behaviour, planning and short 

term memory. 

 Parietal lobe: Visual functions, language, reading, internal stimuli, tactile sensation 

and sensory comprehension, visuospatial processing 

 Temporal lobe: Senses of smell and sound, processing of complex stimuli like faces 

and scenes 

 Somatosensory Cortex: Perception of somatosensations 

 Occipital lobe: Sense of sight or vision 
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 Motor Cortex: Movement co-ordination 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7 Functional Areas of Human Brain 

 

TABLE 1.3 EEG FREQUENCY BANDS 

Band 

Frequency 

Range 

(Hz) 

Implications 

Delta 0.5-4 
Sleep, fatigue, severe slowing of mental processes 

Theta 4-8 

Meditation, attention lapses, slowed processing, memory 

consolidation 

Alpha 8-13 
Relaxation, readiness, inactive cognitive processing 

Beta 13-30 
Focus, active concentration, alertness 

Gamma 
30-70 

Cross-modal sensory processing, short-term memory 

matching of recognized objects 

 

A number of EEG signal modalities are used for BCI systems depending upon the 

stimulus presented to a user and requirement of the problem. The most commonly used 
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modalities include P300 potential, slow cortical potential (SCP), Steady State Visually 

Evoked Potential (SSVEP), Event Related Desynchronization/ Synchronization (ERD/ERS). 

A P300 based BCI system depends upon a stimulus that flashes in succession. 

Practically, stimuli are comprised of letters, but at times it can be goal directed symbols for 

practical applications such as robot movement, cursor control etc. Selective concentration and 

attention to a specific flashing symbol yields a brain pattern formally termed as P300, which 

is originated from the centro parietal brain region at around 300ms after the presentation of 

the stimulus. 

SCP signifies the change in the membrane potentials of the cortical dendrites that lasts 

typically upto several seconds starting from 300ms after the stimulus presentation. This 

response is usually observed in the motor cortex region. 

An SSVEP based BCI system requires a number of stimuli where each distinct stimulus 

corresponds to an output command, which in turn is associated with a task that a BCI based 

system can execute. Unlike P300 systems, instead of flashing in succession the stimuli 

continues to flicker at different frequencies in the range of 6-30 Hz. Paying attention to a 

flicker elicits an SSVEP activity in the visual cortex with the same frequency as that of the 

target flicker. So SSVEP based BCI systems are capable of determining which flicker has 

occupied a user’s attention simply by checking the SSVEP rhythm in the visual cortex at a 

specific frequency. 

ERD/ERS [15] refers to the decrease/increase in EEG signal amplitudes in specific 

frequency bands during execution of dynamic cognitive processes as a response to excitation 

invoked by stimuli presentation. Motor Imagery tasks produce ERD/ERS in motor cortex 

while tactile stimulations give rise to alpha band ERD/ERS in somatosensory cortex. 

1.5  MOTOR IMAGERY 

Not only actual task execution, but the preparation of movement or imagination of task 

execution elicits a change in the Sensorimotor Rhythms (SMR). An SMR typically signifies 

the oscillations in the brain activity recorded from the somatosensory and motor cortex 

region. As mentioned previously, ERD/ERS patterns can be volitionally produced by motor 

imagery signals which refer to the imagination of the movement without actually performing 

it. Topographically, ERD/ERS patterns follow a homuncular mechanism that is the oscillatory 

activity invoked by right hand motor imagery is most prominent over the electrodes ( C3) 

placed over the left hemisphere and vice versa for the left hand motor imagery case [16]. So, 

the activity invoked by hand motor imagery is located on the contralateral side [17]. Since the 
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cortical areas corresponding to left and right leg motor imagery resides too close, hence it is 

not possible to discriminate between left foot and right foot in EEG. For similar reasons, 

detection of ERD/ERS patterns corresponding to individual fingers is not feasible. Since, 

hand areas, feet areas and tongue areas are topographically different and large enough hence 

in the present works, these four motor imagery signals are considered to control BCI systems. 

Unlike selective attention based BCI, motor imagery based system do not require any external 

stimulus, but a user requires to adapt the skills of motor imagery to perform it with efficiency. 

For this reason, BCI systems based upon motor imagery do not produce satisfactory results in 

the first session itself instead some training can enhance the result. Again the performance 

and the training time also vary amongst the subjects, however longer training is recommended 

at times for sufficient control. Thus, training is an important aspect in most of the BCI 

systems; in such systems users undergo a process called operant conditioning. During BCI 

learning, operant conditioning incorporates a feedback that is displayed on the computer 

screen and formally known as “neurofeedback”. Usually, the feedback is in the visual form, 

but it can be presented in tactile as well as audio form also. The feedback basically evaluates 

the user’s performance that whether he has done well or failed, a user can exploit this 

feedback to optimize his performance and thus enhance the BCI system outcome. 

1.6 PRINCIPLES OF COMPUTATIONAL INTELLIGENCE  

The principles of CI that have been employed in the present work include two major 

components, 

 Pattern Recognition 

 Optimization 

1.6.1 Pattern Recognition 

 

Pattern Recognition is a sub branch of CI that mainly emphasizes on discriminating patterns 

or regularities in a dataset based on certain attributes. Although the possible approaches of 

utilization of this tool include supervised, unsupervised and semisupervised methodologies, 

the present work has been designed based upon supervised algorithms only. Any Pattern 

Recognition system follows the three fundamental steps of, 

 Feature Extraction 

 Feature Selection 

 Classification [18] 
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Table 1.4 RELATED WORKS IN MOTOR IMAGERY DETECTION 

Author and Year of 

Publication 

Highlights 

Xu et al.(2014) Enhanced Low-Latency Detection of Motor Intention from EEG for 
Closed-Loop Brain-Computer Interface Applications 

Park et al. (2013) Classification of Motor Imagery BCI Using Multivariate Empirical Mode 

Decomposition 

Bamdadian et al. 

(2012) 

Online Semi-Supervised Learning with KL Distance Weighting for 

Motor Imagery Based BCI 

Ang et al. (2011) Calibrating EEG Based Motor Imagery Brain-Computer Interface from 

Passive Movement 

Li et al. (2010) An EEG Basrd BCI System for 2-D Cursor Control by Combining 

Mu/Beta Rhythm and P300 Potential 

Ang et al. (2009) A Clinical Study of Motor Imagery Based Brain Computer Interface for 

Upper Limb Robotic Rehabilitation 

Wu et al. (2008) Classifying Single-Trial EEG During Motor Imagery by Iterative Spatio-

Spectral Patterns Learning (ISSPL) 

Sadeghian et al.(2007) Continuous Detection of Motor Imagery in a Four Class Asynchronous 

BCI 

Wang et al. (2006) Common Spatial Pattern Method for Channel Selection in Motor Imagery 

Based Brain-Computer Interface 

Xiaomei et al. (2005) Adaboost for Improving Classification of Left and Right Hand Motor 

Imagery Tasks 

Townsend et al. (2004) Continuous EEG Classification During Motor Imagery-Simulation of an 

Asynchronous BCI 

Cincotti et al. (2003) The Use of EEG Modifications Due to Motor Imagery for Brain-

Computer Interfaces 

Dornhege et al.(2002) Combining Features for BCI 

Pfurtscheller et al. 

(2001) 

Motor Imagery and Direct Brain-Computer Communication 

Ramoser et al. (2000) Optimal Spatial Filtering of Single Trial EEG During Imagined Hand 

Movement 

Castellano et al. 

(1999) 

Moving Target Detection in Infrared Imagery Using a Regularized 

CDWT Optical Flow 
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1.6.2 Optimization 

 

Optimization signifies the mathematical steps that are involved in formulation of the 

procedure of making an entity or a solution as efficient or perfect as possible. In the present 

context, the term “Optimization” refers to the method of selecting the optimal solution from a 

pool of candidate solutions satisfying a predefined constraint with a goal of either maximizing 

or minimizing an objective function. Among the various methods of optimization, 

evolutionary techniques [19] are those which typically follow the postulate of “survival of the 

fittest”. In this work Firefly Algorithm [20] has been employed for solving a specific problem 

related to EEG signal modality. 

1.7 OBJECTIVE OF THE THESIS 

The primary objective of the thesis is to assemble the existing CI techniques and analyze their 

scopes of application in the source localization and feature extraction paradigm. The 

formulation of modern day intelligent man machine interactive devices majorly depends on 

the judicious analysis of existing CI modalities and proficient development of the concerned 

interface. These CI based BCI modalities find extensive use in rehabilitation, tele-operation, 

tele-navigation as well as context awareness. 

Amongst the brain signal measuring techniques, EEG is considered to be the most 

efficient modality for BCI applications [21]. Literature show that already many interesting 

applications have been implemented using EEG, still there exists ample opportunity to 

improvise the existing applications by introducing innovative concepts. The entire work has 

been partitioned into two components. The first part presents an evolutionary perspective for 

selection of optimal electrode positions and EEG features for a specific cognitive task. This 

part is mainly concerned with the feature extraction and features as well as electrode selection 

phase and justifies the usage of an optimization algorithm to reach closer towards relatively 

simpler solutions of such complex problems. The second segment explores the signal 

processing methods and emphasizes on the impact of spatial filtering [22] on EEG signals. 

This part reiterates the existing variants of the well known CSP algorithm and analyses the 

outcomes of the application of newly formulated regularized variants of CSP for motor 

imagery detection [23] purpose. All computations are performed in a MatlabR2012b 

environment in an Intel Core i3 processor running at 2.30 GHz. All human subjects on whom 

experiments are conducted sign consent forms prior to providing data. 

The possible application areas of the present thesis include, 
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 BCI systems 

 Rehabilitative systems [24] 

 Robotic control [25] 

 Context Awareness 

1.8 ORGANIZATION OF THE THESIS 

The thesis is segmented into six distinct chapters. Chapter 2 provides a detailed illustration 

regarding the various machine learning tools and techniques that have been employed in the 

numerous experiments that have been carried out during the works included in the present 

thesis. Chapter 3 describes the proposed scheme of EEG optimum electrodes and feature 

selection from the evolutionary perspective. Further Chapter 4 narrates the needs of spatial 

filtering in EEG based works and introduces RCSP as the solution to deal with the drawbacks 

of traditional CSP. This chapter also mentions further scopes of future work by mentioning 

the limitations of the existing frameworks and opens new avenue for improvising the same. 

Chapter 5 aims to show the impact of employing RCSP as a feature extraction tool in motor 

imagery detection purpose for online BCI applications. Finally in Chapter 7 the conclusions 

are drawn and future scopes of work are stated. All chapters are provided with necessary 

bibliography. Appendix A provides the detailed descriptions of the performance metrics and 

statistical methods used to evaluate results and Appendix B presents a step wise description of 

running the source codes. 
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Chapter 2 

 

 
Standard Tools and Techniques 
 

This chapter aims to revisit the standard tools and techniques that have been 

employed in the works described throughout the thesis. These methodologies contain 

the detailed description of different feature extraction and classification algorithms. 

Section 2.1 illustrates the feature extracting algorithms with required diagrams 

including autoregressive parameters, adaptive autoregressive parameters, Hjorth 

parameters, power spectral density estimates and wavelet based features. Section 2.2 

describes the classification algorithms with required diagrams including SVM 

classifier, k-NN classifier, Naïve Bayesian classifier and Ensemble classifiers. 
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2.1 FEATURE EXTRACTION METHODS FOR EEG SIGNAL PROCESSING 

From pattern recognition perspective, feature extraction can be defined as the procedure to 

derive a significant set of values (termed as “features”) from an initial set of measured 

datapoints, which are intended to be informative and non-reduntant and to facilitate the 

subsequent steps of learning, generalization and enhanced human interpretations as well. This 

section provides an insight to the EEG feature extraction methods that include time domain 

features [1], [2] like Autoregressive Parameters (AR), Adaptive Autoregressive Parameters 

(AAR) and Hjorth Parameters, frequency domain features [3] like Power Spectral Density 

(PSD)/ Band Power Estimates and time-frequency correlated features [4] like Wavelet 

Decomposition [5] Based Features. 

2.1.1 Autoregressive Parameters 

The AR parameter model is considered to be one of the most well known feature extracting 

techniques for EEG based BCI paradigm. The primary reason of this popularity is the 

efficiency of this technique to represent the randomness of any signal accurately because AR 

parameters are estimated using methodical algorithms. Moreover, AR parameter model 

provides ‘maximum entropy spectral estimation’ which ensures that only reduced numbers of 

parameters are sufficient for accurate representation of a stochastic signal removing the need 

for signal averaging. Formally, this model is a basic parametric model for a time series signal. 

 Mathematically, the model can be illustrated using (2.1), 

 

   1 1 2 2 .....k k k p k p ky a y a y a y x                               (2.1) 

 

where xk denotes a zero mean Gaussian noise process calculated as N{0,
2

x }, p is the order of 

the AR model, yk-i denotes the previous samples, ai signifies the coefficients and i is an integer 

that can vary [0, p], and yk \is the estimated output while index k is used to refer to distinct 

equidistant time instances. In the present works, we have used sixth order AR model, that is 

p=6. Usually, AR model is employed to represent any wide sense stationary stochastic time 

series that is characterized as, 

   kx = constant and k k d dx x r                 (2.2) 

To compute the AR model coefficients two methodologies have been adopted, 

 Yule-Walker Method [6] 

For an AR model of order p, (2.1) can be expressed as, 
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p

k i k i k

i

y a y x



                 (2.3) 
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By convention, yk is assumed to have zero mean too. The estimation method includes 

multiplying both sides of (2.3) by xk-d where d signifies a time delay, averaging and 

normalizing the obtained outcome. Since d can vary from 1 to p, repeating the above 

mentioned steps for p number of times yields a set of equations, known as Yule-

Walker equations, which can be presented as matrix form as, 

 

 

 

 

                     (2.4) 

 

 

 

 

 Burg’s Method 

In contrast to Yule-Walker method, instead of estimating the AR model parameters 

directly, Burg’s approach [7] computes the reflection coefficient at first and these 

reflection coefficients are treated as the last AR parameter estimate for each model of 

order p. From these, the AR parameter estimates are calculated using Levinson-

Durbin algorithm. Given N discrete values, it is possible to compute the values of k 

coefficients using forward or backward linear prediction method, 
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                 (2.5) 
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                 (2.6) 

 

Using the above two equations ai is chosen in such a way that the forward error Fk 

and backward error Bk are minimized, 
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So basically this technique attempts to find µ such that the forward and backward 

errors are minimized while constraining the AR parameters to satisfy the Levinson-

Durbin equation, given by, 

 

    
1k k kA A V                             (2.9) 

 

Here, initial estimate A0=1 and Ak+1= [1 a1 a2 a3…..ak 0] and Vk+1= [0 ak… a3 a2  a1 

1]. 

2.1.2 Adaptive Autoregressive Parameters 

Because of the random behavior of EEG signals it is not wise to use stationary processes to 

estimate the model coefficients. To model a stochastic natured signal using AR model one can 

segment the entire data and then obtain AR model parameters for each segment. However, 

there also lies one tradeoff between the segment length and the error. The shorter is the length 

the resolution is more improved but it comes with a large error as well. Employing a sliding 

window for segmentation can solve the problem, but because of the computational overhead 

the method cannot be employed for online studies. In case of AAR parameter model[8], the 

randomness is incorporated by varying the AR parameters obtained with time. The 

coefficients are predicted in an adaptive way and it is assumed that in each iteration the AAR 

parameters are altered by an amount less than the prediction error, otherwise it becomes 

impossible to represent such non-stationary processes using AAR model. A number of AAR 

prediction algorithms are found in literature like Least Mean Squares (LMS), Recursive Least 

Squares (RLS), Recursive AR (RAR), Kalman Filtering and so on. Mathematically, it can be 

expressed as, 

 

   1, 1 2, 2 ,.....k k k k k p k k p ky a y a y a y x                  (2.10) 

 

 Here xk is computed as N{0,
2

,x k } and 
2

,x k  denotes the time varying variance of the 

noise process. Basically, it is a two step process, 

 Calculation of the error coefficient 

 Updating of the estimates using error coefficient. 

In AAR model, the adaptation rate, smoothening of the parameters and time resolution is 

administered by the update coefficient, whose value is predetermined along with the order. 

The AAR model is chosen to meet the issues created by AR parameters, 

 A stochastic model describes well the random behavior of the EEG.  

 An adaptive method provides parameters with a high time resolution.  

 As side-effect no frequency band has to be selected. 
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2.1.3 Hjorth Parameters 

Hjorth parameters [9] indicate statistical properties for the analysis of EEG signals for feature 

extraction phase. This technique basically has three embedded parameters namely, activity, 

mobility and complexity. Activity signifies the variance of the signal that is basically a 

measure of the signal power. Mobility provides an outline about the measure of the signal’s 

mean frequency and finally complexity generates the measure of the change in frequency. 

Apart from providing useful information about the frequency spectrum, this technique enables 

the users to analyze the signal in time domain as well; moreover this method allows a user to 

deal with a computationally less expensive framework. For a signal y(n) having length of N, 

activity (A(y)), mobility (M(y)) and Complexity (C(y)) can be defined as, 
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 Here, y and 'y refers to the mean and first order derivative respectively. In the 

present work, Hjorth parameters were calculated for each channel yielding total three features 

corresponding to activity, mobility and complexity for each channel. It is preferable to 

employ small windows in case of Hjorth parameters to accurately represent the non-

stationarities associated with EEG signals. 

2.1.4 Power Spectral Density 

Spectral estimation is done to get the distribution of signal power [10] over the frequency 

range. For a finite data set )(na and its autocorrelation sequence aaX , the Power Spectral 

Density (PSD) can be estimated as below, 
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 If the sampling frequency is denoted as sf , then   can be replaced as 
sf

f2
and 

above equation can be written as, 
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 According to Nyquist criteria, the maximum frequency present in the system is half of 

the sampling frequency ( sf ), the average power for entire signal over the entire Nyquist 

range is described as follows, 
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s

s

f

f

aa dffP               (2.16) 

where )( fPaa represents power in an infinitesimal bandwidth, so it is termed as PSD. 

 Welch Method 

Welch method [11] belongs to the category of non parametric PSD estimation methods 

where PSD of a signal is estimated from the signal itself, in other words using Welch 

method PSD estimate is computed using the Fourier Transform of the signal or the 

autocorrelation function of the signal. 

To compute the complete PSD estimate from a time varying EEG signal, the 

following steps are followed, 

First the signal is split up into overlapping time sequences. Then the segmented 

signals are passed through a suitably chosen window function; basically a window is 

applied to each of the segmented signals and further, Discrete Fourier Transform is 

computed and the result obtained is squared in terms of magnitude to obtain the 

periodograms and the individual periodograms thus obtained are time averaged to yield 

a final PSD measure. 

Basically, the Welch method comes up with two modifications in the traditional 

Bertlett’s method that the subsequences formed are overlapping and instead of time 

averaging the periodograms, the modified periodograms serve the purpose. 

Mathematically, the signal can be split in L overlapping sequences of length M. 

The i
th
 signal segment can be expressed as, 

 

     ( ) ( )ia n a n iD                                            (2.17) 

 

where n=0, 1, 2, …., M-1 and i=0, 1, 2, …., L-1. 
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 Next, the signals are required to be windowed before computing the periodograms. 

Further, after the windowing functions are employed, the periodograms are calculated using, 
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                            (2.18) 

 

where w(n) signifies the windowing function and U is a normalization factor defined 

as, 
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 Finally, Welch PSD estimate is calculated as the time average of the modified 

periodogram, 
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                    (2.20)     

 

2.1.5 Wavelet Decomposition Based Features 

Wavelet Transform [12] is an efficient mathematical tool for EEG signal analysis having a 

wide variety of applications. Classical Fourier Transform method has been successfully 

employed for stationary signal, but because of the stochastic nature of the EEG signals it is 

not always wise to use Fourier Transform (FT) directly for these EEG signals. FT of a signal 

provides localization in frequency domain while compromising time domain localization. 

Basically, there exists a tradeoff between time and frequency domain localization depending 

upon the size of the window. To deal with this dilemma, Discrete Wavelet Transform (DWT) 

[13] provides a flexible way of signal representation in frequency as well as temporal domain 

by varying the size of the windows. Moreover, DWT is more precise in localizing artifacts 

and transients and apart from that this technique provides multi resolution analysis by 

decomposing the signal into fine and coarse elements. The Continuous Wavelet Transform 

(CWT) of a signal x(t) is computed as an integral of the signal multiplied by scaled by (s= 

1/frequency) and shifted version (by  ) of a wavelet function ( )t , which is also termed as 

the mother wavelet [14]. 
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Calculating CWT in this way for every possible scale is a computationally hectic work, 

instead representing s and   in terms of power of two results in an easier analysis. Such 

analysis leads to DWT which can be expressed as, 
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Fig. 2.1 Working Principle of DWT Decomposition 

 

 

 

 

Fig. 2.1 Working Principle of DWT Decomposition 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 Signal Decomposition using DWT 

 

 

Fig 2.2 Signal Decomposition Using DWT 

 

where s and  are replaced by 2 j
and k 2 j

 respectively. As shown in Fig. 2.1, the input signal 

is passed through a high pass filter (h[.]) and a low pass filter (g[.]) and the corresponding 
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filtered outputs (2.23) and (2.24) are down sampled by 2 at each level to generate the 

Approximate Coefficient (Ai) and the Detail Coefficient (Di) from the low pass and high pass 

filter respectively. 

Further, the Approximate Coefficient thus obtained is further decomposed in the 

similar procedure to get the Approximate and Detail Coefficients of the subsequent stages. 

The limit of decomposition is determined by the required frequency span of signals, for 

example in this case, the signals are recorded at 256 Hz frequency (Fig. 2.2), but only (0-

16Hz) is likely to contribute relevant oscillatory components for motor imagery detection 

tasks, in this scenario, the required component will be A4.The mother wavelet chosen in this 

work is Daubechies which has been found suitable for EEG recordings. The order is chosen to 

be 4. 

    ( ) ( ) (2 )low

k

y n x k h n k




               (2.23) 

    ( ) ( ) (2 )high

k

y n x k g n k




                (2.24) 

 

2.2 CLASSIFICATION ALGORITHMS 

Classification [15] is the next step that comes after Feature Extraction and performance of a 

motor imagery based BCI system depends almost entirely on the performance of the classifier 

used for the purpose. The main objective of an BCI system [16] lays mainly in the 

classification of the mental states from the raw EEG signals and differentiating those 

classified movements for actuation purpose. There are popular classifiers [17] that have beeen 

used for this purpose in the later chapters, like SVM (Support Vector Machine) [18], BPNN 

(Back Propagation Neural Network), k-NN (k-Nearest Neighbour), Naïve Bayes Classifier 

and Ensemble classifier. 

2.2.1 SVM classifier 

Primarily developed based on the concept of hyperplanes SVM is inherently a non-

probabilistic linear classifier, while it can be extended for non-linear problems [19] as well. 

An SVM classifies the data samples in two different classes by constructing an N-dimensional 

hyperplane, in other words SVM searches for that direction of the hyperplane which leaves 

the maximum possible margin for both the classes [20]. In this case, the complexity does not 

depend on the dimension of the feature space, so SVM can be used for high dimensional 

feature spaces. 
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Let us consider the mathematical aspects of linear SVM. Suppose,
ix , i=1, 2,….,N 

denote the feature vectors of training set X, now the goal is to construct an optimal hyperplane 

(2.25),   

     
0( ) Tg x x                 (2.25) 

such that the training vectors are classified correctly in the two linearly separable classes 
1 , 

2 . In the above equation w indicates the direction of the hyperplane and 
0 indicates the 

actual position. Now, SVM will search for the direction of the hyperplane leaving maximum 

margin from both the classes. The distance of a particular point from the hyperplane g(x) can  

be expressed as, 
( )g x

z


 . Now, w and 
0  can be scaled so that the value of g(x) is +1 in 

case of 
1  and -1 in case of 

2 . This is equivalent to,  

 

 

 

 

 

 

 

 

 

Figure 2.3 Linear SVM Classification, H1 does not classify the data, H2 classifies with very 

small margin but H3 classifies with maximum margin 

Let us consider the mathematical aspects of linear SVM. Suppose, ix , i=1, 2,….,N denote the 

feature vectors of training set X, now the goal is to construct an optimal hyperplane (24),   

     0( ) Tg x x        (24) 

Figure 2.3 Linear SVM Classification, H1 does not classify the data, H2 classifies with very small 

margin but H3 classifies with maximum margin 

 

 Having  a margin of 
1 1 2

  
   

 Requiring that  0 11,T x x       

0 21,T x x        

(2.26) 
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Let, 
iy denote the class indicators such that 1iy   for 

1 and 1iy    for
2 . So, now 

the task is basically a quadratic optimization problem of computing the parameters w and 
0

to minimize the objective function, 

2

0

1
( , )

2
J    subject to the constraint 

0( ) 1T

i iy x   for i=1, 2, …, N            (2.27) 

The above problem can be solved by using the method of Karush-Kuhn-Tucker (KKT) 

conditions [21], after solving, since the Lagrange multipliers considered can either be zero or 

positive, the vector parameter w of the optimal solution comes out to be a linear combination 

of  
fN number of feature vectors corresponding to 0i  such that 

fN N . These vectors 

are known as Support Vectors [22]  and the corresponding classifier is termed as Support 

Vector Machine (SVM). Basically the datapoints can be broadly categorized into three 

sections, 

 Datapoints lying beyond the margin (2.26) and correctly classified using the 

constraint part of (2.27) 

 Datapoints lying within the margin (2.26) and correctly classified using (2.28) 

 Datapoints lying within the margin (2.26) and incorrectly classified using 

(2.29) 

   
00 ( ) 1, [1, ]T

i iy x i N                 (2.28) 

      
0( ) 0, [1, ]T

i iy x i N                             (2.29) 

 

These issues can be addressed by introducing a new variable
i , termed as slack 

variable with values i <0,0< i ≤1 and i >1 for the three cases respectively as expressed in 

(2.30), 

 

    0( ) 1 , [1, ]T

i i iy x i N                              (2.30) 

 

The goal of the optimization therefore is now to maximize the margin while 

minimizing the number of points with i > 0. This can be stated by the minimization of J(w, 

 ) given by (2.31) subject to the condition (2.30), where C is a positive constant that controls 

the relative influence of both the effects and i ≥0 for i=[1,N]. 
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               (2.31) 

 

The nonlinear extension of SVM [23] is described in details in Chapter 3. 
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2.2.2 k-NN classifier 

 
k-Nearest Neighbour classifier [24] belongs to the family of instance based classifiers where 

classification of an unknown data point can be done by relating the unknown point to certain 

points with known class labels based on some similarity measures/distance measures. This is 

a non-parametric supervised algorithm that does not require extensive training like other 

classifiers. Let us consider a data set consisting of samples where each sample is represented 

by an associated position vector and each component of the concerned vector corresponds to a 

distinct attribute characterizing the specific sample. Since it is a supervised algorithm [25] so 

the sample space must comprise of known class labels corresponding to each sample. To find 

the class of an unknown test sample the following two steps are carried out, 

 Find out the k nearest neighbor of the test sample 

 Determine the class of the sample from the k nearest neighbours.  

Fig. 2.4 depicts the working principle of k-NN classifier with k=3 having attributes A1 

and A2.The choice of the neighbours [26] is controlled by the selection of a specific similarity 

measure from a pool of similarity measures including Euclidean Distance, City Block 

Distance, Hamming Distance, Correlation values etc. The process of determination of the 

class label of the query sample is dependent on the choice of voting mechanism as well. 

Usually, majority voting technique is followed where the query sample is assigned to a class 

having maximum number of votes from the k nearest neighbours.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 k-NN Classification with k=3 

 

 

Fig. 2.4 k-NN Classification with k=3 

Another commonly used approach is the inverse distance-weighted voting, where, 

closer the neighbours, the higher weight is associated with their votes which means that the 
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weights corresponding to the votes vary with the inverse of the distance or the inverse of the 

squared distance. The weighted votes are then summed up and the class with the highest vote 

is returned. 

 

2.2.3 Naïve Bayesian Classifier 

 
A Naïve Bayesian classifier [27] is a probabilistic classifier [28] that has been developed 

based upon the Bayes’ theorem [29] with an assumption of independence among predictors. 

In other words, this method assumes that the occurrence of a feature under a particular class is 

independent of any other feature belonging to the same class. Apparently, this technique 

seems to be a simple one but has the capability of outperforming typically standard 

algorithms in terms of performance especially in case of high dimensional data. Given a 

variable Y, dependent upon features x1, x2, ….xn, Bayes’ theorem states, 

    
prior likelihood

posterior
evidence


  

    1
1

1 2

( ). ( ,..., | )
( | ,..., )

( , ,..., )

n
n

n

p Y p x x Y
p Y x x
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             (2.32) 

Using the assumption, the numerator is equivalent to the joint probability, which can be 

expanded using chain rule as, 

  1 1( , ,..., ) ( ) ( ,..., | )n np Y x x p Y p x x Y                (2.33) 

    1 2 1 1 2 1( ). ( | ). ( | , )..... ( | , , ,... )n np Y p x Y p x Y x p x Y x x x   

To simplify the complicated problem, it is assumed that each feature xi is independent of 

every other feature xj such that i≠j. Thus it is obtained, 

 

 

   1 1( | ,..., ) ( , ,..., )n np Y x x p Y x x  
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This model is combined with the Maximum a Priority (MAP) rule to produce the Naïve 

Bayesian classifier which classifies according to the classfunc described as, 

  1 2

1

( , ,... ) arg max ( ) ( | )
n

n i i

i

classfunc X X X p Y y p x X Y y


       (2.35) 

The commonly used probability distribution of the features include normal distribution, 

multinomial or multivariate distributions while the class priors may be calculated by 

(2.34) 
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assuming either equiprobable classes or from the estimation of the fraction of the total number 

of samples that belong to a particular class. 

2.2.4 Ensemble Classifiers 

 

Ensemble classifiers [30] refer to the group of individual distinct classifiers that are 

cooperatively trained on a data set for a supervised classification problem to enhance the 

performance of individual classifiers. This technique is often referred to as a “multiclassifier” 

technique and the component classifiers are known as base classifiers or weak learners. Each 

of the base classifiers performs the classification task separately and the final output of the 

ensemble classifier is obtained after incorporating the decisions of all the classifiers on the 

test data set. Because of the fusion of so many classifiers it is likely that the concerned 

ensemble classifier should provide superior performance in comparison to the individual 

component classifiers. The two well known principles for implementation of ensemble 

classifiers include bagging and boosting [31]. 

In bagging the training subsets are randomly drawn (with replacement) from the 

training set. Homogeneous base classifiers are trained on the subsets. The class chosen by 

most base classifiers is the considered to be the final verdict of the ensemble classifier. There 

are a number of variants of bagging and aggregation approaches including random forests  

and large scale bagging [32]. Boosting [33] creates data subsets for base classifier training by 

re-sampling the training patterns, however, by providing the most informative training pattern 

for each consecutive classifier. Each of the training patterns is assigned a weight that 

determines how well the instance was classified in the previous iteration. The training data 

that are wrongly classified is included in the training subset for the next iteration. AdaBoost  

is a more generalized version of boosting. 

 

2.2.5 Artificial Neural Network 

 

A typical artificial neuron [34] is a real world electrical analogue of biological neurons 

performing similar functions. Mathematically, it is represented by two sections, i) a linear 

activation/inhibition module and ii) a non-linearity that limits the signal level within a finite 

band as shown in Fig. 2.5 Here, the weighted summer plays the role of a cell body by 

representing the linear combiner module producing Net from the inputs. The synapse in an 

artificial neuron is modelled as a nonlinear function like step function, signum function, 

sigmoid function, tanh function etc. that is implemented in the phase of obtaining Out from 

Net. 
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               (2.36) 
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             (2.39) 

 

Learning or adaptation of weights in an artificial neural network can be realized in four 

distinct methods, 1) Supervised Learning [35], 2) Unsupervised Learning [36], 3) 

Reinforcement Learning and 4) Competitive Learning. In the present work mainly supervised 

learning procedures have been adopted. In case of supervised learning, it always requires a 

trainer who would feed the network with output-input instances [37]. To illustrate further, an 

input vector X and a target vector T is provided and the objective is to adapt the weights in 

such a way that the output is T. Usually, in the first iteration the weights are adjusted 

randomly and then the error E=T-X is calculated and the weights are updated at the successive 

iterations to move closest to the output T.  

 

 

 

 

 

 

 

 

 

Fig. 2.5 Artificial Neural Network 

 

Amongst classical supervised learning algorithms, Back Propagation [38] is considered 

as one of the most efficient and well known algorithm. It is formulated by employing a feed-

forward architecture of neurons, having a number of layers (input, output, intermediate) and 

each layer containing a number of neurons. Each neuron is responsible to produce a weighted 

sum of the inputs associated with it from the previous layer and finally passing on the 

summation of all these results to the non-linear segment. The error computed at the output 

layer can be expressed as (2.40), where Ti and Outi signifies the target and output produced at 

i-th neuron of the output layer. 
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Steps of Back Propagation algorithm can be listed as follows, 

1. Initialize instance i=1. 

2. Supply input components for the i-th instance to the input of the neural net; make a 

forward pass and compute the outputs. 

3. Calculate the corresponding error vector Ei by considering the componentwise 

difference between the output vector and the target vector as ,ij ij ijE T O j   , 

where Eij , Tij and Oij denote the j-th component of i-th error vector, target vector and 

output vector respectively. 

4. Repeat steps 2 and 3 for i=1 to n. 

5. Determine the root mean square value of error, denoted by Error, whose j-th 

component is defined as, 

    

2

1

n

ij

i
j

E

Error
n




 

6. Back propagate the error from the RMS value of the error components of the last 

layer to the preceding layers and adapt the weights of the network layerwise starting 

from the last layer. 

7. Repeat steps 2 to 6 until 
2( )j

j

Error


 is negligibly small or the maximum iteration 

limit is reached. 

 

 Weight adaptation is also an important aspect in case of artificial neural networks, among 

numerous methods the traditional Gradient Descent Learning has been utilized here. 

 Gradient Descent Search (GDS) 

According to Gradient Descent Learning [39] the weights are adapted [40] using the 

following rule, 

 

 neww w w                (2.41) 

 

where, 
E

w
w




 


. Here, E is the error, w denotes the weights and η is the learning rate      

(0< η<1). Employing this rule, there is an extreme tendency of getting trapped at local 

minima. To avoid dealing with this limitation, a momentum term (mc) has been incorporation 

in the equation which helps the solutions to slide through the local minimum points on the 
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error surface and reach a global minimum. The modified weight adaptation rule is formally 

known as Gradient Descent Search with Momentum (GDS-M) and can be expressed as, 

 

                                                . (1 )prev

E
w mc w mc

w



  


                         (2.42) 

where 
prevw  denotes the previous weight alteration. 
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Chapter 3 

 
 

Evolutionary Perspective for Optimal 

Selection of EEG Electrodes and 

Features 
 

This chapter proposes a novel evolutionary approach to the optimal selection of 

electrodes as well as relevant EEG features for effective classification of cognitive 

tasks. The problem has been formulated in the framework of a single objective 

optimization problem with an aim to simultaneously satisfying three criteria. The first 

criterion deals with maximization of the correlation between the features of 

Electroencephalogram (EEG) sources before and after the selection of optimal 

electrodes. The second criterion is concerned with minimization of the mutual 

information between the features of the selected EEG electrodes. The last criterion 

aims at maximization of the ratio of the difference between the selected features of the 

EEG sources between and within any two cognitive tasks. A self-adaptive variant of 

Firefly Algorithm (FA) referred to as SAFA, is proposed to solve the above 

optimization problem by proficiently balancing the trade-off between the 

computational accuracy and the run-time complexity. The chapter is divided into five 

sections. Section 3.1 presents a brief introduction and describes the related works in 

this particular research genre. Section 3.2 provides a detailed description of the 

proposed framework. Section 3.3 recapitulates the traditional FA and presents the 

proposed self-adaptive FA (SAFA). The experimental results are reported in section 

3.4. Section 3.5 concludes the paper. 
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3.1 INTRODUCTION 

Brain computer interfacing (BCI) [1] is a multi-dimensional field of research, concerned with 

cognition, neurophysiology, psychology, sensors, machine learning, signal detection and 

processing, to name a few. Now a day, BCI [2] stands alone as the only modality of control 

and communication for patients suffering from diseases like amyotrophic lateral sclerosis, 

paralysis, cerebral palsy, and amputees [1]. Its contributions in medical fields range from 

prevention to neuronal rehabilitation for serious injuries. BCI addresses analyzing, 

conceptualization, monitoring, measuring, and evaluating the complex neuro-physiological 

behaviors detected and extracted from a set of electrodes over the scalp or from those 

implanted inside the brain.  

These BCI interfaces bypass the natural pathways of neuro-muscular control and thus 

aim at serving an alternative means of communication/control in case of failure in 

neural/motor functioning. Several interfacing methodologies including invasive implants, 

semi invasive implants like electrocorticography (ECoG) [3] and non invasive modalities like 

electroencephalogram (EEG) [4], magnetoencephalogram (MEG) [5] and functional magnetic 

resonance imaging (fMRI) [6] have emerged in order to implement BCI successfully. EEG is 

the preferred technology for measuring brain activities for most BCI researchers because of 

its non-invasiveness, portability, easy availability, and high temporal resolution. 

The basic BCI module consists of three steps, including i) pre-processing of the EEG 

signals dealing with artifact removal, identification of relevant electrodes and frequency 

bands of EEG signals, ii) feature extraction, and iii) classification, concerned with 

identification of different mental states. The classified results thus obtained, lead to the 

generation of the control signals required to drive an assistive device. The classification 

accuracy relies on the extent of detour the redundant information. This chapter addresses two 

crucial factors for effective classification of cognitive tasks using EEG based BCI systems, 

including, 

 Optimal selection of electrodes [5] to facilitate faster processing of EEG signals 

for different cognitive tasks, 

 Optimal selection of relevant EEG features to enhance the performance of a 

classifier. 

The optimal selection of electrodes [5] is essentially influenced by the estimation of 

cortical sources. The EEG devices acquire raw cortical current signals, generated from 

different independent sources, through neuronal firing in outer cortex of the brain. These 

signals are then transformed to respective voltage signals by passing through different 

resistive devices. Finally, the voltage signals are recorded by placing electrodes at specified 
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scalp regions. Due to volume conduction, the signal acquired at the scalp electrodes is found 

to contain components of different sources. Moreover, for a particular cognitive task every 

electrode placed on the scalp cannot provide relevant information, in fact at times electrodes 

generate redundant information. Hence, optimal electrode selection is very important for 

signal analysis and relevant decision making in the following steps. Otherwise overlapping 

information will not only degrade performance metrics, but it involves processing of same 

signal components more than once, which negatively affects the time complexity as well. 

Only optimal electrode selection [7] is not sufficient for a successful EEG based BCI 

implementation [8]. One of the significant concerns in BCI research is to deal with the high 

dimensionality of the features. Often it is observed that due to the presence of a large number 

of redundant features in the feature set, the accuracy of the classifier is greatly decreased. 

Researchers are now taking keen interest to select fewer discriminate features from the high 

dimensional EEG feature vectors for different cognitive tasks without sacrificing the 

classification accuracy. The chapter proposes a novel evolutionary approach to automatic 

selection of optimal set of EEG electrodes and EEG features (from the high dimensional 

feature space). The principle of evolutionary electrode and feature selection is outlined next. 

In this chapter, the possible selection of EEG electrodes is realized by optimizing the scoring 

function, which deals with  

 Maximizing the association between the estimated source signals corresponding to 

the original set and the reduced set of electrodes, and 

 Minimizing the mutual information between two selected electrodes. 

The first criterion reduces the loss in information of the cortical sources corresponding 

to a cognitive task after reducing the number of electrodes. The second criterion aims at 

identifying the relevant electrodes conveying unique information of specific cognitive tasks, 

thus discarding the redundant information. 

The design philosophy adopted for the optimal selection of EEG features is to identify 

the set of features that are capable  

 To uniquely represent a specific class of cognitive tasks and  

 To effectively differentiate between any two classes.  

It is realized by jointly serving the following two criteria. First, the selected j-th 

features of the data points in a given class should be close to each other. Contrarily, the 

difference between the means of the selected j-th feature of any two classes should be as high 

as possible.  

A self-adaptive variant of the traditional firefly algorithm (FA) [9] is proposed here to 

select an optimal set of appropriate EEG electrodes and features by jointly optimizing the 
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above-mentioned objectives. FA is selected here partly heuristically and partly due to its 

established performance with respect to computational accuracy and run-time 

complexity[9].The self-adaptive variant of FA [10] assists the potential candidate solutions 

(of the optimization problem) to confine their search in their local neighborhood in the 

parameter space. On the other hand, the inferior members are equipped with global 

exploration capability. 

The present work aims at improving the work proposed in [11] in three important 

aspects. First, the work proposed in [11] is primarily concerned with the optimal electrode 

selection [7] for a specific cognitive task. However, in this chapter, we aim at selecting the 

optimal electrodes for effective classification of different cognitive tasks [12]. This is a more 

realistic scenario of practical BCI applications. Second, Pearson correlation coefficient is 

utilized in [11] to capture the degree of relationship between the information conveyed by the 

original set of electrodes and the reduced number of selected electrodes. This correlation 

measure is found to be only sensitive to the linear relationship between two variables, 

incompetent to model non-linear or monotonous relationships. In other words, a zero value of 

Pearson coefficient does not always imply independence between two variables. Thus, it may 

fail to proficiently capture the dependence between two EEG sources. This is here 

circumvented by using an alternative measure of correlation, referred to as the distance 

correlation coefficient [13]. Third, the present work also attempts to select the optimal 

selection of EEG features along with the EEG electrodes. This improves the classification 

accuracy. 

 

3.2 PROPOSED METHODOLOGY 

This section provides a detailed overview of the proposed framework (Fig. 3.1). The proposed 

method involves a training data set T, which is pictorially illustrated in Fig. 3.2, for a specific 

cognitive class Kc. The training dataset consists of L data points, each having information of N 

electrode (sink) signals. Each sink signal is represented as a F-dimensional feature vector. 

The chapter aims at the optimal selection of M (≤ N) electrodes and D (≤ F) features for 

effective classification of C cognitive tasks. It is to worth mentioning that Kc=[1, C]. Here 

Si,k
t,c

 and Si,k
t,c

 denote the k-th feature of the i-th electrode and the corresponding source for the 

t-th data point in the class Kc. 

3.2.1 Independent Component Analysis as a Source Localization Tool 

There are many sources inside human brain, which produce current signals due to neuronal 

firing during any cognitive task. The voltage signals recorded by the EEG electrodes (also 
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referred to as sink signals) placed on a human scalp are essentially mixtures of these source 

signals. In brain imaging, the problem of estimating the locations and distributions of the 

cortical sources, based on the voltage readings of the EEG electrodes, remains as an ‘ill-posed’ 

blind signal separation problem. Independent component analysis (ICA) [14] provides a 

solution to this problem [11] by transforming a multivariate signal (for instance, EEG signal) 

into a linear combination of independent non-Gaussian subcomponents (for example, non-

Gaussian source signals).  

 

 

Fig.3.1 Overview of the Proposed Scheme 

 

Let, 1 2[ , ,..., ]TNP P PP and 1 2[ , ,..., ]TNQ Q Q Q be the N source and sink signals in 

time domain. ICA deals with representing each iQ as a linear combination of jP for j=[1, N], 

given by 
 

   ,1 1 ,2 2 , ,
1

.....
N

i i i i N N i j j
j

Q w P w P w P w P

      for i=[1, N]          (3.1) 

 

or       Q = WP                             (3.2) 

 

with wi,j representing the degree of dependence of iQ on jP based on their distance and W 

denoting the mixing matrix with elements for i, j=[1, N]. ICA aims at determining the source  
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Fig. 3.2 Training Data Set for Cognitive Task Kc 
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signals by identifying the optimal mixing matrix, obtained by the minimization of the mutual 

information or the maximization of the non-Gaussianity of the estimated source signals. The 

members of former family use measures like K-L divergence and maximum entropy while the 

latter family utilizes kurtosis, negentropy and so on. In the present chapter, we employed a 

variant of ICA based on the Infomax algorithm [11] that uses the maximum entropy measure. 

Once the mixing matrix W is estimated, the source signals can be derived by multiplying the 

observed sink signals with the inverse of the mixing matrix, also known as demixing matrix 

V=W
−1

, by  

 

     1 P = W Q VQ                               (3.3) 

3.2.2 Feature Extraction 

EEG signals of the sinks for two different cognitive tasks, as well as the sources, have been 

represented using five well-known features. The feature set consists of common spatial 

pattern feature (CSP) [7], two time domain features, including adaptive autoregressive (AAR) 

Parameters [11][15], and Hjorth parameters [11], a frequency domain feature, including 

power spectral density (PSD) [11] and a set of time-frequency correlated features, including 

discrete wavelet coefficients [11]. 

3.2.3 Optimum Features and Electrode Selection using Evolutionary Approach 

The performance of any real world optimization algorithm [16], as in the present context, 

greatly relies on the judicial formulation of the objective function. In the present scenario, the 

optimal selection of M (≤ N) EEG electrodes and D (≤ F) salient EEG features for 

classification of two cognitive tasks is realized based on three significant performance 

characteristics. The first two characteristics deal with the optimal selection of electrodes, while 

the third one is concerned with the selection of optimal feature.  

1. For a specific cognitive class Kc and t-th data point, the correlation between the D 

features of the source signals estimated from the optimally selected M electrodes and that 

of the original N electrodes should be maximized. 

One of the major objectives in the present context is to preserve the relevant information 

of the recorded EEG signals for accurate classification of cognitive tasks, even after selecting 

the optimal set of M electrodes out of N. A higher degree of association between the sets of 

source features corresponding to the original N and the selected M (≤ N) sink signals indicate 

an efficient representation of the original number (N) of sink signals with the reduced number 

(M) of sinks signals. The degree of relationship here is captured by distance correlation [13] 
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between the feature space of M and N source signals. The distance correlation is an index in [0, 

1] representing the statistical dependence between two sets of source features.  

Distance correlation between any two sets of D-dimensional source features, ,t c
iR and ,t c

jR , (for 

t-th data point of cognitive class Kc) is determined by, 
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with the components of the matrix A being determined by, 
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                          (3.7) 

 

The components of matrix B are determined similarly as in (3.7), however, using the 

features of ,t c
jR . Here ||.|| denotes the Euclidean norm. A value of ɸi,j=0 is an implication of 

independence of ,t c
iR and ,t c

jR . Distance coefficient is here adopted as a measure of 

correlation between source features, instead of Pearson correlation coefficient, to overcome 

its incapability to characterize non-linear or monotone dependency [13]. An accurate selection 

of optimal electrodes will increase the distance correlation, indicating that the source features 

corresponding to the original and reduced set of electrodes co-vary with each other.  

2. For a specific cognitive class Kc and t-th data point, the mutual information between the 

D features of two selected electrodes should be minimized. 

From the point of view of the present problem, in order to maximize the unique 

information content of two maximally distinct selected sinks, the redundant information is to 

be reduced. There are possibilities that for a particular feature, any two electrodes residing in 
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close proximity are providing similar information. Therefore, inclusion of any one between the 

two electrodes (instead of considering both) will serve the purpose with reduced computational 

complexity. The similarity in the information content of two sink feature sets is modeled here 

by their mutual information (MI).  

Based on information theory, MI [17] is used to identify the amount of uncertainty 

about one sink feature vector ,t c
iS given knowledge of the other sink feature vector ,t c

jS (for 

cognitive class Kc and t-th data point). It equals zero if they are independent. Thus, more the 

mutual information between them, less the uncertainty in ,t c
iS given the knowledge of ,t c

jS  or 

vice versa and hence, only one of them should be selected. Hence MIi,j
t,c

 is utilized here as a 

dependence measure of ,t c
iS on ,t c

jS and vice versa, given by 

 

  ,
, |
t c
i j i i jMI H H                                            (3.8) 

 

 2
1

( ) log ( )
D

i i i
k

H p k p k

                   (3.9) 

 

 | , 2 |
1

( ) log ( )
D

i j i j i j
k

H p k p k

                                           (3.10) 

 

where, the average information or entropy Hi is the uncertainty in ,t c
iS before observing ,t c

jS  

and the conditional entropy Hi|j represents the uncertainty in ,t c
iS  after observing ,t c

jS . Here 

pi(k) is the probability of each feature in ,t c
iS , pi,j(k) is the joint probability of ,t c

iS  and ,t c
jS  

and pi|j(k) is the transition probability from ,t c
iS to ,t c

jS . 

3. For a specific cognitive task Kc, the similarity between the M source signals represented 

by the selected D features should be high. Contrarily, for better separability between two 

cognitive tasks, the difference between their respective source feature vectors should be 

maximized. 

This objective is concerned with the optimal selection of D features out of F features of 

the source signals corresponding to the selected M (≤ N) sink signals. This aims at discarding 

the redundant information of the selected source signals for classifying two specific cognitive 

tasks. Let L be the number of data points (source EEG feature vectors) of any cognitive task.   

This is accomplished here in two phases. First, it tries to minimize the difference 

between the selected D (≤ F) features of the source signals (corresponding to the selected M≤ 

N sink signals), for all data points within a specific class Kc. The design philosophy is that if 

the k-th feature is selected as a unique representative feature of the class Kc, then it should 
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provide a high degree of similarity between the k-th feature of the i-th source for any two data 

points within the same class Kc. This is done for all classes c=[1, C]. This is realized here by 

minimizing 

     
1 2

, ,
, ,

1 1 1 1 1

.
C L L M D

t c u c
W i k i k

c t u t i k

J R R


     
                               (3.11) 

 

The second part aims at maximizing the ratio of the mean to the standard deviation 

between the selected D (≤ F) features of the source signals (corresponding to the selected M≤ 

N sink signals), between any two classes. This ensures that the selected feature is capable 

enough to discriminate between any two classes. This is here realized by maximizing 
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represent the mean and the standard deviation of the k-th feature of the i-th electrode over L 

data points in a specific class Kc for k=[1, D], i=[1, M] and Kc=[1, C]. 

With these three considerations, a composite objective function is formulated in (3.15), 

maximization of which yields the optimal sets of electrodes and features for classification of 

C cognitive tasks.  
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                            (3.15) 

 

λ1 and λ2 are constants which are set in a manner so as to have all terms in the right hand side 

of (3.15) in the same order of magnitude. In our experiment, λ1 and λ2 are respectively set as 

10 and 20. 

Fig. 3.3 pictorially represents a four dimensional candidate solution Y  for the present 

optimization problem with N=5 electrodes and F=4 features. Y1 and Y3 denote the values of M 

(≤ N) and D (≤ F). Y2 and Y4 are decimal values within [1, 2
N
−1] and [1, 2

F
−1] respectively. 

The binary decoding of Y2 and Y4 are used to identify M electrodes and D features. For 



C h a p t e r  3 | P a g e  49 

 

Brain Localization and Feature Extraction Using Computational Intelligence Techniques  

  
 

example, let 2Z (or 4Z ) be N (or F) dimensional binary string, obtained by decoding Y2 (or 

Y4). Intuitively, Z2, j= 1 (Z4, j= 1) indicates that the j-th electrode (or feature) selected or j [1, 

N] (or j[1, F]). It is noteworthy that the number of ones in 2Z (or 4Z ) should be equal to M 

(or D). 

3.2.4 Classification  

Classification [18] is considered as an important step in EEG based research problems. A 

classifier primarily segregates unknown data samples into considered class labels after being 

trained with similar features. In context of BCI research, a classifier aims to distinguish 

between different brain activities after being optimally trained by following any ‘learning’ 

algorithm. While classifying EEG signals obtained from the electrodes placed on the scalp, 

every researcher strives to achieve high accuracy. There are numerous kinds of classifiers 

available which lets a user to choose the most suitable classifier according to the requirement 

of the problem. In the present chapter, we have used non-linear support vector machine 

(SVM) classifier with suitable kernel function for each of the tasks conducted. Three kernel 

functions, including  

 

 

Fig. 3.3 Illustration of Encoding a Candidate Solution for N=5 and F=4 

 

 Gaussian radial basis function: 

2

1 2 1 2( , ) exp( )k X X X X    for 0   

 Homogeneous polynomial function: 

1 2 1 2( , ) ( . )k X X X X l where l denotes the number of polynomials 

 Hyperbolic tangent function: 

1 2 1 2( , ) tanh( . )k X X kX X c  0k  and 0c  . 

Y1=M 
Y2 [1, 
2N−1] 

Y3=M 
Y4 [1, 
2F−1] 

3 26 2 5 

 
Z2,1 Z2,2 Z2,3 Z2,4 Z2,5 

1 1 0 1 
 
0 
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0 1 1 0 

 

Binary Decoding Binary Decoding 

3 selected electrodes: 1, 2, 4                 2 selected 

features: 2, 3 
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To determine the efficacy of the proposed methodology, the SVM classifier is trained 

with the selected features of the selected electrodes (and corresponding sources). The testing 

data set is also prepared with the selected feature-based information contents of the selected 

electrodes and the sources. 

3.3 SELF-ADAPTIVE FIREFLY ALGORITHM 

The optimization problem of optimal selection of electrode positions and EEG features for 

classification of cognitive tasks here has solved using a self-adaptive variant of the traditional 

firefly algorithm (FA) [19]. In this section, first an overview of the traditional FA is provided. 

Next, we propose the self-adaptive variant of FA, referred to as SAFA [20], which adaptively 

tunes its control parameters to balance the trade-off between the computational accuracy and 

the run-time complexity effectively. 

3.3.1 Firefly Algorithm 

 

In firefly algorithm (FA) [9], a possible solution of an optimization problem is encoded by the 

position of a firefly in the parameter space and its light intensity signifies the fitness of the 

respective solution. An overview of FA is given next. 

1. Initialization: Initially, a population P(t) of NP, D-dimensional firefly positions, ( )iY t

={yi,1(t), yi,2(t), …, yi,D(t)} for i= [1, NP] is uniformly randomized in the search range 

min max[ , ]Y Y  where minY ={y1
min

, y2
min

, …, yD
min

} and maxY ={y1
max

, y2
max

, …, yD
max

}  at the 

current generation t = 0, given by 

 

   
min max min

,
(0) rand(0,1) ( )

i d d d d
y y y y                (3.16) 

 

for j=[1, D] and i=[1, NP] where rand(0, 1) is a uniformly distributed random number in [0, 

1]. The objective function value ( (0))if Y  of (0)iY is evaluated for i= [1, NP]. 

2. Attraction to Brighter Fireflies: Now the firefly ( )iY t  is attracted towards the positions of 

the brighter fireflies ( )jY t  for i, j= [1, NP] but i≠j such that ( ( )) ( ( ))j if Y t f Y t  (for 

maximization problem). Apparently, the attractiveness βi,j of ( )iY t  towards ( )jY t  decreases 

exponentially with the distance between them, denoted by di,j as given in (3.17).    

 

    , ,exp( ), 1m
i j o i jd       m                                      (3.17) 
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where β0 represents the maximum attractiveness felt by ( )iY t at its own position (i.e., at di,j = 

di,i= 0) and γ denotes the light absorption coefficient, which controls the rate of change of βi,j 

with di,j. Intuitively, γ governs the convergence speed of FA [9]. A setting of γ=0 is concerned 

with a constant attractiveness of β0 for all fireflies, while γ approaching infinity implies 

complete random search [9]. The possible range of γ is found to be [0.01, 10] in the existing 

literature. In (3.17), m is a pre-defined positive non-linear modulation index. The distance 

between ( )iY t  and ( )jY t is computed using the Euclidean norm as follows. 

 

    , || ( ) ( ) ||i j i jd Y t Y t                           (3.18) 

 

This step is repeated for i, j= [1, NP]. 

3. Movement of Fireflies: The firefly at position ( )iY t flies towards a more attractive location 

( )jY t  (in the parameter space) of a brighter firefly (i.e., ( ( )) ( ( ))j if Y t f Y t ) for j= [1, NP] but 

i≠j following 

 

  ,( ) ( ) ( ( ) ( )) ( 0.5)

( ) ( )

next cur
i i i j j i
cur next

i i

Y t Y t Y t Y t r

Y t Y t

       


           (3.19) 

 

where ( )cur
iY t is initialized with ( )iY t before its movement and r denotes a D-dimensional 

random position vector with its d-th component uniformly distributed in [0, 1] for d=[1, D]. 

The movement of the i-th firefly, governed by (3.19), is carried on for j=[1, NP], but i≠j such 

that ( ( )) ( ( ))j if Y t f Y t . This step is repeated for i= [1, NP]. The first term in (3.19) represents 

the firefly’s position after its last movement. The second term in (3.19) denotes the positional 

change of ( )iY t  due to the attraction towards ( )jY t . Apparently, this term has no contribution 

towards controlling the movement of the brightest firefly and hence, it may be stuck at the 

local optima in the parameter space. This problem is overcome by inducing a random 

movement of the fireflies with a step-size of α  (0, 1). The upgraded position of the i-th 

firefly, after being controlled by the brighter ones, is represented by ( 1)iY t   for i= [1, NP].   

4. Convergence: After each evolution, the steps 2 and 3 are repeated until one of the 

terminating conditions is satisfied. The conditions include restricting the number of maximum 

generations, preserving error limits, or the both, whichever occurs earlier. 
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3.3.2 Self-Adaptive Firefly Algorithm (SAFA) 

The population members of the traditional FA are equipped with the exploitation capability 

capable to escape the local optima due to their random movements with step-size α in (3.19). 

Intuitively, the step-size (α) profile governs the convergence of fireflies towards global 

optimum. However, in traditional FA, a constant value of α is used for the random movement, 

irrespective of the position of the fireflies in the parameter space. A setting of large value of α 

may result in the deviation of a quality firefly from the global optimum, while a small value 

of α may take a relatively long time to effectively orient a poor firefly towards the global 

optimum. The exploitation capability of the traditional FA, being a decisive factor of its 

performance, here has been farther improved by self-adapting the step-size parameter α within 

a range [α
min

, 1) based on the relative position of a firefly with respect to the current best 

firefly position. This is realized by setting 

 

  
,min min

, max min

| ( ) ( ) |
(1 ) rand(0,1)

best
d i d

i d

d d

y t y t

y y
  


    


           (3.20) 

 

for d=[1, D]. The step-size is now treated as a D-dimensional vector as symbolized by i

={αi,1(t), αi,2(t), …, αi,D(t)} with its d-th component αi,d [α
min

, 1) for d=[1, D]. Here ( )bestY t

={y1
best

(t), y2
best

(t), …, yD
best

(t)} the best position of the firefly in the t-th generation and |.| 

represents the absolute value. The dynamic in (3.20) guarantees that a firefly at ( )iY t , close to 

( )bestY t , should exploit the local neighborhood with a small step-size αi,d ≈ α
min

 to prevent the 

exclusion of the global optimum. Contrarily, an inferior firefly, far away from ( )bestY t , should 

take part in the global search (with step size αi,d approaching unity for d=[1, D]) to explore the 

potential zones in the parameter space.  

Moreover, a simple strategy is proposed to update the values of γ in each generation, 

based on the knowledge of its potential values that were able to generate better firefly 

positions in the last generation. At every generation, the light absorption coefficient γi(t) of 

each individual firefly ( )iY t  is independently generated as 

 

    ( ) ( 2 ( ))i t Rayleigh t               (3.21) 

where Rayleigh( 2 ( )t ) is a random number sampled from a Rayleigh distribution with 

mean ( )t (scale parameter 2 ( )t ). The value of γi(t) is reproduced if it is beyond its 

allowable range [0.01, 10].  
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Let γs(t) be the set of the successful light absorption coefficients of all fireflies of the 

current generation t producing better positions for the next generation t+1.  

 

  ( ) { ( ) for [1, ]: ( ( 1)) ( ( ))}s i i it t i NP f Y t f Y t                  (3.22) 

 

Here, (0) is initialized to be 0.5. After every generation, it is updated as 

   ( 1) ( ) (1 ) ( ( ))p st w t w t                                 (3.23) 

 

where μpow(.) denotes the power mean [21], given by 

 

   1/

( )

( ( )) [ | ( ) |]
s

n n
p s s

t

t t
 

   


                            (3.24) 

 

with |S| denotes the cardinality of set S. The weight factor w in (3.23) is randomly selected 

from [0.7, 1]. The weighted sum of ( )t and μp(γs(t)) helps in the effective tuning of ( 1)t   

based on the successful values of the light absorption coefficients in the past and present 

generations respectively. The positive constant n in (3.24) is taken as 1.5 after wide variety of 

experiments to avoid premature convergence at local optima. The design philosophy adopted 

here relies on the principle of selecting large diversified values of γ from the Rayleigh 

distribution (having longer tails than the normal distribution) when the population is far away 

from the global optimum. 

3.4 EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

This section describes each step of the proposed framework with the obtained readings 

arranged in a tabulated manner. Apart from that, the performance of the proposed system has 

been analyzed with respect to certain standard methods in terms of different performance 

indices. 

3.4.1 EEG Signal Acquisition 

 

Fifteen different binary classification experiments are carried out for this particular 

framework, in order to validate the obtained results for any kind of cognitive task without loss 

of generality. In each case, ten healthy subjects aged between 22 and 30 years have 

participated (five male and five female) in the experiments. The experiments are undertaken 

in multiple sessions, each of 2 minutes duration and every subject is asked to perform each 
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session 10 times. It is thus evident from Fig. 3.2 that the number of data points L in each 

cognitive task equals to (5+5)×10=100. All the signals are recorded using a stand-alone EEG 

machine manufactured by Nihon Kohden (200 Hz sampling frequency) comprising N=19 

electrodes, placed using the standard international 10-20 electrode placement method [22], as 

shown in Fig.3.4. A1 and A2 are considered as the reference electrodes. 

TABLE 3.1 ALGORITHM FOR SAFA INDUCED FEATURE SELECTION 

 

Procedure SAFA_Induced_Electrode_Feature_Selection 

Input:  L data points, each comprising the EEG signals of N electrodes for each cognitive task class Kc 

for c=[1, C], F EEG features, non-linear modulation index m. 

Output: Optimally selected M (≤ N) electrodes and D (≤ F) features. 

 

Begin 

1. Initialize a population P(t) of NP, 4-dimensional firefly position vectors ( )iY t at generation t=0 using 

(3.16) and Fig. 3.3 for i= [1, NP]. 

2. Set (0) ←0.5. 

3. Decode (0)iY  using Fig. 3.3 and evaluate ( (0))if Y using (3.15) for i= [1, NP]. 

4. Set 
1

(0) arg max ( (0))
NP

best
i

i

Y f Y



 
 
 

. 

5. While termination condition is not reached do 

Begin 

I. Set γs(t)←NULL. 

II. For i=1 to NP do 

Begin 

(i) Select γi(t) using (3.21). 

(ii) For j=1 to NP, j≠i do 

Begin 

If ( ( )) ( ( ))j if Y t f Y t Then do 

Determine ( )next
iY t using (3.19) and (3.20). 

End If. 

End For. 

(iii) Set ( 1) ( )next
i iY t Y t  . 

(iv) Decode ( 1)iY t  using Fig. 3.3 and evaluate ( ( 1))if Y t   using (3.15) for i= [1, NP]. 

(v) If ( ( 1)) ( ( ))i if Y t f Y t  Then 

Set γs(t)← γs(t)  γi(t). 

End If. 

End For. 

III. Set 
1

( ) arg max ( ( ))
NP

best
i

i

Y t f Y t



 
 
 

. 

IV. Set t←t+1. 

V. Determine ( 1)t  from (3.23). 

End While. 

6. Decode ( )bestY t using Fig. 3.3 

7. Return optimally selected M (≤ N) electrodes and D (≤ F) EEG features. 

End. 
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Table 3.2 presents an overview of the cognitive tasks undertaken during different 

experiments for the concerned problem. From Table-3.2, it can be seen that the experiments 

are not limited to only motor execution or motor intention based tasks [23], but the list also 

includes several experiments of segregation of five basic emotions, including happiness, 

sadness, anger, fear and disgust. To conduct experiments related to emotion recognition, 

certain video clips are shown to the users with sufficient amount of relaxation interval in 

between two clips corresponding to two different emotions. The clips of small duration are 

chosen such that it takes minimal time for the user to understand the clip and to experience 

such emotions freely. 

While performing the experiments the subjects are asked to sit on a chair with arms at 

rest position and eyes stable. After a certain interval, a cross appears on the screen along with 

a beep sound; thereafter the subjects are instructed to perform the required tasks according to 

commands appearing on screen. The structure of a stimulus used for left and right hand motor 

execution task has been shown in Fig. 3.5 as an example. 

TABLE 3.2: EXPERIMENTS CONDUCTED FOR PROPOSED SCHEME 

Index Description 

Experiment 1 Left hand and right hand motor execution 

Experiment  2 Left hand and right hand motor imagery 

Experiment  3 Left leg and right leg motor execution 

Experiment  4 Left leg and right leg motor imagery 

Experiment  5 Tongue and finger motor execution 

Experiment  6 Happiness and sadness emotion recognition 

Experiment  7 Happiness and anger emotion recognition 

Experiment  8 Happiness and fear emotion recognition 

Experiment  9 Happiness and disgust emotion recognition 

Experiment  10 Disgust and fear emotion recognition 

Experiment  11 Disgust and anger emotion recognition 

Experiment  12 Disgust and sadness emotion recognition 

Experiment  13 Anger and fear emotion recognition 

Experiment  14 Anger and sadness emotion recognition 

Experiment  15 Sadness and fear emotion recognition 
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3.4.2  Preprocessing 

 

The acquired EEG signals are passed through certain pre-processing steps in order to 

remove the artifacts generated due to eye blinking or spurious pick-ups from the power 

supply. The responses to the experiments undertaken are better captured by the rhythmic brain 

activity in the frequency band of 4-40Hz. Hence, to filter the signals within the specified 

frequency band, a 6-th order elliptical filter is used with 1dB pass-band ripple and 50dB stop-

band ripple.  

 

 

Fig. 3.4 Electrode positions according to 10-20 electrode placement system 

 

 

 

 

Fig. 3.5 Queue for stimulus presentation for left and right hand motor execution 

3.4.3 Feature Extraction 

 

In this step, five well known features for EEG based research have been considered including 

temporal features like Hjorth parameters [3], AAR parameters [3], frequency domain features 

like PSD [3], time-frequency correlated features like discrete wavelet coefficient [3] and CSP 

features [2]. In this case, AAR parameters of 6-th order have been calculated using Kalman 

filter as the estimator with an update coefficient of 0.0085. PSD features have been extracted 
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using Welch method with 50% overlapped signal segments using a Hamming window. For 

wavelet coefficients, Daubechies 4-th order mother wavelet has been used.  

3.4.4 Optimal Feature and Electrode Selection using Optimization Algorithm 

 

A potential solution of this optimization problem of selection of the optimal set of EEG 

electrodes [24] and EEG features is encoded as a four dimensional firefly position (Fig. 3.3). 

Using a set of such firefly positions, the proposed SAFA is executed. In each generation of 

SAFA, three steps are followed to determine the objective function value of a firefly position. 

First, each firefly position is decoded using Fig. 3.3 to obtain M (≤ N) and D (≤ F). The 

source signals, corresponding to the selected M (≤ N) electrodes, are estimated using ICA. 

The selected D (≤ F) features are then extracted from the selected M (≤ N) sources and sinks. 

The fitness of the solution is then determined using (3.15). Maximization of (3.15) using 

FASA ultimately provides the optimal set of electrodes and EEG features for the effective 

representation of C cognitive tasks i) without dropping out any useful information and ii) 

without any redundant information. 

3.4.5 Experimental Results 

 

Table 3.3 reports the mean (standard deviation within parenthesis) of the following measures 

as obtained by the proposed SAFA-based realization over 50 independent runs, each with 

4×10
4
 maximum number of function evaluations. The performance metrics include 

 The average of the distance correlation coefficients between the selected D features 

of the selected M and the original N set of sources, 

 The average of the mutual information between the selected D features of the 

selected M and the original N set of sinks, and 

 The average value of JB /JW due to the selected M sources, each with D features 

over 50 runs and for all possible combinations of fifteen cognitive tasks. It is 

evident from Table-3.3 that for emotion-based experiments, frontal and prefrontal 

electrodes have been chosen as the optimal ones apart from a few other channels. It 

justifies the effectiveness of the proposed scheme as it is known from elementary 

neuro-physiological knowledge that frontal and prefrontal brain area are majorly 

responsible for emotion based task executions. 

A comparative analysis of the proposed SAFA with other existing algorithms, including 

self-adaptive artificial bee colony (SAABC) [25], traditional ABC [26] and traditional 

differential evolution (DE) [27], are undertaken in Table 3.4 with respect to the mean (standard 
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deviation within parenthesis) objective function values of the optimal solutions (using (3.15)) 

over 50 independent runs. All the algorithms commence from the same initial population of 

size 50. The maximum number of function evaluations for each run of an algorithm is set equal 

to 50×10
4
. Their control parameters are set in a manner to have their individual best 

performance in the present context after a wide variety of experiments. The parameters of 

SAFA including α
min

, β0, and m are respectively set as 0.2, 1 and 1.5. The limit cycle for 

SAABC and ABC is set to 50. A crossover rate of 0.9 is used in case of DE/current-to-best/1.  

The statistical significance level of the difference of the 50 samples of the optimal 

objective function of any two competitive algorithms is verified by the Wilcoxon rank sum test 

[28] with a significance level α=0.05 [29]. The p-values obtained through the rank sum test 

between the best algorithm and each of the remaining algorithms over all combinations of 

cognitive tasks is reported in third brackets in Table3.4. Here NA stands for not applicable 

covering the cases of comparing the best algorithm with itself. The null hypothesis of this 

statistical test is concerned with the equivalent performance of all the competitor algorithms. If 

the p-value, corresponding to the relative performance analysis of the i-th and j-th algorithms, 

is less than α, then the respective null hypothesis is rejected. The reported results in Table 3.4 

clearly indicate the superiority of the proposed SAFA to its contenders in a statistically 

significant fashion over most of the combinations of cognitive tasks. SAABC, which yields the 

best objective function values for three cases (including experiments 7, 11 and 14) attain the 

second best rank. However, for experiment 11, the statistical test indicates an insignificant 

dominance of SAABC over SAFA. It is noteworthy that DE based realization of the problem 

outperforms the proposed SAFA for task 9, however, insignificantly. 

It is also remarkable from Tables 3.3 and 3.4 that the performance of each algorithm 

remains better for selection of optimal electrodes and EEG features for different classes of 

motor intensions or motor imagery rather than emotion recognition. An obvious reason may be 

that the emotional stimuli produce the brain rhythms essentially in  and  bands, but here the 

signals are band-pass filtered as a whole in the 4-40 Hz band. It may have resulted in a 

degraded performance of an algorithm as compared to other cognitive tasks.  

The comparative analysis of the competitor algorithms is also undertaken with respect 

to the classification accuracy of three different SVM classifiers [30], considered in this 

chapter. This is accomplished by first creating a testing dataset for each task combinations in 

Table-3.2. The testing dataset is created by following the same principle as in section 3.4.1. 

Then for an algorithm, say i, we obtain optimal set of M electrodes and D features. Then these  
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TABLE 3.3.A: PERFORMANCE OF SAFA BASED SELECTION OF OPTIMAL EEG 

ELECTRODES AND FEATURES FOR COGNITIVE TASK CLASSIFICATION FOR 

EXPERIMENTS 1 TO 14 

Experiment 

Index 

Number of 

Selected 

Electrodes 

Optimal 

Electrode 

Positions 

Number 

of 

Selected 

Features 

Correlation JB /JW 
Mutual 

Information 

1 5 
C3, C4, Cz, P4, 

P3 
545 

320.51 

(0.047) 

11.09 

(0.068) 

12.66 

(0.043) 

2 4 C3, C4, Cz, Pz 412 
288.75 

(0.013) 

9.43 

(0.027) 

10.06 

(0.031) 

3 6 
C3, C4, Cz, P3, 

P4, Pz 
755 

373.89 

(0.057) 

18.23 

(0.024) 

20.65 

(0.075) 

4 3 P3, P4, Pz 323 
180.76 

(0.062) 

8.39 

(0.061) 

8.85 

(0.028) 

5 5 
C3, C4, P3, P4, 

Pz 
563 

331.87 

(0.023) 

16.51 

(0.053) 

16.78 

(0.011) 

6 4 
FP1, FP2, Cz, 

F4 
472 

270.57 

(0.039) 

12.64 

(0.038) 

11.57 

(0.027) 

7 4 FP1, C3, Fz, F3 397 
225.64 

(0.032) 

8.57 

(0.014) 

9.68 

(0.017) 

8 5 
FP1, FP2, Fz, 

F3, C3 
513 

321.65 

(0.076) 

11.67 

(0.032) 

10.89 

(0.072) 

9 6 
FP1, F3, F4, O1, 

C3, Cz 
781 

365.45 

(0.083) 

17.85 

(0.011) 

18.95 

(0.069) 

10 4 T3, FP1, F3, F4 456 
265.88 

(0.028) 

8.58 

(0.045) 

9.98 

(0.083) 

11 5 
O2, FP2, Fz, F3, 

F4 
529 

318.77 

(0.048) 

11.96 

(0.087) 

13.46 

(0.071) 

12 3 FP1, FP2, Fz 293 

200.45 

(0.022) 

7.43 

(0.069) 

8.93 

(0.059) 

13 5 

T3, FP1, F3, F4, 

FP2 

527 

322.68 

(0.059) 

10.08 

(0.052) 

12.89 

(0.081) 

14 6 

FP1, Pz, Fz, T3, 

F4, T4 

746 

354.05 

(0.017) 

18.79 

(0.047) 

19.58 

(0.079) 
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TABLE 3.3.B: PERFORMANCE OF SAFA BASED SELECTION OF OPTIMAL EEG 

ELECTRODES AND FEATURES FOR COGNITIVE TASK CLASSIFICATION FOR 

EXPERIMENT 15 

Experiment 

Index 

Number 

of 

Selected 

Electrodes 

Optimal 

Electrode 

Positions 

Number 

of 

Selected 

Features 

Correlation JB /JW 
Mutual 

Information 

15 4 

T3, FP1, 

FP2, F4 

468 

278.92 

(0.086) 

11.23 

(0.033) 

11.87 

(0.066) 

 

TABLE 3.4.A: COMPARISON OF THE PROPOSED ALGORITHM WITH OTHER 

STANDARD EVOLUTIONARY ALGORITHMS BASED ON OBJECTIVE FUNCTION 

VALUES FOR EXPERIMENTS 1 TO 7 

Experiment 

Index 
SAFA SAABC ABC DE 

1 

0.2562 

(0.056) 

[NA] 

0.2068 

(0.049) 

[0.0034] 

0.0167 

(0.011) 

[0.0053] 

0.1583 

(0.027) 

[0.0016] 

2 

0.2963 

(0.095) 

[NA] 

0.2477 

(0.064) 

[0.0048] 

0.0543 

(0.031) 

[0.0074] 

0.1948 

(0.072) 

[0.0031] 

3 

0.3549 

(0.025) 

[NA] 

0.3249 

(0.112) 

[0.0073] 

0.0851 

(0.105) 

[0.0084] 

0.2057 

(0.087) 

[0.0027] 

4 

0.3688 

(0.145) 

[NA] 

0.2911 

(0.194) 

[0.0046] 

0.1049 

(0.162) 

[0.0033] 

0.2648 

(0.121) 

[0.0051] 

5 

0.3344 

(0.271) 

[NA] 

0.3105 

(0.127) 

[0.0053] 

0.1078 

(0.186) 

[0.0082] 

0.2420 

(0.191) 

[0.0154] 

6 

0.3231 

(0.084) 

[NA] 

0.2865 

(0.073) 

[0.0049] 

0.0989 

(0.085) 

[0.0064] 

0.1997 

(0.066) 

[0.0129] 

7 

0.3825 

(0.094) 

[0.0044] 

0.3941 

(0.105) 

[NA] 

0.2732 

(0.147) 

[0.0018] 

0.3475 

(0.194) 

[0.0003] 
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TABLE 3.4.B: COMPARISON OF THE PROPOSED ALGORITHM WITH OTHER 

STANDARD EVOLUTIONARY ALGORITHMS BASED ON OBJECTIVE FUNCTION 

VALUES FOR EXPERIMENTS 8 TO 15 

Experiment 

Index 
SAFA SAABC ABC DE 

8 

0.3376 

(0.034) 

[NA] 

0.2951 

(0.072) 

[0.0059] 

0.0611 

(0.128) 

[0.0011] 

0.2559 

(0.136) 

[0.0046] 

9 

0.2931 

(0.241) 

[0.0564] 

0.2883 

(0.262) 

[0.0077] 

0.2691 

(0.177) 

[0.0003] 

0.3259 

(0.167) 

[NA] 

10 

0.3596 

(0.184) 

[NA] 

0.3115 

(0.179) 

[0.0165] 

0.1572 

(0.086) 

[0.0234] 

0.2754 

(0.109) 

[0.0196] 

11 

0.3104 

(0.097) 

[0.0602] 

0.3155 

(0.116) 

[0.0007] 

0.2158 

(0.123) 

[0.0097] 

0.2795 

(0.152) 

[0.0197] 

12 

0.3963 

(0.096) 

[NA] 

0.3386 

(0.188) 

[0.0217] 

0.1652 

(0.192) 

[0.0194] 

0.2964 

(0.271) 

[0.089] 

13 

0.3713 

(0.290) 

[NA] 

0.3494 

(0.306) 

[0.0204] 

0.1922 

(0.327) 

[0.0028] 

0.2278 

(0.315) 

[0.0011] 

14 

0.3353 

(0.224) 

[0.0189] 

0.3686 

(0.219) 

[0.0173] 

0.2263 

(0.254) 

[0.0184] 

0.3281 

(0.278) 

[0.008] 

15 

0.3533 

(0.172) 

[NA] 

0.3467 

(0.245) 

[0.0309] 

0.0476 

(0.239) 

[0.0061] 

0.2343 

(0.241) 

[0.0149] 

 

D-dimensional M source and sink feature vectors of the training dataset are used to train the 

SVM individually. After completing the training cycle, the D-dimensional M source and sink 

feature vectors are extracted from the testing set and are used to verify the classification 

accuracy of the trained SVM. This is repeated for all four competitors with i=[1, 4] for all 

three variants of nonlinear SVM. Fig. 3.6 plots the classification accuracy obtained by 

individual SVM classifier due to selection of optimal set of EEG electrodes and features by 

each contender algorithm. The plot clearly reveals that the proposed SAFA here too 

outperforms its contenders, however, marginally for SAABC [25]. 
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(d) 

Fig. 3.6 Classification Accuracy of SVM Classifiers Due to Training with EEG Electrodes and 

Features Selected by (a) SAFA), (b) ABC, (c) SAABC and (d) DE 
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3.5 CONCLUSION 

The chapter proposes a novel evolutionary optimization approach to the simultaneous 

selection of significant electrodes and relevant EEG features for classification of cognitive 

tasks in EEG based BCI paradigm. The present work can get extreme appreciation, because 

till date separate techniques of electrode and feature selections are adopted by the researchers, 

but a combined methodology of simultaneous dealing with these two important aspects of 

EEG signal processing has not been used in large scale. It is noteworthy that the efficiency of 

classification of cognitive tasks is enhanced by a great extent using the proposed framework. 

The main novelty of the work lies in the formulation of the problem in an optimization 

framework and in solving the problem using the proposed SAFA with an aim to satisfy three 

criteria. 1) To minimize the loss of information of the cortical sources for a cognitive task by 

discarding a specific set of redundant electrodes, the correlation between the EEG sources 

before and after the electrode selection should be as high as possible (in the feature space). 2) 

To ensure that only relevant EEG electrodes to be used for characterizing the mental states of 

cognitive tasks, the mutual information between the selected electrodes should be as low as 

possible indicating their independence (in the feature space). 3) The optimal set of features is 

selected by identifying the features that well differentiate between EEG sources of two 

cognitive tasks, while representing a specific cognitive task uniquely. To analyze the relative 

performance of SAFA with other existing evolutionary algorithms, three variants of non-

linear SVM [4] classifier (including Gaussian radial basis function, homogeneous polynomial 

function and hyperbolic tangent function) are individually trained with the selected feature 

sets of the selected EEG electrodes and the corresponding EEG sources, as obtained by 

individual competitor algorithms. Experiments undertaken with SAFA reveal the statistically 

significant superiority of the proposed method over other existing evolutionary algorithms, 

with respect to classification accuracy of the SVM classifier, irrespective of the non-linearity. 

Despite the superiority of the above discussed methodology there exist ample scopes of 

improvement that can be carried out in future in order to reach closer to the desired objective. 

In the present scenario, the data obtained from the undertaken experiments have been 

exploited to compute merely five different types of features although the resulting features 

belong to very high dimension, hence the proposed work can be extended further in case of 

larger types of features and finally the classification accuracy obtained collectively after 

considering all the feature set is likely to provide relatively unbiased and fair conclusion. 

Moreover, although the list of experiments tabulated in Table 3.2 includes a wide variety of 

experiments, but it has majorly emphasized on emotion based experiments, so it is wise to 
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include other experiments that empowers any motor execution or motor imagery movements 

apart from the few basic ones mentioned here. 
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Chapter 4 

 

 
CSP & Its Regularization 
 

This chapter primarily aims at describing the fundamental aspects of a well known 

feature extraction algorithm formally termed as Common Spatial Pattern 

(CSP).Firstly, it establishes the requirement of feature extraction in a rehabilitative 

BCI system. Then after briefly recapitulating the reasons behind the introduction of 

spatial filter, it describes the CSP methodology in details incorporating the future 

research directions regarding the improvement of CSP. As every entity has got its 

pros and cons, CSP too comes with its own set of limitations. To overcome these 

issues, several regularization techniques have been presented by different research 

enthusiasts throughout the world, thus researchers proposed a bunch of novel 

algorithms that enhances the existing framework in terms of most of the performance 

metrics, which are broadly classified to one category that is formally termed as 

Regularized CSP(RCSP).Section 4.1 presents a brief introduction and section 4.2 

summarizes the existing works that are closely relevant to this chapter. Section 4.3 

describes CSP algorithm from mathematical point of view and section 4.4 presents 

CSP methodology from optimization aspect. Section 4.5 describes the methods 

adopted for regularizing CSP and the existing algorithms and finally section 4.6 

introduces the novel penalty terminologies as an extension of existing RCSP 

algorithms. 
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4.1 INTRODUCTION 

A Brain Computer Interfacing (BCI) system [1] primarily attempts to translate a user’s 

intentions into control commands without using the brain’s normal output pathways of 

peripheral nerves and muscles. These days BCI is considered as one of the most developing 

research disciplines due to its growth, implementation of cutting edge and novel 

methodologies and scopes of improvement which bridges the theoretical gap between large 

numbers of research fields including medicines, psychology, signal processing, machine 

learning and so on. Since BCI interfaces mainly deal with brain rhythmic signals only, it can 

provide help to people suffering from several disabilities where the patients cannot instruct an 

assistive device with the help of muscular actions, but the cognitive components of the 

patients are not damaged and thus he/she can obtain the required service simply by using a 

BCI interface that is capable of decoding his/her thinking and executing the specific action. 

There are different modalities that are available through which brain signals can be acquired, 

including both invasive as well as non invasive implants. In this chapter we are considering 

one of the most common and user friendly non invasive modality termed as 

Electroencephalogram (EEG), which is reliable, easy to acquire and portable also. 

EEG signals [2] are acquired by placing external electrodes on scalp following a 

standard electrode placement rules, but the EEG signals acquired from human scalp are highly 

contaminated by noise, moreover the oscillatory components of EEG signals are often found 

to be extremely non stationary because of the presence of sharp waves, spikes, electrical 

discharges etc. In fact, at times the amount of noise is so high that actual signal attributes are 

likely to be buried away in the noise. Hence, it is important to extract the useful components 

from the concerned signals for further analysis, because of these issues feature extraction is 

considered to be one of the key steps in an EEG based BCI system. Technically, a feature is a 

distinctive or characteristic measurement, a transform or a recognizable structural component 

that is extracted from a segment of a pattern. Usually, extracted features are meant to 

minimize the loss of the fundamental components that are embedded in a signal or a pattern, 

and to simplify the need of exploiting multiple information sources to describe larger amount 

of data with precision. In other words, the feature extraction phase primarily takes care of 

three important aspects, 

 Reducing system implementation complexity 

 Reducing cost of information processing 

 Reducing the requirement of further information compression. 

Literature show several feature extracting mechanisms have been adopted by the 

research fraternity in the past yielding moderately good experimental results including time 
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domain features [3] (AAR parameters, Hjorth parameters), frequency domain features (PSD, 

FFT) and time frequency correlated features (Wavelet coefficients). In case of basic BCI 

design, the number of electrodes considered and the number of subjects participating in the 

experiment is assumed to be relatively small, hence apparently the task looks relatively 

simple, but in case of larger data the complexity increases. Although from preliminary neuro 

physiological knowledge [4] we are aware of the particular brain regions that are likely to be 

responsible for a particular cognitive task, but there are high possibilities that even the 

surrounding brain regions may have a contribution in that particular task, however small it is. 

For example, for a motor execution task instead of C3 and C4 the optimal electrodes for a 

particular subject may be FC3 and FC4, or CP3 and CP4 etc. So, to obtain complete 

information for further analysis, it is recommended to use larger number of electrodes that 

covers maximum of the scalp regions so that none of the relevant information is missed out. 

Besides having a large number of electrodes, the optimal frequency band for different subjects 

may vary which may lead to a large amount of data and more importantly increasing the 

number of channels may incorporate redundancy also. In order to deal with such issues, the 

concept of spatial filtering has been introduced. 

Spatial filtering basically derives a reduced number of new channels which are formed 

by linear combination of the original ones, following the equation (4.1), 

 

     ' i i

i

x w x wX              (4.1) 

 

Here w signifies the weight vector and X is the data obtained from the original electrodes 

placed upon human scalp. In this context, some of the basic spatial filters can be described in 

terms of the electrodes shown in Fig 4.1 [5]. 

The Fig. 4.1 depicts a set of 75 electrodes placed on different regions of human scalp 

following a standard electrode placement scheme including the reference electrodes. For a left 

hand and right hand motor imagery task, the electrodes that are considered for an experiment 

has been coloured red. In this chapter, only Bipolar and Laplacian filters has been described 

amongst the basic spatial filters and further the results obtained from them has been 

illustrated. Using the electrodes shown in Fig. 4.1 the Bipolar and Laplacian filter can be 

implemented as (4.2) and (4.3) respectively [5], 
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Fig 4.1 Electrodes Placed on Human Scalp Using Standard System 

 

These spatial filters mainly emphasizes on localized activity, they help to extract the 

relevant information corresponding to any cognitive task. For example, due to volume 

conduction the information the signal originating from a specific source within the brain often 

gets scattered over more number of electrodes placed on scalp, in these cases spatial filtering 

can be employed to identify actual sources in brain localization problems. 

Lotte et al. in his lecture [6] at BBCI Winter School of Neurotechnology has presented 

the performance of the above two basic spatial filters on BCI competition IV, dataset IIa using 

LDA classifier. This particular dataset comprises of EEG recordings from 9 different subjects 

performing left hand and right hand motor imagery tasks. After extracting the band power 

features the accuracy attained with Laplacian C3-C4 and Bipolar C3-C4 has been tabulated in 

Fig.4.2. 

It is clearly revealed from Fig 4.2 that the accuracy obtained with the spatial filters 

clearly surpasses that obtained from the original C3-C4 electrodes, for all the subjects. The 

average classification accuracies for C3-C4, Laplacian C3-C4 and Bipolar C3-C4 are computed 

as 60.7%, 68% and 70.5% respectively. However, in this case, Bipolar C3-C4 has 

outperformed its other contender nearly in each case, but the results may not be the same for 

all cognitive task based experiments. Moreover, barring the performance attained for few 

electrodes the average accuracy obtained for all the three methods have not been satisfactory, 

as in most of the cases the accuracy obtained has been under the minimum threshold value of 

70% which will not allow these filters to be implemented in any real time online systems. 

Hence, it is required to move on to more advanced variants of spatial filtering and thus 
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Common Spatial Pattern has been introduced as a member of the supervised spatial filtering 

family to deal with the limitations of its predecessors. 

In this chapter, we are focussing upon CSP as a feature extractor algorithm. From the 

pattern recognition point of view, an EEG based BCI system comprises of the following 

phases as shown in Fig. 4.3 [7]. 

 

 

Fig. 4.2 Classification Accuracy Obtained with LDA Classifier for Basic Spatial Filters 

 

 

 

 

 

 

 

Fig. 4.3 BCI Overview 

 

CSP is one of the most efficient feature extraction methods that enable a researcher to 

transform the acquired signals in a linear subspace such that the projected signals are 
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maximally discriminate. CSP algorithms provides the best results in deciphering motor 

imagery signals such as, left hand and right hand movements [8]. For binary classification 

problems, CSP can be defined as a linear spatial filter that seeks a projection direction such 

that the variance of the spatially filtered signals of one class is maximized and those of the 

other class is minimized. The reason behind the usage of the variance of the signals lies in the 

fact that variance is actually nothing but the band power of the signals, hence dealing with 

variance is supposed to yield better results. Basically, CSP algorithm attempts to derive 

optimal spatial filters that can best discriminate two different populations of EEG signals, in 

this approach simultaneous diagonalization of the covariance matrices has been used and in 

recent days, it is employed successfully for classifying movement related trials or EEG motor 

imagery.  

4.2 RELATED WORKS 

Due to the poor spatial resolution of EEG signals [9], CSP is considered to be a preferred 

alternative for enhancing the system performance and information transfer rate as well. 

Fukunaga et al. first introduced the concept of CSP [10] as an application of Karhunen Loeve 

Transform for classification and it was employed by Koles et al. later to detect the abnormal 

components of EEG scalp potential [11]. Ramoser et al. in [12] proposed a novel way 

estimating spatial filters using CSP algorithm and also stated the spatial filters for 

multichannel EEG analysis are capable of extracting discriminate information from two 

classes of EEG data and the recognition accuracies obtained after conducting experiments 

signify the proposed scheme as a promising one for EEG based BCI design. Lemm et al. in 

[13] attempted to alleviate the adverse impacts of non stationarity and artifacts in EEG based 

BCI system by embedding a finite impulse response filter in the CSP methodology, termed as 

Common Spectral Spatial Pattern (CSSP) and EEG recordings from the experiments of 

imagined limb movements have shown noticeable improvement in terms of Information 

Transfer Rate. Although CSSP provided certain improvement over the classical CSP 

algorithm, but first order FIR filters lacks sufficient flexibility. To overcome this drawback 

Dornhege et al. presented a novel technique Common Sparse Spectral Spatial Pattern 

(CSSSP) for simultaneous optimization of spatial and spectral filters in the periphery of CSP 

analysis [14]. To avoid the overfitting problem, the authors incorporated a regularization term 

to sparsify the solution that leads to an increase of the computational complexity. Since 

computationally expensive systems are not feasible to be implemented in online real time 

mechanisms, Tamioka et al. [15],[16] proposed an alternate version of CSP that exploits the 

temporal features by optimizing spectral filters in the frequency domain by considering the 

square root of the Rayleigh coefficient as the objective function. Motivated by these 
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techniques, later Wu et al. [17] later developed a novel algorithm termed as Iterative Spatio-

Spectral Pattern Learning (ISSPL) that utilizes the concepts of statistical learning theory to 

optimize spatio-spectral filters. 

After the introduction of CSP, gradually the needs of generalization of the algorithm is 

noticed, as to test the efficacy of an algorithm it is important to check how far it is performing 

on the testing data from the training data. Hill et al. in [18], compared the classifiability of the 

three brain signal acquisition methods, namely EEG, magnetoencephalography (MEG) and 

electrocorticography (ECoG) and after conducting a comparative study on the performance of 

spatial filters in each of the three sensor types, the authors inferred that spatial filtering 

enhances performance by a great deal in EEG, improves a little in ECoG and practically has 

no positive impact in MEG. It is also found due to overfitting problem CSP appears to be 

redundant to detect ERD in MEG and ECoG signals. Reuderink et. al. described the 

generalization of CSP over time, number of trials and subjects, but he could not conclude 

clearly regarding the actual reason of the overfitting problem observed with CSP [19]. The 

complexity of the EEG signal creates hindrance in the process of exploring the reasons for 

overfitting of CSP. The complexity of CSP can also be described from different aspects, 

firstly the nonstationarity of CSP does not entirely come from a single trial, so it consists of 

the between trial nonstationarities also. Further, still now there is no clear idea of the actual 

mechanism of brain that yields such signals for a particular cognitive task, hence the entire 

procedure is treated as an output from a black box, with no exact formulation of brain system. 

Moreover, the classification accuracy attained from various classifiers also varies amongst 

different subjects which lead to more confusion. In order to deal with these issues, the concept 

of regularization of CSP [20]-[22] has been introduced and from the past two decades the 

researchers are delving further to generate new ideas that can enhance the performance of 

spatial filtering in modern day BCI paradigms. 

Lotte et al. in [23] has presented a unified framework based on the theoretical concepts 

of designing Regularized CSP algorithm, along with revisiting the already established RCSP 

algorithms, the researchers also formulated certain new algorithms. 

4.3 CSP ALGORITHM FOR BINARY CLASSIFICATION PROBLEMS 

CSP is a decomposition method that derives the spatial filters that generates maximally 

discriminate variance of the EEG signals in two different conditions. Basically, CSP maps the 

samples in a new space based on the covariance matrix of the signals [8]. Let us consider a 

task of discriminating between left hand and right hand motor imagery signals using CSP as a 

feature extractor. This can be seen as a simplified exemplary solution of the optimization 

criterion of the CSP algorithm: maximizing variance for the class of right-hand trials and at 
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the same time minimizing variance or left-hand trials. To illustrate mathematically, let Xk 

denotes the band pass filtered EEG recordings of k-th trials having a dimension of C×T, 

where C and T denotes the total number of electrodes and the number of time samples per 

electrode in each trial respectively. Now, Yk (1,2) denotes the class label of the k-th trial. 

The covariance matrix corresponding to both the classes can be calculated as, 

 

   1( : 1) ( )
k

T

k Y k kX X   and 2( : 2) ( )
k

T

k Y k kX X               (4.4) 

 

The aim of CSP is to derive the coefficients of the weight matrix W and the elements 

(lying in the closed interval [0, 1]) of diagonal matrix D, using simultaneous diagonalization 

such that,  

 

    1

TW W I    and  
2

TW W I D                         (4.5) 

 

The derivations are carried out by first employing whitening transformation of (

1 2  ) and calculation of P such that, 

 

     
1 2( ) TP P I                  (4.6) 

 

Now, using CSP analysis two more calculations are carried out to define another two 

matrices, 

 

    1 1

TS P P    and  2 2

TS P P                         (4.7) 

 

 Moreover, a orthogonal matrix R and diagonal matrix D is calculated in terms of S1 

using the rules of spectral theory such that, 

 

    1

T TS RDR  and 2 ( )T TS R I D R               (4.8) 

 

given, (S1 + S2 = I). It is needless to say, that the decomposition is possible due to the positive 

definiteness of the ( 1 2  ). Here, it is quite remarkable to notice that the projection given 

by the p-th row of matrix R offers a relative variance equal to dp (p-th element of diagonal 

matrix D) for the trials corresponding to class 1 and a relative variance of (1- dp) for trials 

corresponding to class 2. It is evident that if dp is close to 1 then it is the case of maximization 

of variance of the filtered signals corresponding to class 1 trials and obviously, (1- dp) close to 

zero also signifies the same case. Finally, the weight matrix W can be obtained as, 

 

     
TW R P                (4.9) 

 



C h a p t e r  4 | P a g e  75 

 

Brain Localization and Feature Extraction Using Computational Intelligence Techniques  

  
 

Using the weight matrix W, the EEG recordings of Xk is transformed in a subspace 

using, 

 

     
k kZ WX               (4.10) 

 

The rows of W are basically spatial filters. In order to obtain the feature set that can be 

fed to the classifier for further proceedings in terms of signal analysis, using the normalized 

variance, the features are extracted as, 

 

    
2

1

var( )
log[ ]

p

p m

i

i

Z
f

Z





              (4.11) 

 

In this case, p varies from 1 to 2m, which basically corresponds to first m and last m 

rows of Zk according to the largest Eigen values of each condition. 

4.4 CSP ALGORITHM AS AN OPTIMIZATION PROBLEM 

The CSP algorithm is highly successful in detecting ERD/ERS effects in motor imagery based 

BCI systems. The working principle of basic CSP algorithm can also be described from the 

pattern recognition aspect, incorporating the concept of optimization of an objective functions 

that is best suited for a particular problem. From this perspective, CSP algorithm attempts to 

obtain optimal spatial filters that maximizes the variance of EEG band pass filtered signals for 

one class while minimizes the same for the other class. Mathematically, CSP seeks to find the 

filters w that extremize the following objective function [23], 

 

    1 1 1

2 2 2

( )
T T T

T T T

w X X w w C w
J w

w X X w w C w
               (4.12) 

 

Here, T denotes the transpose operation, Xi is the data matrix of i-th class, and Ci is the 

centred spatial covariance matrix from class i. To be precise extremizing (4.12), basically 

indicates extremizing 1

Tw C w subjected to constraint 2 1Tw C w  . Employing Lagrange’s 

multiplier method, the constrained optimization problem reduces to extremizing the following 

function, 

 

    1 2( , ) ( 1)T TL w w C w w C w                (4.13) 

 

To compute the filters w that extremizes the above function, it is required to equate the 

derivative of the function with respect to w to zero. Mathematically, 
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                        (4.14) 

 

     
1 2C w C w                           (4.15) 

 

     
1

2 1C C w w                           (4.16) 

 

This is a mere Eigen value decomposition problem that is the spatial filters are the 

Eigen vectors of 
1

2 1M C C , corresponding to largest and lowest Eigen values to generate 

the maximally discriminate outcome. 

4.5 REGULARIZED CSP METHODOLOGY (RCSP) 

Since recorded EEG signals are likely to be contaminated with noise and artifacts, to deal 

with the sensitivity of CSP to overfitting and noise, it is always recommended to regularize it 

by adding prior information [24]-[27]. Now, the regularization of CSP algorithms can be 

primarily categorized into two levels, 

 Regularization at the covariance matrix estimation level 

 Regularization at the objective function level. 

 

4.5.1 Regularizing Covariance matrix estimates 

 

The CSP algorithm depends majorly on the covariance matrix estimates of both the classes, so 

if such estimates suffer from the issues of noise or small training sets, then there is high 

probability that those matrices to be poor or non reliable estimates of the mental states 

involved and thus leading to poor spatial filters. In such cases, it is always wise to improve 

the estimates by adding prior knowledge to it in the form of regularization. The regularized 

covariance matrix estimated can be calculated as, 

 

ˆ(1 )c cC C I                (4.17) 

 

where,     ˆ (1 )c c c cC s C G                (4.18) 

 

Here, cC denotes the regularized spatial covariance matrix estimate for class c, Cc is the 

initial spatial covariance matrix, sc is a scaling parameter (a scalar), γ and β are two user 

defined regularization parameters in the closed interval [0, 1] and Gc signifies the ‘generic’ 

covariance matrix. The generic matrix is developed exploiting the information collected from 
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the EEG signals that have been recorded previously and it provides a rough estimate 

regarding how the covariance matrix corresponding to a specific cognitive task should be. It is 

seen clearly in (4.17) and (4.18) that using the regularization parameters γ and β, (4.18) 

reduces the original covariance matrix close the generic matrix and further, (4.17) shrinks the 

intermediate covariance matrix estimate to the identity matrix, to nullify the effect of an 

estimation bias that could have been generated as a result of a small training set and also to 

obtain a more stable estimate. To employ RCSP using this method, one has to replace the 

covariance matrix with its regularized estimates having one or two regularizing parameters. 

 

4.5.2 Regularizing the CSP objective function 

 

As discussed in section 4.4, the CSP algorithm primarily aims to find spatial filters that can 

extremize the objective function (4.12). In case of RCSP, a penalty function is added to the 

denominator containing another regularization parameter α, to outlaw solutions that do not 

satisfy a predetermined constraint. Formally, the objective function can be expressed as, 

 

     1

2

( )
( )

T

P T

w C w
J w

w C w P w



            (4.19) 

 

Generally, in our studies, we have calculated the spatial filters considering quadratic 

penalty functions of the form, P(w)= w
T
Kw where the matrix K represents the aspect of the 

constraints that needs to be satisfied. So (4.19), can be written as,  

 

     1

2

( )
( )

T

P T

w C w
J w

w C K w



            (4.20) 

 

Following a similar approach, the Lagrangian equation in this case becomes, 

  

    1 2( , ) ( ( ) 1)T T

PL w w C w w C K w                (4.21) 

 

Thus the filters w that maximize (20) are the Eigen vectors corresponding to the largest 

Eigen values of, 
1

1 2 1( )M C K C   . However, it is remarkable to note that unlike (4.12), 

to derive the optimize filters (4.20) is not being extremized. The reason can be explained as, 

minimizing (4.20) is essentially equivalent to maximizing the denominator, which contains a 

penalty term, will eventually maximize the penalty also and that is extremely undesirable, 

since the concept of penalty is introduced to deemphasize the filters not satisfying the 

constraint. In order to calculate the filters maximizing C2 and minimizing C1, the objective 

function is slightly modified as the positions of the variances corresponding to both the 
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classes are swapped and the filters are the Eigen vectors corresponding to the largest Eigen 

values of, 
1

2 1 2( )M C K C   . 

4.6 Improvising the existing RCSP Algorithms 

Among the existing RCSP algorithms, till date Weighted Tikhonov Regularised CSP 

(WTRCSP) has been found to be the most efficient one amongst all the variants of RCSP 

algorithms that are presently available for EEG signal processing. However, in this case, the 

CSP algorithm is regularized at the objective function level where the penalty is assigned 

according to the usefulness of a specific electrode. To illustrate further, if an EEG electrode is 

likely to provide relevant contribution then those filters are given small penalty, on the other 

hand negligibly contributing electrodes are penalized greatly to improve the quality of the 

solution. According to WTRCSP, the penalty assigned to an electrode is calculated as the 

inverse of the average absolute value of the normalized weight of the corresponding electrode 

in CSP filters obtained from data acquired by other subjects, using (4.22), 

 

    
2

1

1

1
( ) [ ]

2

i
N

j

G i
i j

j

w
w i

N w



 

  
  

            (4.22) 

 

where Ω is the total number of subjects participating in the experiment and 
i
jw refers to the j-

th spatial filter (out of Eigen vectors corresponding to N largest and N lowest Eigen values) 

corresponding to the i-th subject. Finally the penalty term is calculated as, 

 

    ( ) T
wP w w D w  where ( )w GD diag w            (4.23) 

 

In (4.22), electrode usefulness is calculated after providing equal priority to each 

subject considered for the experiment, but it is important to note that all subjects do not 

provide equal performance, moreover number of trials acquired from different subjects, 

subject specificness, inter trial variance etc. all of these parameters have immense impact in 

this scenario and so neglecting these factors can generate degraded results. 

 Firstly, (4.22) is modified to incorporate more constraints such that each subject is 

weighted using the number of trials he has performed. It is needless to say, a subject 

having more number of trials is likely to provide more promising results than another 

one having relatively lesser number of trials. In this way, the subjects having more 

number of trials are given more priority while deemphasizing the other subjects with 

lesser number of trials, as shown in (4.24), 
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 Here, 
i
cN and ,t cN denote the total number of trials corresponding to subject i and the 

total number of trials considering all the subjects. 

 Secondly, the weights are defined as the Kullback Leibler divergence (K L 

divergence) between subject’s data and can be expressed as, 
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where ( , )
m

Z KL m i


  and the K L divergence can be mathematically expressed as, 

 

  
1det( )1

( , ) [log( ) ( ) ]
2 det( )

i
i mc
c c em

c

C
KL m i tr C C N
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              (4.26) 

 

where 
m
cC  and 

i
cC denote the covariance matrices corresponding to m-th and i-th 

subject respectively and Ne denotes the number of considered electrodes, while det 

and tr respectively denote trace and determinant. 

 Finally, the subject weights are defined according to inter trial variance, that is the 

subjects having high intertribal variance are given less priority as shown in, 
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Here, C is the number of classes, Nt and Ns denote the number of trials and number of 

samples respectively and m denotes the mean vector obtained over all the trials. 
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4.7 CONCLUSION 

This chapter basically recapitulates the background for the emergence of CSP along with 

showing innovative avenues for improvising the existing technologies in this domain. After 

revisiting the backdrop of Regularised CSP (RCSP), it also provides interesting insights about 

different aspects of cognitive penalty computation and finally three novel penalty terms have 

been derived as an extension of the well known Weighted Tikhonov Regularised CSP 

(WTRCSP) and the application of the same has been illustrated in Chapter 5. 
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Chapter 5 

 

 
Detecting Motor Imagery EEG Signals 

Using CSP  
 

This chapter provides an insight to the role of CSP algorithm as a feature extration 

procedure in the context of EEG motor imagery signal detection. It addresses two 

distinct perspectives of motor imagery signal discrimination and each one of them 

have different highlighted sections in the work that has been carried out. Section 5.2 

introduces a novel scheme of motor imagery classification using a Regularised 

variant of CSP using an ensemble of k-NN classifiers, and the main focus of the work 

lies in the regularization of CSP objective function by adding subject specific trial 

information into it. Section 5.3 proposes another novel scheme of deciphering motor 

imagery EEG signals, this time the focus has been shifted to the classification phase. 

The major novelty lies within an ADE induced sparse network following the principles 

of traditional artificial neural network. 
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5.1 INTRODUCTION 

Brain Computer Interfacing (BCI) has been emerged as one of the most interesting research 

disciplines during the past few decades because of its outstanding contributions towards 

rehabilitative applications that provide aid to the patients suffering from diseases like 

Amyotrophic Lateral Sclerosis (ALS), Locked-in syndrome or Brain stem stroke [1]. As more 

and more research enthusiasts are investing their physical and intellectual resources in this 

domain, the researchers are enlightened about the limitations of the concerned technology and 

they are coming up with novel ideas to obtain the desired output either by solving those 

drawbacks or by circumventing the limitations using certain intelligent strategies. BCI systems 

enable us to instruct a machine with brain activation patterns thus not requiring the peripheral 

nervous system for conveying any message. Electroencephalogram (EEG) is a non-invasive 

modality that is comprised of multivariate data corresponding to neuronal electrical potentials 

at sampled time intervals measured from scalp electrodes [2]. For EEG driven BCI systems, 

motor imagery (MI) is found to be one of the most popular paradigms to stimulate a subject’s 

brain potentials. It is accompanied by neuronal power enhancement or attenuation of signals 

generated during performing imagined body part movements, such phenomena are formally 

termed as Event Related Synchronization (ERS) and Event Related Desynchronization (ERD) 

respectively [3]. To deal with the drawbacks of EEG paradigm, the researchers have 

introduced the concept of spatial filtering with an aim to project the acquired raw brain signals 

in a subspace such that it brings out the most discriminative components of those signals. 

Common Spatial Pattern (CSP) [4] is an efficient as well as discriminative spatial filter 

that yields the most discriminative features corresponding to a binary classification problem, 

such that variance of the filtered signals of one class is maximized and those of the other class 

is minimized.  This feature extraction algorithm was primarily formulated in the context of 

EEG/MEG analysis considering two classes only and it generated extremely precise 

classification accuracies when applied to BCI systems utilizing MI paradigms (for example left 

hand and right hand motor imagery). Despite its efficiency and adaptability, CSP lacks 

robustness while dealing with noisy data and outliers, which in turn degrades the system 

performance. To deal with these issues, researchers have designed a novel framework of 

adding prior information to the existing CSP methodology in terms of regularization 

parameters to ensure improved performance against outliers. This new variant of CSP, termed 

as Regularized CSP (RCSP) has outperformed the traditional one by a large extent in most of 

the cases. 
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5.2 DISCRIMINATING MOTOR IMAGERY EEG SIGNALS USING RCSP 

ALGORITHM 

 

Common Spatial Pattern is considered as one of the most efficient feature extraction methods 

for rehabilitative BCI paradigms. In the past many researchers have devoted their financial 

and intellectual resources in the said domain with an aim to regularize the concept of CSP by 

adding prior information in order to reach closer to the desired objective. In this section, a 

novel penalty term has been introduced as an extension of one of the most popular variants of 

RCSP algorithms, formally termed as Weighted Tikhonov Regularized CSP. The proposed 

strategy has been implemented for deciphering four class Motor Imagery signals recorded 

from different users while performing four imagined movements of right hand and left hand. 

An ensemble classifier comprising of k-NN layers has been used for the classification purpose 

and finally, the efficiency of the proposed framework has been tested against the traditionally 

used standard classifiers and in each case the designed algorithm outperformed the others. 

Literature shows Ramoser et al. first introduced CSP as an optimal spatial filter that can 

generate maximally different features that leads to reliable discrimination of single trial left 

and right hand MI signals [5]. As mentioned earlier, CSP was initially formulated for binary 

classification problems; later its multiclass extensions have been proposed and found to 

generate good results. Kang et al. in his attempt to consider the changes of subject specific 

spatial distributions of ERD/ERS in time domain in particular frequency bands, designed an 

optimal spatial filter by decomposing the raw EEG signals in a space-time-frequency feature 

space [6]. Wentrup et al. proposed a novel multiclass extension of traditional CSP by 

incorporating mutual information based Information Theoretic Feature Extraction (ITFE) 

methodology after inferring that CSP using simultaneous diagonalization procedure is 

equivalent to Independent Component Analysis (ICA) [7]. Moreover, after introduction of 

RCSP, in [8]-[10], although the researchers presented different possible aspects of the same, 

but they were unable to express the entire concept in a unified presentation instead of 

expressing different regularized formulations. Lotte et al. in [11] formulated a unified 

framework after accumulating almost all the existing regularization concepts and introduced a 

few improvised frameworks and presented a detailed analysis of all the methodologies by 

applying those on standard datasets acquired from BCI competition. 

The present section mainly addresses two major issues. Firstly, CSP is known to be a 

user specific spatial filter, which does not take into account any other subject’s data while 

performing the same cognitive task except the concerned subject. Due to this reason, often the 

performance of CSP is degraded drastically in case of users having lesser number of trials. 

Further, for a particular cognitive task not all scalp regions are supposed to provide relevant 

signals, hence it is wise to rank the EEG electrodes in order of their usefulness corresponding 
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to a particular cognitive task. In the present scenario, a penalty function, considering the above 

two aspects has been derived which on one side penalizes the channels which are supposed to 

contribute less corresponding to a specific cognitive task and on the other hand it judiciously 

focuses on the subjects having more number of trials while deemphasizing the other subjects.  

5.2.1 Proposed Methodology 

 

Literature shows already many researchers have devoted their extraordinary efforts in order to 

derive different penalty terms that covers various aspects of the drawbacks faced while using 

an EEG based BCI system, but none of them could satisfactorily merge the methodologies so 

that one unified framework can take care of all the limitations with efficiency. These issues 

motivated us to delve into the matter and come up with a solution that can serve the purpose. 

5.2.1.1 Novel Penalty Term 

As mentioned in [11], out of the penalty terms that has been applied so far, CSP with Weighted 

Tikhonov Regularization (WTRCSP) is found to generate the best performance in terms of 

several performance indices like accuracy, robustness etc. 

As stated earlier, for a particular cognitive task not all scalp regions will be contributing 

equally, but again choosing only a smaller subset of electrodes may lead to loss of relevant 

information which can have a negative impact on the system performance. Instead, it is an 

intelligent way to rank the electrodes according to their usefulness for a concerned cognitive 

task and then introduce the concept of penalty by deemphasizing the channels having lesser 

contribution and focusing more on the channels that are likely to provide relevant data.  

Similarly, not all subjects provide optimal data which can degrade system performance 

especially for the subjects having lesser number of trial recordings. In this paper, we propose a 

novel penalty, formally termed as Composite WTRCSP which computes the usefulness 

coefficient of every channel considering each and every subject’s data weighted by a term 

depending on their individual number of trials. Earlier, similar work has been introduced in 

regularization of CSP at covariance matrix estimate level, but combining these two genre of 

regularization to cover all the aspects is not an easy work, in fact that leads to an increased 

system complexity which is not acceptable. 

In the proposed framework, a quadratic penalty term P(w) is considered, where K is a 

diagonal matrix such that K=Diag(UG) and Diag denotes the diagonalize operation. UG(i) 

signifies the level of penalty assigned to the channel i. Using preliminary neurophysiologic 

knowledge it is often possible to assign penalty values to the concerned electrodes, but 

theoretic explanations may not always fit well to all the subjects participating in the 

experiment and due to this inexact information the system performance can be deteriorated. 
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Hence, in this work, the penalty values have been obtained using other subjects’ data, which is 

nothing but the inverse of the normalized average absolute weight of the electrode obtained 

from the composite weighted spatial filters corresponding to other subjects. The mathematical 

formulation can be expressed as, 
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                                (5.1) 

 

Since the more will be the usefulness of an electrode, the less is supposed to be the 

assigned penalty; to carry out this purpose inverse operation is chosen.  is the set of all the 

subjects participating in the experiment, and i

jw denotes the weight of j
th 

spatial filter of i
th
 

subject obtained using CSP. Ni and Ntotal respectively denote the total number of trials of i
th 

subject and the total number of trials conducted for all the subjects. The usefulness coefficients 

are calculated in a way such that the information obtained from the subjects having more 

number of trials are given more priority in comparison to the subjects having relatively lesser 

number of trials, thus this modified Composite WTRCSP is likely to reflect the channel 

usefulness more accurately than previous one. 

5.2.1.2 Ensemble of k-NN Classifiers 

In supervised learning problem Ensemble classifier is an important part as it trains a number 

of individual classifiers in co-operative manner. It is seen that depending upon the distribution 

of the training data, all the training data are not learned well by any single classifier and 

accuracy on test dataset becomes poor [12]. A better approach is to use number of classifiers 

as a group where each individual classifier is called base learners. Base learners are taught 

separately and decision obtained from base learners are combined to generate a single 

decision. Base learners may be heterogeneous or homogenous, to perform a classification task 

with coordination [13].  

         A classification problem can be stated as mapping between set X and set Y where 

X= )},).....(,(),,{( 2211 nn yxyxyx is set of n training data and each instance belongs to some 

unique domain. Y is label data in integer form such that Y = },....2,1{ K  Here, the objective is 

to find the function which maps each element of set X to set Y. 

     k-NN can be regarded as such function for mapping, where the method consists of 

storing k-patterns which are nearest to the test pattern under consideration and then it 

calculates the Euclidian distance of the test pattern from all other patterns. For any two vector 

1x and 2x in the same feature space, Euclidean distance D  is calculated as [14], 
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     The most probable classes get the nomination from previously selected k-nearest 

neighbours and the class which gets the most nomination is selected as the class of that 

particular test pattern [15]. K is very important parameter of the k-NN classifier as the local 

density of data is controlled by it and of course it is much smaller than the training sample 

size. The distances from the test sample to other samples are stored in ascending order such 

that )()()( ....21 xxx DnDD  where )(1 xD is the distance from the nearest neighbour and so 

on. The density estimate of k-NN is given as follows [16]; 
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     The ensemble classifier performs the two prime tasks, first it infers the classes from 

individual classifiers and second it generates a combination rule which ultimately decides the 

class based on the results of individual classifier.  

      Out of many combination rules, this section uses random subspace method for 

constructing ensembles [17]. Here the method generates random subspaces from original 

feature space to train the base learners. Suppose X = { nxxx ,...., 2,1 } be the n input feature. To 

generate a random space ensemble with D number of classifiers, D number of samples each 

size of W is drawn at random, this is done without replacement and over uniform distribution 

X. This method requires two parameters for constructing ensemble, first the number of 

ensemble size and other one is cardinality of subspace. The final decision is taken based on 

majority vote. It needs to be mentioned here that subspace method is more useful than any 

other rules which modifies the input training data, as k-NN is stable with the modification of 

input data but sensitive to any input perturbation [16]. 

5.2.2 Experimental Setup 

This section provides a detailed description of various experiments that were undertaken to 

detect the efficacy of the proposed framework. EEG data was acquired from 8 healthy 

subjects having undergone no such major diseases in the recent past. As EEG signal is subject 

specific, so equal number of participants were chosen from both the gender (male & female). 

Age group of all the subjects were between 22-30. Objective and methods of the experiment 

were made clear to them prior to the experiment. A consent form was also signed by them 
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stating their willingness to participate in the study. All other ethical and safety issues were 

maintained according to the Helsinki Declaration of 1972, revised in 2000 [18]. 

The main objective of the section is to introduce a novel approach on RCSP to decode 

the motor imagination signal, therefore motor cortex along with parietal and temporal region 

of brain has been considered for acquiring EEG signals. 6 electrodes viz. C3, Cz, C4, P3, Pz, 

P4 were placed over the scalp. EEG amplifier has the sampling frequency of 200 Hz and 

made by NIHON-KOHDEN and all the electrodes were made of AgCl.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.1 Experimental Setup and Visual Stimuli 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Electrode Locations 
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5.2.2.1 Design of Visual Stimuli 

To maintain the synchronisation of response timing, visual stimuli were shown to all subjects 

and they had to perform the imagination task accordingly. This section employs four class 

motor imagery given as, right arm stretch about shoulder, left arm stretch about shoulder, left 

arm fold about elbow, right arm fold about elbow. Each of the instruction appears on the 

screen randomly but with equal duration of 5 seconds. Between each such command a blank 

screen appears for 2 seconds duration. At beginning a ‘start’ screen appears for 5 seconds 

followed by a mark screen of 5 seconds to make subjects concentrate on study. Each subject 

performed 5 such sessions in each trial, but since the proposed methodology of RCSP 

concerns mainly about penalizing subjects having lesser number of trials, so in order to check 

the adaptability of the proposed framework, the subjects were asked to perform unequal 

number of trials unlike the traditional ways of equal trials. Fig. 5.1 and Fig. 5.2 depict the 

stimuli timing diagram and electrode placement of the experiment respectively. 

5.2.2.2 Preprocessing of EEG Signals 

Raw EEG data is contaminated with various artefacts due to eye blinking and head movement. 

Power spectral density of raw data reveals that signal power is dominant in the frequency range 

0.1-32 Hz, an elliptical bandpass filter of order 10 has been employed to extract the desired 

frequency range. 

TABLE 5.1 AVERAGE CLASSIFICATION ACCURACY(%)  OF THE EMPLOYED 

ENSEMBLE CLASSIFIER IN COMPARISON WITH OTHER STANDARD CLASSIFIERS 

 Class1 

(Left 

Hand 

Shoulder 

Stretch) 

Class2 

(Right 

Hand 

Shoulder 

Stretch) 

Class3 

(Left 

Hand 

Elbow 

Stretch) 

Class4 

(Right 

Hand 

Elbow 

Stretch) 

Proposed 

Ensemble  

Classifier 

 

88.57 

 

86.72 

 

82.35 

 

81.48 

 

k-NN  

Classifier 

 

82.65 

 

83.79 

 

80.86 

 

79.53 

 

MLP SVM 

Classifier  

 

74.39 

 

72.22 

 

70.68 

 

71.21 

Naïve Bayes  

Classifier 

 

65.47 

 

66.07 

 

62.49 

 

61.13 

 CAR Filtering 

Common average referencing has been done to spatially filter the EEG signal and to get 

rid of local interference caused by neighbour electrodes. The mean of all the channels are 

Classifier 

Class 
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subtracted from each individual channel to eliminate the influence of far field sources. If raw 

signal of 6 electrodes is designated as )(tai where 6,...2,1i , then CAR filter can be defined 

by following formula, 

 

                                  



6

1

)(
6

1
)(

i

ii tata                                           (5.4) 

 

5.2.2.3 Feature Extraction 

In the present work, after introduction of the novel penalty term based Composite WTRCSP, 

only the largest two spatial filters out of six spatial filters have been used for filtering purpose. 

After obtaining the spatially filtered signals, final feature set is computed as the logarithm of 

the variance of the filtered signals. 

5.2.2.4 Classification 

Table 5.1 provides a tabulated description of the mean classification accuracies obtained class 

wise after employing the described Ensemble classifier and studying the results mentioned in 

Table 5.1, it is quite clear that the Ensemble classifier outperforms the other standard 

classifiers in terms of precision and thus validates our preference for the same over the other 

classifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Classification Metrics 

Fig. 5.3 Classification Metrics 
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Fig.5.3. presents a detailed description regarding the performance of the Ensemble 

Classifier in terms of Sensitivity, Specificity, Type 1 Error Rate and Type 2 Error Rate in 

comparison with three other standard classifiers. In the present work, Sensitivity, Specificity, 

Type 1 Error Rate and Type 2 Error Rate are defined as, 
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                      (5.7) 
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                      (5.8) 

 

It is evident from Fig.5.3 also that the chosen classifier surpasses its competitors in terms of 

the specified parameters by a large margin. 

5.2.2.5 Statistical McNemar’s Test 

In this section, McNemar’s test [19] has been employed for detection of the performance of 

two classification algorithms for correctly classifying data samples. Suppose, using a common 

input phylogenetic sequence, the outputs generated by the algorithm A and algorithm B are fA 

and fB respectively. Let 
01n be the number of data samples misclassified by algorithm A but 

not by algorithm B and 
10n be the number of data samples misclassified by algorithm B but 

not by algorithm A. Then, a statistic termed as Z score is defined by using the following 

equation, 
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01 10

01 10

( 1)n n
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n n

 



                                                        (5.9) 

 

Here Z has been evaluated in order to denote a comparator statistic of misclassification 

between the proposed Ensemble classifier (Algorithm A) and any of the above mentioned 

competitor algorithms (Algorithm B). In Table 5.2 the null hypothesis has been rejected, if Z> 

3.84, where 3.84 is the critical value of the chi square distribution for 1 degree of freedom at 

probability of 0.05. It can be clearly seen from the results that the proposed classification 

algorithm outperforms the other competitors except k-NN classifier. 
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TABLE 5.2 STATISTICAL ANALYSIS OF CLASSIFIERS USING MCNEMAR’S TEST 

Reference Algorithm: Proposed Ensemble Classifier 

Classifier 

algorithm used 

for comparison 

using desired 

features d=50 

Parameters used 

for McNemar’s 

test Z 

Comments on 

Acceptance/Rejection of 

Hypothesis 
01n  

10n  

MLP SVM 87 120 4.946 Rejected 

Naïve Bayes 90 121 4.265 Rejected 

k-NN 97 116 1.521 Accepted 

 

This chapter introduces a novel penalty term in the objective function of RCSP based 

BCI systems such that the concerned system emphasizes on the subjects having performed 

larger number of trials while computing the usefulness coefficients of different electrodes and 

thus penalizing the subjects having relatively lesser number of trials. The proposed 

framework has been implemented in a system considering the reduced numbers of chosen 

electrodes placed on certain specific scalp regions that are likely to provide relevant signals 

while performing a chosen cognitive task (MI) according to prior neurophysiological 

knowledge, but to detect the efficiency of the said system it is equally important to employ 

the proposed methodology in a system considering a larger number of electrodes placed on 

the entire scalp following any standard electrode placement system. Moreover, the newly 

derived penalty term takes into account subject-specificness, while there are several other 

important aspects that should be addresses while dealing with such a system. Further, the 

mean classification accuracy of (88%) can be considered only to be fairly good in this 

research discipline, hence further efforts should be devoted to enhance the accuracy precision 

as far as possible. 

 

5.3 DECIPHERING MOTOR IMAGERY EEG DATA USING PROXIMITY 

BASED ADE INDUCED SPARSE NETWORK 

 

This chapter proposes a novel approach for classification of four class motor imagery data 

using a sparse neural network classifier. EEG signals were recorded using 19 different 

electrodes placed on scalp excluding the reference electrodes, from 9 different subjects 

corresponding to imagined movements of left hand, right hand, foot and tongue. The 

proposed framework presents a novel Adaptive Differential Evolution based weight 

adaptation scheme and implemented the said scheme in a classical Back Propagation neural 

network (BPNN). The features were extracted using Common Spatial Pattern (CSP) 

algorithm, and the Principal Component Analysis (PCA) was employed as a dimension 

reduction tool. Further, to validate the performance of the proposed methodology, the 

concerned classifier performance has been compared with other standard classifiers. From the 
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experimental results, it is concluded that CSP filtered signals along with the designed 

classifier outperforms the other traditionally used procedures. Apart from improving the 

classification accuracy by the newly designed classifier, the proposed framework also checks 

the impact of physiologically generated artifacts (eye movement) upon the system 

performance by conducting the concerned procedures without removing those artifacts and 

infers that such artifacts have negligible impact in case of motor imagery based cognitive 

tasks.  

Due to cost efficiency, high time resolution, less environmental limits and most 

importantly its wide application in decoding mental states using pattern classifiers, 

electroencephalogram (EEG) is always preferred in practical BCI applications compared to 

other non-invasive modalities [20] like fMRI, fNIRS etc. Motor Imagery is one of the most 

popular paradigms used in EEG based BCI system. Motor imagery based BCI is basically 

formulated using a pattern recognition approach [21], where a subject issues a command by 

imagining a movement of a particular limb, which in turn causes a change in the rhythmic 

activities in specific locations of brains corresponding to the concerned limb. After extracting 

relevant features from raw EEG signals it is easy to detect the subject’s mental state with the 

help of a classifier that has been trained using similar features with known class labels. 

To check the accuracy of the entire BCI system, electrodes are placed over the entire 

scalp area as skipping any particular area may lead to the loss of information. While recording 

EEG signal readings from the subjects corresponding to any cognitive task, the resulting 

signals are often contaminated by artifacts and noise. A common source of such noise is 

artifacts generated due to eye blinking. To avoid dealing with such noisy data, different filters 

[22] are used for raw EEG data preprocessing to lessen the impact of noise. But, there is a 

specific kind of artifact generated due to eye movement (blinking, flutter) that has very 

minimal impact on system performance.  

Moreover, in EEG based BCI research, feature extraction is a key step, but irrespective 

of the feature type selected, the resulting data dimension is always found to be pretty high. 

Hence, various data dimension reduction techniques are introduced which enable analysts to 

avoid working with higher dimensional data thus reducing system complexity. The final step is 

related to classification which assigns a particular class label to an unknown data with the help 

of an already trained classifier.  

Because of the growing interest in this particular domain, a large number of research 

groups have put their efforts in this area. Literature show that Pfurtscheller et al. first used 

EEG classification on Motor Imagery based Event Related Desynchronization (ERD) for a 

BCI application [2]. Later, Ramoser et al. used the common spatial pattern algorithm for 

feature extraction, in a single trial motor imagery based BCI [5]. Popescu et al. proposed a new 
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EEG cap consisting of dry EEG electrodes avoiding the bottle-neck of time consuming gel 

application and also considering much less number of electrodes than a standard EEG setup 

[23]. Lal et al. proposed a novel channel selection method based on recursive elimination of 

least contributing electrodes according to the classification accuracy with respect to a classifier 

like Support Vector Machine (SVM) [24]. Wang et al. used common spatial pattern algorithm 

(CSP) to obtain the spatial patterns corresponding to hand and foot motor imagery and further 

channels were selected based on the CSP spatial filter co-efficient [25]. 

Much work has also been carried out with an aim to enhance the efficiency of the 

classifiers in various real time applications. Heerman et al. employed Back Propagation Neural 

Network (BPNN) for multispectral image data classification purpose by applying it to 

simulated as well as real satellite imagery [26]. Paola et al. presented a detailed comparison 

between Back Propagation Neural Network (BPNN) and maximum likelihood classifiers in 

terms of working principle to find out how these two algorithms perform differently on the 

same image [27]. Qin et al. developed a self adaptive Differential Evolution algorithm, where 

prior assumption of the learning rule and the parameters were no longer required, they were 

adapted through learning experience only [28].  

Although this chapter also attempts to classify motor imagery signals [29], it majorly 

emphasizes on two aspects of EEG motor imagery classification. Firstly, the artifacts generated 

due to eye movements, blink or eyelid flutter has minimal impact on the classification of motor 

imagery signals, since the noise generated for the above mentioned physiological processes has 

maximum impacts on electrodes placed close to eye (prefrontal electrodes). With the 

elementary neurophysiological knowledge, it can be said easily that in case of motor imagery 

classification, motor cortex electrode signals generate more relevant information than the other 

channels, so conducting experiments without artifact removal does not have a major impact on 

system performance. Secondly, the paper proposes a novel weight adaptation approach for 

designing a neural network classifier which can recognize the class of an unknown motor 

imagery signal after being trained by similar data acquired from various subjects. The 

highlighted part of the approach lies in rejection of the links having minimum weight without 

sacrificing the accuracy. A variant of Differential Evolution has been developed and employed 

in order to collect the optimized weights. Differential Evolution has been preferred over other 

alternatives because of its rapid rate of convergence and high performance precision. The 

proposed framework may find tremendous appreciation in the field of cognitive task based 

BCI systems, because accurate classification of motor imagery signals still remains a 

challenging one. Apart from that, the paper employs common spatial pattern (CSP) feature 

extraction algorithm and Principal Component Analysis (PCA) for dimension reduction 

purpose. 
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5.3.1 Preliminaries 

 

This section provides an elementary idea about the working principle of the Differential 

Evolution (DE) algorithm and Artificial Neural Network (BPNN). 

5.3.1.1 Differential Evolution 

Differential Evolution is undoubtedly belongs to the category of popular evolutionary 

algorithms because of its ease of use, low complexity, higher speed of convergence, less 

requirement of parameters and most importantly high precision [30]. The Differential 

Evolution Algorithm used here is can be explained as follows, 

1) Initialization: Initialize a population of NP D dimensional members (
,i GX ) as trial 

solutions to an optimization problem. The i
th
 data point of the population is expressed as, 

 

     , 1, , 2, , , ,[ , ,........, ]i G i G i G D i GX x x x             (5.10) 

 

where G is the generation number. The vectors are chosen by maintaining a uniform 

distribution of the entire range of X  so that the DE algorithm can easily search for the 

global optima. So the k
th
 data point of the i

th
 vector can be defined as, 

 

    , ,0 ,min , ,max ,min*( )k i k i k k kx x r x x               (5.11) 

 

where G=0 denotes the initial population, 
,i kr denotes a uniformly distributed parameter 

in [0,1], and 

 

     min,min 1,min 2,min ,min{ , ,...., }k Dx X x x x             (5.12) 

 

     max,max 1,max 2,max ,max{ , ,...., }k Dx X x x x             (5.13) 

 

2) Mutation: For each candidate solution, 3 helping agents called target vectors are 

generated to the present generation from the parent vector. Now, a mutant vector termed as 

donor vector is generated using differential mutation operation and finally an offspring is 

formed by recombination of donor and target vectors, known as trial vector.  

    , , , ,
' ( )i i ii G m G n G o G

X X F X X               (5.14) 

 

where mX , nX  and oX are helping agents, such that the indices m, n and o are chosen 

randomly [1,NP] so that they are mutually different and also different from base index i. 
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The donor vectors are chosen from the current population only. The value of F is assumed 

in (0, 1). 

3) Recombination: To boost up the population after mutation, the donor vector interchanges 

its components with the trial vector depending upon the value of a randomly generated 

number. Basically, For each pair of 
,i GX and 

, 'i GX  we randomly generate a no in (0, 1) 

and if it is greater than Cr we consider 'iX , otherwise we take iX  to form the target 

vector 
" " "

, 1, , 2, , , ," [ , ,......., ]i G i G i G D i GX x x x . 

4) Selection: From each pair of iX  and
, "i GX  , allow only one member to enter the 

population of the next generation using the following policy, if 
,( ) ( ")i i Gf X f X  then 

, 1 ,i G i GX X   else 
, 1 , "i G i GX X   depending upon fitness function value. Thus DE allows 

the fittest chromosome to generate offspring to the next generation, hence using this 

procedure the fitness value of the population either improves or remains same but never 

worsens. 

5.3.1.2 Artificial Neural Network 

The applicability of artificial neural network has been explored by the research professionals 

by employing the architecture in various domains including computer technology, satellite 

communication, biology, psychology etc. The purpose and the methods of application varied 

but the central idea remained similar in each of these cases.  The development of artificial 

neural networks is primarily based upon parallel processing technique. The initial steps 

include selection of appropriate neural network architecture depending on the problem 

parameters and then tuning the said network to generate desired output. Every neural network 

follows certain ‘learning’ paradigms for training purpose using numerous examples. 

Back Propagation Neural Network (BPNN) is one of the most popular neural networks used 

these days for classification purpose. The mostly used network topology consists of multiple 

layers with connections established between neurons of adjacent layers only such that flow of 

information remains in one direction only, such type of networks are termed as feed forward 

network. The layer through which data is fed into the network is termed as input layer, the 

layer from which processed information is retrieved is termed as output layer and the 

intermediate layers are called hidden layers. 

Fig. 5.4 presents a detailed overview of a three layer Back Propagation Neural Network 

(BPNN), where xij is the connection between the i
th

 node of the input layer and j
th 

node of the 

hidden layer and yij is the connection between the i
th
 node of the hidden layer and j

th 
node of 

the output layer. The main element of a network is the processing node, which serves basic 
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two purposes. Firstly, it calculates the weighted sum of the input activations and then passes 

the summation through an arbitrary activation function to generate the output response using 

the equation, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Architecture of Back Propagation Neural Network (BPNN) 

 

     pi ij pj i

j

net w a bias               (5.15) 

 

where, ijw signifies the weight between current i
th
 node and previous j

th
 node, whereas pja

denotes the input activation from previous node for pattern p and 
ibias is the bias term 

corresponding to the current node. Further, pinet is passed through a nonlinear function to 

produce the output activation response pia , 

 

     
1

1 pi
pi net
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e





               (5.16) 

 

A Back Propagation Neural Network is trained using numerous samples after 

configuring input and output pattern according to the problem requirements. The easiest 

approach is to assign one input node to each input channel and one output node to each of the 

desired class labels. As an input pattern is fed to the network the connections are modified in 
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order to produce the output activation response close to the desired output as much as 

possible. The patterns are repeatedly fed to the networks until it completely learns it. The 

main aim of the Back Propagation Learning algorithm is to minimize the sum of the error E

between the output activity response and the desired response. 

 

    
2( )pi pi

p i

E t O                (5.17) 

 

where, p and i denotes the patterns and output nodes respectively. The weights are adapted in 

a way such that above mentioned error is minimized and the network learns the pattern, so 

that it can recognize a similar pattern by assigning the concerned class label to it, in the 

testing phase. 

5.3.2 Proximity Based ADE 

In this section, Proximity based Adaptive Differential Evolution (PADE) algorithm is 

proposed. The algorithm is based on a few observations.  

5.3.2.1. Mutant Vectors based on Success Rate 

 

S. Basu Roy et al. [31] has used controlled mutation to search for better donor vectors. The 

main reasons for using more than one type of mutation vectors’ choice technique within a 

single algorithm are that 

 DE/rand/1 technique has more exploration capability since it uses random vectors from 

the pool of population vectors for perturbation. This nature makes this technique a 

useful tool to pull out algorithm from local minima with a limitation of less 

convergence ability. 

 DE/best/1 or DE/target-to-best/1 techniques use best vectors of the generation. Thus, 

the algorithm is guided towards the direction of the best solution found so far. It is 

highly probable that the new offspring vector may be guided towards local minima 

with high convergence rate. 

The effort towards finding a better optimal solution by creating a stand-off between 

exploration and exploitation is the main reason behind proposing this novel mutant vectors’ 

selection technique. We have defined a mutation control parameter (M) used in the next 

generation depending on the success rate (SR) of current generation. Success rate is defined 

by the ratio of number of successfully generated offspring vectors which are carried to the 

next generation to total population. This success rate is used to find M according to the 

logarithmic rule, expressed as, 
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2log (1 )M SR              (5.18) 

 

This strategy has a strong potential for better donor vector selection than the traditional 

family of DE algorithm. 

5.3.2.2. Proximity based Scale Factor Adaptation 

 

We have seen the traditional use of fixed scale factor [32] or use of adaptive scale factor [31], 

[33] generated randomly using some statistical distribution. Without depending upon the 

random generation of a scale factor from any statistical distribution, we propose an approach 

for selecting a scale factor for each target vector i depending upon the success rate and the 

distance of the candidate vector from the best population vector, which is mathematically 

formulated as, 

 

   ( ) . ( 1) (1 ).(1 ),i bestX X

i iF n SR F n SR e
 

                          (5.19) 

 

where, )(nFi  is the scale factor the current generation. So in best case scenario when SR is 1, 

the old scale factors are carried over to the next generation without alternation. In the worst 

case, scale factor for each target vector is regenerated according to the distance formula. 

These changes are incorporated on the main DE frame. 

5.3.3 System Overview 

This section describes the basic steps of a four class motor imagery classification system. 

5.3.3.1 Feature Extraction 

This step mainly deals with extracting features from preprocessed EEG signals. There is no 

standardized feature set for EEG signal analysis, depending on the requirement of the 

problem, researchers usually choose a type of or a combination of features from a pool of 

time domain, frequency domain or time frequency correlated features. All the above 

mentioned feature types carry relevant information, but since classifying motor imagery data 

is still considered to be a challenging problem, hence it is necessary to deal with efficient data 

set [16]. So, we have used Common Spatial Pattern (CSP) algorithm for feature extraction 

purpose. CSP is a spatial filtering technique that represents the EEG signals as a linear 

combination over the number of channels taken into consideration. Moreover, unlike other 

feature sets CSP is directly applicable to multichannel data while on the other hand, to extract 

other feature types like wavelet coefficients from multiple electrode EEG signals, the 

extraction technique needs to be applied individually on each channel to serve the purpose. 

CSP basically aims to map the data samples in a linear subspace such that the variance is 
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maximized in one condition for one class and minimized for the other class, to yield more 

discriminate filtered signals which can be easily classified by the classifier. 

5.3.3.2 Dimension Reduction 

Dimension reduction is also a key step in the proposed framework, since feature extraction 

generates a huge dimensional feature set (here after termed as ‘data points’) of the order of 

several thousands approximately; hence it becomes very difficult to use that large 

dimensional data for classification purpose. So, several data point reduction techniques have 

been introduced in order to deal with such problems. In this chapter, we have used Principal 

Component Analysis (PCA) [34], to extract ideal data points for each subject corresponding 

to each class. The steps of PCA in this context have been briefly outlined as follows, 

1) Let 
1 2{ , ,....., }k k k

k mA X X X denotes the set of m extracted features from k
th

 subject for 

each class, where 
,1 ,2 ,{ , ,......, }k k k k

i i i i dX x x x denotes a d- dimensional vector and [1, ]k K

where K is the maximum number of subjects for each class. Firstly, for each data point 
k

iX , a 

mean subtracted vector '
k

iX is constructed, where 
k

ix is the mean of all data points of 
k

iX . 

 

   ,1 ,2 ,' { , ,......., }
k

k k k k k k
i i i i i i d iX x x x x x x                 (5.20) 

 

2) A matrix 
kD of m d dimension is constructed containing the newly formed mean 

subtracted vectors. Next, the data covariance matrix is formed as 

 

     
.

1

T

k k
k

D D
C

d



              (5.21) 

 

Finally, the first principal component kPC is obtained by Eigen value decomposition, which 

is nothing but the Eigen vector corresponding to the largest Eigen value. 

 

    1 2[ ' , ' ,....., ' ]k k k

k mD X X X              (5.22) 

 

3) Each member of the matrix kD is projected along the first principal component to 

obtain class representative principle component k using the equation, 

 

     
T

k k kPC D                (5.23) 

 

Thus, we obtained a reduced dimensional data points for each subject. If there are K subjects 

and R classes, then the entire procedure needs to be repeated K R times. 
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5.3.3.3 Classification 

 

In order to classify motor imagery signals, we have used neural network with sparse 

architecture. In sparse neural network, some of the neurons of each layer are not connected to 

the nodes or neurons of the next layer. The training phase of the network has been divided 

into two sub phases – weight adaptation and weight tuning. 

 Weight Adaptation. The weights of ANN have been adapted using a proximity 

based adaptive differential evolution (PADE) algorithm. The dimension of the 

population vectors is same as the number of total weights present in the 

network. The vectors are changed iteratively such that the error defined in 

equation (5.17) is minimized. After adaptation, 15% connections having low 

absolute weight values are ignored to get the sparse architecture assuming that 

they have low contributions towards classification. 

 Weight Tuning.  After the sparse architecture is achieved, the weights of the 

existing connection are gone through fine tuning by basic back propagation 

(BP) algorithm to increase the accuracy using the same error equation (5.17). 

The necessity of this step is that it put more emphasis on the existing 

connections assuming that they have significant contribution in the 

classification of MI data. 

In this approach though the network has gone through the training phase twice, the less 

complex NN architecture is found. The pseudo code for weight adaptation using proposed 

PADE algorithm along with the training procedure is outlined in Table 5.3. 

 

5.3.4 Experimental Results and Statistical Analysis 

This section aims to provide detailed description of the different steps of the cognitive task 

based experiments that have been undertaken to check the performance of the proposed 

framework and validate the performance of the designed neural network classifier with other 

standard classifiers. 

5.3.4.1 Experimental Setup and EEG Signal Acquisition 

To record EEG signals, the subjects were asked to sit on a chair comfortably with hands kept 

in relaxed position. At the beginning of the experiment a beep sound is heard followed by a 

relax phase of 5 seconds, after which an arrow directed in (left, right, up or down) appears on 

screen to instruct the subjects to perform the specific motor imagination. The arrow stays on 

screen for 10 seconds followed by another relaxation phase of 5 seconds and a beep sound to 

indicate the end of trial.  
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Fig.5.5 Experimental Setup 

TABLE 5.3 PSEUDO ALGORITHM FOR SPARSE NETWORK WEIGHT 

ADAPTATION 

1. Initialization:  

a.  Initialize NP number of weight vectors whose dimensions are equal to the total number of weight 

present in the neural network. 

b.  Initialize F = 0.8 and CR = 0.7 and Mutation factor M = 0.5 and 

calculate the fitness value of equation (5.10) of each individual population vector. 

c.  Initialize success rate SR = 0. 

2. Mutation: 

If iteration>1 

    Choose scale factor for each target vector according to equation (5.19). 

End if 

if rand(0,1] > M 
   Choose DE/rand/1/bin 

Else  

Choose DE/target_to_best/1/bin for donor vector selection 

End if 

3. Crossover:  
Recombine donor vector with the target candidate vector to generate offspring vector. 

4. Selection : 

Find the best vector between candidate and offspring.  

If the offspring is better according to the minimum objective function value, increase the success rate 

by (1/NP). 

 
5. Repeat step 1.c to 4 for all the NP vectors. 

 

6. Choose control parameter M using equation (5.18). 

 

7. Repeat step 1.c to 5 for a predefined number of iteration. 

 

8. Find out the best weight vector after all the iteration completes. 

 

9. 15% weights between each two consecutive layer with low values are ignored and connections are 

terminated to get sparse network.  

 

10. Fine tune the weights of the existing connections with BP algorithm to get better accuracy 
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A pictorial presentation of a trial is shown in Fig. 5.6. To predict the extent of impact of 

artifacts generated due to eye movement, the subjects were not restricted to keep their eye 

movement stable while performing the imagined movements for the concerned cognitive 

tasks. 

EEG signals are acquired using a stand alone EEG machine (manufactured by Nihon 

Kohden) with 19 Ag/ AgCl (FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, 

P4, T6, O1, O2) electrodes placed on different scalp locations according to standard 10-20 

electrode placement rule. Here A1 and A2 have been considered as the reference electrodes 

and the sampling frequency is 200Hz. Fig. 5.5. describes the entire experimental setup briefly. 

Fig. 5.7 presents 19 unique component scalp maps of different brain locations obtained by 

performing ICA, where the red colour indicates highest activation whereas the blue colour 

denotes lowest activation. 

5.3.4.2 Frequency Band Selection 

From the experimental results and elementary neurophysiological knowledge we have seen, 

the maximum change in the brain signals occurs in the range of 4-30 Hz. Hence in this case, 

to extract the signals of the above mentioned frequency band, a bandpass elliptical filter of 4
th 

order has been used. 

 

 

 

 

 

 

Fig. 5.6 Time Division of a Particular Trial of a Class 

 

5.3.4.3. Experimental Results 

Fig. 5.8  presents the classification accuracy of the newly designed proximity based 

ADE induced sparce neural network classifier and validated it with other standard classifier in 

terms of average classification accuracy. From the figure, it is easily noticed that subject 2 has 

outperformed all the subjects and the proposed classifier provides better performance even in 

the presence of artifacts generated due to eye movement infering that such artifacts have 

minimal impact on motor imagery based classification tasks. In case of all the subjects, RBF  
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Fig. 5.7 Component wise Scalp Maps for All the Electrodes Number wise Arranged as, F3, Fz, 

F4, P4, P3, O1, O2, C3, Cz, C4, F7, F8, T3, T4, T5, T6, Fp1, Fp2, Pz 

 

 

Fig. 5.8 Subjectwise Comparison of the Performance of the Proposed Classifier with Other 

Variants of Neural Network Classifiers in Terms of Mean Classification Accuracy 
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SVM has been found to be the closest competitor of the proposed classifier, and Linear SVM 

generated poor performance for all the subjects for this problem. 

Along with classification accuracy, it is equally important to keep an eye on the 

misclassification rate of the proposed classifier. Hence we have included the confusion matrix 

in Table 5.4 corresponding to the four cognitive tasks which tabulates the readings obtained 

using the newly designed classifier. The large entries on the diagonal positions indicate the 

satisfactory performance index in all the four classes, besides the misclassification rate is also 

smaller in the proposed strategy. 

In Table 5.5, the average classification accuracies obtained for four classes using 

different set of EEG features have been tabulated. In this case, we have validated CSP with 

other standard temporal, frequency and time frequency correlated features. From the 

experimental results, it is readily understood that amongst the four classes left hand (class 2) 

has been detected most accurately. Among all set of different features, Common Spatial 

Pattern (CSP) provided the best performance among the five well known features.  

TABLE 5.4 CONFUSION MATRIX OF THE COGNITIVE TASKS USING PROPOSED 

FRAMEWORK 

 
 

 

Predicted Class 

 

  
Left  Hand 

 

Right Hand 

 

Tongue 

 

Foot 

 

A
c
tu

a
l 

C
la

ss
 

 

Left  Hand 

 

 

92.278 

 

 

3.125 

 

 

1.562 

 

 

3.037 

 

 

Right Hand 

 

 

4.983 

 

 

91.184 

 

 

1.273 

 

 

2.56 

 

 

Tongue 

 

 

4.237 

 

 

5.175 

 

 

89.578 

 

 

1.01 

 

 

Foot 

 

 

4.123 

 

 

5.247 

 

 

0.149 

 

 

90.481 

 

 

In Table 5.6 the null hypothesis has been rejected, if Z> 3.84, where 3.84 is the critical 

value of the chi square distribution for 1 degree of freedom at probability of 0.05. It can be 

clearly seen from the results that the proposed classification algorithm outperforms the other 

competitors except RBF SVM.  
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TABLE 5.5 AVERAGE CLASSIFICATION ACCURACY OBTAINED WITH DIFFERENT EEG 

FEATURES FOR THE FOUR CLASSES 

EEG 

Features 

Cognitive tasks undertaken presented as 

classes 

Class 1 

(Right 

Hand) 

Class 2 

(Left 

Hand) 

Class 3 

(Tongue) 

Class 4 

(Foot) 

AAR 72.56 74.78 64.57 68.92 

Hjorth 78.48 79.21 70.12 69.25 

PSD 80.56 82.36 75.61 76.44 

DWT 82.39 84.85 78.37 80.29 

CSP 89.67 92.61 83.45 86.78 

 

5.4 CONCLUSION 

This section basically infers three important findings, 1) using Common Spatial Pattern (CSP) 

as the feature extraction tool generates better performance than any other feature extraction 

technique, 2) the usage of the novel proximity based ADE induced neural network classifier 

has enhanced the classification accuracy by quite a great extent, 3) the artifacts generated due 

to eye movements while EEG data recording have negligible effect on the overall system 

performance, because without removing such artifacts we have acquired quite a high accuracy 

(92%) for each of the classes. Hence, the proposed framework should definitely be 

recommended for application of real time systems where high precision is required. 

TABLE 5.6 STATISTICAL ANALYSIS OF CLASSIFIERS USING MCNEMAR’S TEST 

Reference Algorithm: Proximity based ADE induced sparse neural network 

classifier 

Classifier 

algorithm used 

for comparison 

using desired 

features d=50 

Parameters used for 

McNemar’s test 
Z 

Comments on 

Acceptance/Rejection 

of Hypothesis 01n  
10n  

LSVM 87 120 4.946 Rejected 

kNN 90 121 4.265 Rejected 

RBF SVM 97 116 1.521 Accepted 

 

REFERENCES 

[1] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. M??ller, “Optimizing spatial 

filters for robust EEG single-trial analysis,” IEEE Signal Process. Mag., vol. 25, no. 1, pp. 41–

56, 2008. 

[2] G. Pfurtscheller and C. Neuper, “Motor Imagery and Direct Brain–Computer Communication,” 

vol. 89, no. 7, pp. 1123–1134, 2001. 

[3] F. Lotte and M. Congedo, “A review of classification algorithms for EEG-based brain – 

computer interfaces,” J Neural Eng, vol. 4, pp. R1–R13, 2007. 



C h a p t e r  5 | P a g e  107 

 

Brain Localization and Feature Extraction Using Computational Intelligence Techniques  

 

[4] M. Arvaneh, S. Member, C. Guan, K. K. Ang, and C. Quek, “Optimizing the Channel Selection 

and Classification Accura

vol. 58, no. 6, pp. 1865–1873, 2012. 

[5] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial 

EEG during imagined hand movement,” Rehabil. Eng. IEEE Trans., vol. 8, no. 4, pp. 441–446, 

2000. 
[6] H. Kang, Y. Nam, and S. Choi, “Composite common spatial pattern for subject-to-subject 

transfer,” IEEE Signal Process. Lett., vol. 16, no. 8, pp. 683–686, 2009. 

[7] M. Grosse-Wentrup and M. Buss, “Multiclass common spatial patterns and information 

theoretic feature extraction,” IEEE Trans. Biomed. Eng., vol. 55, no. 8, pp. 1991–2000, 2008. 

[8] F. Lotte and C. Guan, “Spatially regularized common spatial patterns for EEG classification,” 

Proc. - Int. Conf. Pattern Recognit., pp. 3712–3715, 2010. 

[9] A. Ashok, A. K. Bharathan, V. R. Soujya, and P. Nandakumar, “Tikhonov regularized 

spectrally weighted common spatial patterns,” 2013 Int. Conf. Control Commun. Comput. 

ICCC 2013, no. Iccc, pp. 315–318, 2013. 

[10] W. Samek, C. Vidaurre, K.-R. Müller, and M. Kawanabe, “Stationary common spatial patterns 

for brain-computer interfacing.,” J. Neural Eng., vol. 9, no. 2, p. 026013, 2012. 

[11] F. Lotte, C. Guan, F. Lotte, C. Guan, and S. Member, “Regularizing Common Spatial Patterns 
to Improve BCI Designs : Unified Theory and New Algorithms Regularizing Common Spatial 

Patterns to Improve BCI Designs : Unified Theory and New Algorithms,” 2011. 

[12] N. García-Pedrajas and D. Ortiz-Boyer, “Boosting k-nearest neighbor classifier by means of 

input space projection,” Expert Syst. Appl., vol. 36, no. 7, pp. 10570–10582, 2009. 

[13] B. Zhang, “Reliable classification of vehicle types based on cascade classifier ensembles,” 

Intell. Transp. Syst. IEEE Trans., vol. 14, no. 1, pp. 322–332, 2013. 

[14] V. Athitsos and S. Sclaroff, “Boosting nearest neighbor classifiers for multiclass recognition,” 

in Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops. IEEE 

Computer Society Conference on, 2005, p. 45. 

[15] M. Derlatka and M. Bogdan, “Ensemble kNN classifiers for human gait recognition based on 

ground reaction forces,” in Human System Interactions (HSI), 2015 8th International 
Conference on, 2015, pp. 88–93. 

[16] S. Bhattacharyya, A. Konar, D. N. Tibarewala, A. Khasnobish, and R. Janarthanan, 

“Performance analysis of ensemble methods for multi-class classification of motor imagery 

EEG signal,” in Control, Instrumentation, Energy and Communication (CIEC), 2014 

International Conference on, 2014, pp. 712–716. 

[17] L. I. Kuncheva, J. J. Rodríguez, C. O. Plumpton, D. E. J. Linden, and S. J. Johnston, “Random 

subspace ensembles for fMRI classification,” Med. Imaging, IEEE Trans., vol. 29, no. 2, pp. 

531–542, 2010. 

[18] J. Mellin-Olsen, S. Staender, D. K. Whitaker, and A. F. Smith, “The Helsinki declaration on 

patient safety in anaesthesiology,” Eur. J. Anaesthesiol., vol. 27, no. 7, pp. 592–597, 2010. 

[19] T. G. Dietterich, “Approximate statistical tests for comparing supervised classification learning 

algorithms,” Neural Comput., vol. 10, no. 7, pp. 1895–1923, 1998. 
[20] G. Dornhege, B. Blankertz, G. Curio, and K.-R. Müller, “Boosting bit rates in noninvasive 

EEG single-trial classifications by feature combination and multiclass paradigms,” Biomed. 

Eng. IEEE Trans., vol. 51, no. 6, pp. 993–1002, 2004. 

[21] G. Townsend, B. Graimann, and G. Pfurtscheller, “Continuous EEG classification during 

motor imagery-simulation of an asynchronous BCI,” Neural Syst. Rehabil. Eng. IEEE Trans., 

vol. 12, no. 2, pp. 258–265, 2004. 

[22] R. Vigário, J. Särelä, V. Jousmiki, M. Hämäläinen, and E. Oja, “Independent component 

approach to the analysis of EEG and MEG recordings,” Biomed. Eng. IEEE Trans., vol. 47, no. 

5, pp. 589–593, 2000. 

[23] F. Popescu, S. Fazli, Y. Badower, B. Blankertz, and K.-R. Müller, “Single trial classification of 

motor imagination using 6 dry EEG electrodes,” PLoS One, vol. 2, no. 7, p. e637, 2007. 
[24] T. N. Lal, M. Schröder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, and B. 

Schölkopf, “Support vector channel selection in BCI,” Biomed. Eng. IEEE Trans., vol. 51, no. 

6, pp. 1003–1010, 2004. 

[25] Y. Wang, S. Gao, and X. Gao, “Common spatial pattern method for channel selelction in motor 

imagery based brain-computer interface,” in Engineering in Medicine and Biology Society, 

2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2006, pp. 5392–5395. 

[26] P. D. Heermann and N. Khazenie, “Classification of multispectral remote sensing data using a 

back-propagation neural network,” Geosci. Remote Sensing, IEEE Trans., vol. 30, no. 1, pp. 



C h a p t e r  5 | P a g e  108 

 

Brain Localization and Feature Extraction Using Computational Intelligence Techniques  

 

81–88, 1992. 

[27] J. D. Paola and R. A. Schowengerdt, “A detailed comparison of backpropagation neural 

network and maximum-likelihood classifiers for urban land use classification,” Geosci. Remote 

Sensing, IEEE Trans., vol. 33, no. 4, pp. 981–996, 1995. 

[28] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical 

optimization,” in Evolutionary Computation, 2005. The 2005 IEEE Congress on, 2005, vol. 2, 
pp. 1785–1791. 

[29] C. Brunner, M. Naeem, R. Leeb, B. Graimann, and G. Pfurtscheller, “Spatial filtering and 

selection of optimized components in four class motor imagery EEG data using independent 

components analysis,” Pattern Recognit. Lett., vol. 28, no. 8, pp. 957–964, 2007. 

[30] A. Saha, A. Konar, P. Das, B. Sen Bhattacharya, and A. K. Nagar, “Data-point and feature 

selection of motor imagery EEG signals for neural classification of cognitive tasks in car-

driving,” in Neural Networks (IJCNN), 2015 International Joint Conference on, 2015, pp. 1–8. 

[31] S. B. Roy, M. Dan, and P. Mitra, “Improving adaptive differential evolution with controlled 

mutation strategy,” in Swarm, Evolutionary, and Memetic Computing, Springer, 2012, pp. 636–

643. 

[32] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global 

optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997. 
[33] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with optional external 

archive,” Evol. Comput. IEEE Trans., vol. 13, no. 5, pp. 945–958, 2009. 

[34] A. Saha, A. Konar, A. Chatterjee, A. Ralescu, and A. K. Nagar, “EEG analysis for olfactory 

perceptual-ability measurement using a recurrent neural classifier,” Human-Machine Syst. 

IEEE Trans., vol. 44, no. 6, pp. 717–730, 2014. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



C h a p t e r  6 | P a g e  109 

 

Brain Localization and Feature Extraction Using Computational Intelligence Techniques  

 

Chapter 6 

 

 
Conclusion 
 

This chapter revisits the primary goal of the thesis and briefly highlights the findings 

and contributions of the work to substantiate the extent to which the objective of the 

thesis is accomplished. Following this, the future course of the work is discussed 

which are open for research to interested readers for the extension of the algorithms 

that have been developed as a part of this thesis. 
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6.1 SUMMARY OF THE WORK 

The thesis has provided interesting insights into different aspects of developing modern day 

HCI based system. The research is primarily concentrated in exploring different 

computationally intelligent techniques that can be utilized judiciously to build more efficient 

modalities of HCI. Throughout the thesis different principles of CI discipline have been 

studied and analysed to find new avenues of innovative applications. While traditional pattern 

recognition and optimization algorithms are studied for some applications, novel algorithms 

and methodologies are also proposed supported by appropriate experiments and results. 

In today’s world research enthusiasts are extremely engrossed in exploring divergent 

applications of EEG signals including medical diagnosis, rehabilitative application or brain 

rhythm detection. The concept of utilizing the postulates of CI in EEG based BCI systems has 

fascinated the researchers since a long time. The present thesis enlightens about certain 

improvised applications of the concerned research genre which can help in enhancing system 

performance. A wide variety of EEG signal based features have been contemplated for 

different applications. 

Chapter 1 provides the background for the current work by generating a rough sketch 

about the motivations behind each of the chapters and the possible outcomes of the research. 

Firstly, it starts with a brief introduction and gradual evolution of the BCI research and 

mentions the importance of CI discipline along with its functional definition. Next, the need 

of brain localization is discussed and by delving deeper into the research domain the thesis 

provides a tabulated list of the related trends of contemporary research that is carried out in 

the same discipline. After that, various brain signal measuring modalities have been surveyed 

and after conducting a detailed research the superiority of EEG signals has been established 

due to its numerous advantages over the other standard techniques. To study EEG signals it is 

important to know about the functionality of human brain which is addressed in the later 

section. Finally, amongst different EEG modalities Motor Imagery has been illustrated along 

with the highlighted research works for detection of MI signals. 

Chapter 2 basically serves as a handbook for the remaining parts of the thesis. The next 

few chapters address different improvised techniques for the successful implementation of the 

CI postulates in EEG based BCI paradigms. To test the efficacy of the proposed scheme, it is 

always recommended to compare the performance outcomes with the existing best 

techniques. Due to space constraint it is not possible to describe each component of the 

existing methodologies in detail, but to understand the advantage of the proposed scheme 

over others it is required to know the attributes of both the schemes very well. For this reason 
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Chapter 2 presents the standard tools and techniques that are used later in the thesis, mainly 

the feature extraction methods and classification algorithms have been described thoroughly. 

Chapter 3 emphasizes on the impact of optimization in EEG based BCI system. EEG 

signal acquisition devices basically record brain activities through Ag/AgCl electrodes placed 

throughout the human scalp. From elementary neurophysiological knowledge it can be known 

that for specific cognitive tasks distinct regions of human brain are activated. So for particular 

mental state classification, it is wise to deal with relevant EEG electrodes and thus reducing 

the computational overhead and enhancing the accuracy as well. Similarly selection of 

relevant features can also be justified citing same reasons. Now, separate selection of 

electrodes and features is possible, but that increases the system complexity and increases the 

probability of carrying redundant information or incomplete information. Hence, it is always 

wise to select the optimal EEG features and electrodes simultaneously to deal with these 

issues. This chapter presents the evolutionary perspective of optimal EEG feature and 

electrode selection by proposing a novel variant of Firefly Algorithm termed as Self Adaptive 

Firefly Algorithm to optimize an objective function formulated while satisfying the 

constraints with SVM playing the role of the classifier. The selection of ABC for this problem 

is its fast convergence without the possibilities of local minima. 

Chapter 4 is focussed on the extension of existing EEG feature extraction techniques in 

spatial domain. Due to the non-stationary behaviour of EEG signals, the spatial resolution is 

very poor. To address this issue spatial filtering is introduced as an alternative way to 

spatially represent EEG signals. The initially introduced spatial filters suffer from the 

drawback of overfitting and lack of robustness. Finally, Common Spatial Patterns (CSP) was 

introduced to overcome the limitations of basic spatial filters and CSP produced revolutionary 

results motor imagery detection problem. Initially, CSP was developed to detect abnormalities 

in EEG signal and later it was utilized as a feature extracting tool with high performance. As 

every other invention, gradually the drawbacks of CSP became more and more pronounced 

leading to the ways of regularizing CSP and thus RCSP algorithms were introduced. After 

exploring the details of RCSP algorithm, improvised methodologies are suggested with 

applications of those techniques in MI detection described in Chapter 5. 

Chapter 5 is an extended portion of Chapter 4 with the highlighted applications of the 

methodologies proposed in the previous chapter in MI detection problems. It puts stress on 

two distinct cases of MI detection and in each case it emphasizes on different phases of the 

pattern recognition chain usually adopted for EEG based BCI applications. The first section 

proposes an RCSP based novel feature extraction strategy with a high classification accuracy 

obtained with an ensemble of k-NN classifiers. Unlike the previous section, the later section 

deals with enhancing the accuracy of the classifying framework adopted by incorporating  

Adaptive Differential Evolution in traditional Back Propagation network. 
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The thesis has addressed the preliminary issues for the mentioned objective. However, 

there is a long way to traverse before the complete system can be presented as a stand-alone 

unit for practical applications. The major challenges that can be addressed and combated are 

addressed in the next section and form an open area of research for the extension of this work. 

 

6.2 FUTURE DIRECTIONS 

 Instead of adopting a single objective approach a multi objective evolutionary 

algorithm sounds to be a more justified alternative in this case. More importantly, as 

the experiments conducted indicate binary problems so utilizing a standard genetic 

algorithm or heuristics based Ant Colony Optimization could have make more sense. 

 The problem discussed in Chapter 3 resides in discrete search space, so it is wise to 

use Genetic Algorithms or other alternatives that deal with the problem in discrete 

search space only. But using the discussed approach basically transformed it into a 

real coded problem that is an inverse genotype-phenotype mapping has taken place 

which could have resulted in Hamming cliffs and thus making the optimization 

problem harder than the original one. 

 All the contender algorithms considered are not well suited for black box 

optimization with such objective functions; instead state of the art evolutionary 

algorithms should have been used for real coded optimization purpose. 

 In Chapter 5 instead of utilizing both the linear transforms CSP and PCA, alternative 

efficient measures should be preferred which singlehandedly serves the purpose. 

 The channel similarity measures can be modified by introducing fuzziness into them 

for extending it into a fuzzy based similarity metric. 

 One of the biggest disadvantages of EEG is its poor spatial resolution and hence 

source localization is not easy. On the other hand, devices like fNIRS have better 

spatial resolution and are also available at low cost. Thus, fNIRS and EEG signals 

can be coupled by means of some data fusion techniques to explore the advantages of 

both i.e. to achieve high temporal resolution as well as good spatial resolution. 
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Appendix A 

 

 
Statistical Methods Used 
 

 

This appendix describes different statistical methods adopted throughout the thesis 

and also illustrates about different statistical tests that have been conducted to 

validate the system performance. 
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A.1 CLASSIFICATION METRICS 

This section primarily describes the confusion matrix used to measure the efficiency of a 

classifier and derived results from it. 

A.1.1 Confusion Matrix and Classification Accuracy 

A confusion matrix is a square matrix that signifies the association between the user intended 

classes termed as “Actual Classes” and the original classifier estimated classes termed as 

“Predicted Classes”. Any element C(i, j) of a confusion matrix C basically denotes the 

number of samples belonging to class i that have been predicted as to belong to class j by the 

classifier. It is needless to say the diagonal elements represent the number of samples those 

are correctly classified and the off diagonal elements provide a measure of incorrect 

classification. A general N×N confusion matrix and a 2×2 confusion matrix have been shown 

in Figure A.1. The overall classification accuracy CA can be calculated from a N×N matrix 

for a N class problem using (1) and the one vs all classification accuracy for a particular class 

i can be obtained as CA(i) using (2). 
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Fig. A.1(a) An N×N Confusion Matrix, (b) 2×2 Confusion Matrix 
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A.1.2 Type I and Type II Error 

The Type I (TE1) and Type 2 (TE2) for class i are computed using (3) and (4). TE1 denotes the 

false positive error rate that is the number of samples that donot belong to a class but are 

misclassified to belong to the class. Contrarily, TE2 denotes the false negative error rate that is 

the number of samples those actually belongs to a specific class but mistakenly calssified to 

belong to certain another class. In both the cases, ideally these two error should be zero.  

 

    
,

1

( , )

( ) ( )
( , )

i i j

i

C i j

TE i
C i j







               (A.3) 

    
,

2

( , )

( ) ( )
( , )

j i j

j

C i j

TE i
C i j







               (A.4) 

 

A.2 STATISTICAL TEST 

In this section, McNemar’s test  has been illustrated for detection of the performance of two 

classification algorithms for correctly classifying data samples. Suppose, using a common 

input phylogenetic sequence, the outputs generated by the algorithm A and algorithm B be fA 

and fB respectively. A null hypothesis is stated as follows, 

 

              , ,[ ( ) ( )] [ ( ) ( )]rR x A rR x BP f x f x P f x f x                         (A.5) 

 

where ( )f x be the experimentally induced sign in order to map a specific point x onto sign 

classes K, such that ( )f x is one of the K=4 classes. Let 
01n be the number of data samples 

misclassified by algorithm A but not by algorithm B and 
10n be the number of data samples 

misclassified by algorithm B but not by algorithm A. Then, a statistic termed as Z score is 

defined by using the following equation, 
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01 10
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                                                      (A.6) 

 

At the end of test, depending on the obtained Z scores it is decided whether the null 

hypothesis is accepted or the alternative hypothesis are rejected. Here Z has been evaluated in 

order to denote a comparator statistic of misclassification between the reference algorithm 

(Algorithm A) and any of the above mentioned competitor algorithms (Algorithm B). 
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Appendix B 

 

 
User Guide to Run the Source Codes 
 

 

This appendix provides a step by step guide to run the source codes from MATLAB to 

execute different works described throughout the thesis. 
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B.1 ASSOCIATED SOFTWARE INSTALLATION 

 Install MatlabR2012b software for all computations. 

 EEGLAB (eeglab 13.5.4b) software has been used for EEG analysis carried out 

throughout the thesis for deriving scalp source/sink components, activation regions in 

brain, ERD/ERS etc. To use this software EEGLAB path needs to be added to Matlab 

path. Apart from the data files, it is necessary to have additional event files containing 

electrode locations(.locs), sampling frequency, class labels, duration of stimulus of 

time stamps and so on. 

B.2 PREPROCESSING AND FEATURE EXTRACTION 

 The Feature.m file carries out the entire feature extraction task and another function 

named Filtering.m performs the filtering task. For using the EEG data acquired from 

different subjects, the recordings must be transformed into a proper format no. of 

channels×no. of time samples. The data is accompanied with necessary event files 

stored in associated Target folder. In this case, the code is written for19 channels, if 

fewer channels or Emotiv has to be used the channel information needs to be 

organized properly to get the desired output. 

 Filtering has been executed by a tenth order butterworth filter, followed by Common 

Average Referencing (CAR). The filtered signal outputs can be easily obtained by 

running the codes after modifying the necessary parameters as per requirement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.1 Feature Extraction (DWT)  
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Fig. B.2 Feature Extraction (PSD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.3 Feature Extraction (PSD) 

 

 The features that are extracted include Adaptive Autoregressive Parameter, Hjorth 

parameter, Power Spectral Density (Fig. B.3), CSP (Fig. B.4) and Discrete Wavelet 

Transform (Fig. B.1). 

 For AAR the update coefficient and the order can be changed as per requirement. 

Similarly, for PSD, the frequency range, the width of the Hamming window and 

percentage overlap is chosen by the user as per requirement. For CSP, the number of 

lowest and largest Eigen vectors is also determined by the user only. For DWT, the 
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mother wavelet and the order of decomposition need to be modified as per desired 

frequency range. 

 

 

 

 

 

 

Fig. B.4 Feature Extraction (CSP) 

 

B.3 CLASSIFICATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.5 Classification (BPNN) 

 

 The Classifiers.m file contains the code of all the classifiers including SVM, k-NN, 

LDA, Naïve Bayes and Neural Network (Fig. B.5). To select any one classifier the 

function call lines of the other classifiers need to be commented off. If there are no 
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different datasets for Training and Testing, then separate chunks of available data 

must be assigned to the folders Train1 and Test1, using cross validation. Another file 

containing the class labels according to the training samples in proper format is 

required to be fed to the classifier for proper training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.6 Classification (Confusion Matrix) 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.7 Optimum Electrode Selection (Firefly Algorithm) 

 

 The file Feat_select.m employs PCA that transform the input features to the 

desired dimension of output before feeding to the classification step. 
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Fig. B.8 Electrode Selection (EEGLAB) 

 

 In these works, confusion matrix (Fig. B.6) and classification accuracies have 

been tabulated in most of the cases. But the sensitivity, specificity and ROC 

curves can also be obtained. 

 

 

 

 

 

 

 

 

Fig. B.9 Electrode Selection (Scalp Maps) 
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B.4 OPTIMAL EEG ELECTRODE AND FEATURE SELECTION 

 The Optimal_Loc.m file needs to be executed along with loading the required 

datasets. The objective function values with respect to function evaluations can 

be plotted after running the function Fire_opti.m, as shown in (Fig. B.7). 

 From the selected scalp locations the corresponding source activations within the 

brain can be viewed. EEGLAB has to be initiated by running eeglab.m in the 

EEGLAB folder. The data and the channel location file have to be loaded into 

eeglab (Fig. B.8). Then ICA has to be run to find the source components 

corresponding to the channel components provided. One such sample is 

illustrated in Fig. B.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


