

 DESIGN AND IMPLEMENTATION OF ENCODER-DECODER
 FOR LDPC (Low Density Parity Check-Codes)

 THESIS SUBMITED
 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
 FOR THE AWARD OF THE DEGREE OF

 MASTER OF ENGINEERING
 IN
 ELECTRONICS & TELECOMMUNICATION ENGINEERING

 By
 PUJA SHAW
 Examination Roll no.:M4ETC1617
 Regd.No.:128932 of 2014-2015
 Class Roll no.:001410702022

 Under the guidance of
 Prof. MRINAL KANTI NASKAR

 Department of Electronics & Telecommunication Engineering
 Jadavpur University, Kolkata-700032
 West Bengal, India
 May-2016

 FACULTY OF ENGINEERING & TECHNOLOGY
 JADAVPUR UNIVERSITY

 This is to certify that the thesis entitled “DESIGN AND IMPLEMENTATION OF
ENCODER-DECODER FOR LDPC (Low Density Parity Check-Codes) ” has been carried out
by PUJA SHAW (Class Roll No.: 001410702022 ,Examination Roll No.:M4ETC1617 And
Registration No.: 128932 of 2014-2015) under my guidance and supervision and be accepted
in partial fulfillment of the requirement for the degree of Master of Electronics &
Telecommunication Engineering.

 Prof. Mrinal Kanti Naskar
 Supervisor
 Department of Electronics and
 Telecommunication Engineering
 Jadavpur University
 Kolkata-700032

____________________________ ________________________________
Prof. Palaniandavar Venkateswaran Prof. Sivaji Bandyopadhyay
Head of the department Dean
Electronics and Telecommunication Faculty Council of
Engineering Engineering and Technology
Jadavpur University Jadavpur University
Kolkata-700032 Kolkata-700032

 FACULTY OF ENGINEERING & TECHNOLOGY
 JADAVPUR UNIVERSITY

 CERTIFICATE OF APPROVAL#

The forgoing thesis, entitled “DESIGN AND IMPLEMENTATION OF ENCODER-DECODER FOR
LDPC (Low Density Parity Check-Codes)” is hereby approved as a creditable study of an
engineering subject carried out and presented in a manner satisfactory to warrant its acceptance
as prerequisite to the degree for which it has been submitted. It is understood that by this
approval the undersigned do not necessarily endorse or accept every statement made, opinion
expressed or conclusion drawn there in but approve the thesis only for the purpose for which it
has been submitted.

Committee on final Examination for ___________________________
Evaluation of the thesis: Additional Examiner

 Supervisor

#𝑜𝑛𝑙𝑦 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑡ℎ𝑒 𝑡ℎ𝑒𝑠𝑖𝑠 𝑖𝑠 𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑

 DECLARATION OF ORGINALITY AND COMPILANCE
 OF ACADEMIC ETHICS

I hereby declare that this thesis contains literature survey and original work by the undersigned
candidate, as part of his Master of Electronics and Telecommunication studies.

All information in this document have been obtained and presented in accordance with academic rules
and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and references all material
and results that are not original to this work.

Name : PUJA SHAW
Examination Roll No. :
Thesis Title : DESIGN AND IMPLEMENTATION OF ENCODER-DECODER FOR LDPC (Low
Density Parity Check-Codes)

 Signature of the candidate

 ACKNOWLEDGEMENT

This thesis is the result of the work whereby I have been accompanied and

supported by many people. It is a pleasant aspect that I have now the opportunity

to express my gratitude to all of them.

With immense pleasure , I express my sincere gratitude, regards and thanks to my

project guide Prof. Mrinal Kanti Naskar for his excellent guidance, invaluable

suggestions and continuous encouragement throughout the project. I have been

fortunate to have him as my guardian than guide as he has been a great influence

on me, both as a person and as a professional.

I wish to express my thanks to all my teachers who taught me during the first year

of my course work and also to all my lab mates for their constant support.

Above all , I am blessed with such a caring family. I extend my deepest gratitude

to my parents, for their invaluable love, affection, encouragement and support and

for their struggle to make me a good person inspite of many obstacles.

 (PUJA SHAW)

 I

 Table of Contents

 Pages

Acknowledgement I

Abstract VII

List of Figures V

List of Tables VI

Chapter 1. Introduction

1.1 Error Correction and Detection 3

1.2 Types of Error 4

 1.2.1 Single-Bit Error 4

 1.2.2 Burst Error 5

1.3 Redundancy 6

1.4 Detection Versus Correction 6

1.5 Forward Error correction Versus Retransmission 7

1.6 Coding 7

Chapter 2. Background of LDPC codes

2.1 Block Coding 9

2.2 Linear Block Coding 9

2.3 Generator matrix ‘G’ 11

2.4 Parity Check matrix’H’ 11

2.5 LDPC codes 12

 II

 2.5.1 Representation of LDPC codes 12

 2.5.2 Regular and irregular LDPC codes 14

2.6 Project approach 15

Chapter 3. LDPC Encoder

3.1 Constructing LDPC codes 17

3.2 Random Constructions 17

 3.2.1(a) Algorithm 1 18

 3.3.1(b) Other Algorithms 18

 1. Bit Flipping Algorithm 18

 2. Progressive Edge growth Algorithm 18

3.3 Structured Constructions 19

Chapter 4. LDPC Encoder implementation

4.a. Encoder design implementation 22-26

4.b. FPGA implementation of LDPC Encoder

4.b.1 Introduction of Verilog 27

4.b.2 Reasons of using Verilog 28

4.b.3 Capability 29

4.b,4 Various stages of FPGA 29

4.b.5 Test bench 31

4,b.6 Encoder implementation and result 31

 III

Chapter 5. LDPC Decoder

5.1 LDPC Hard decision Decoding Algorithms 33

 5.1.1 Bit Flipping algorithm 33-37

5.2 LDPC soft decision decoding algorithm 38-41

 (Belief Propagation Algorithm)

Chapter 6. LDPC Decoder implementation

6.1 Introduction 42-47

6.2 Decoding 47

6.3 Decoder implementation 49

 Using MATLAB and

 Result

Chapter 7. Conclusion and Future scope

7.1 Conclusion 57

7.2 Future scope 57

APPENDIX 59-61

REFERENCES 62-64

 IV

 List of figures

 Pages

Chapter 1. Introduction

Fig.1 Basic Communication System 4

Fig.2 Single bit error 5

Fig.3 Burst error of length 8 5

Chapter 2. Background of LDPC Codes

Fig.4 Block diagram of linear code encoder and decoder 10

Fig.5 Tanner graph corresponding to the given H matrix 14

Chapter 4. LDPC Encoder implementation

Fig.6 Low level encoder implementation 22

Fig.7 Result(codeword obtained corresponding to given dataword) 25

Fig.8 LDPC encoder using circuit maker 26

Chapter 5. FPGA implementation of LDPC encoder

Fig.9 Various stages of FPGA 30

Fig.10 Encoder test bench wave- form 31

Chapter 7. LDPC decoder implementation

Fig.11 Fully parallel LDPC decoder architecture 45

 V

Fig.12 Serial LDPC Decoder architecture with unidirectional connection 46

Fig.13 Semi parallel LDPC decoder architecture with unidirectional connection 48

Fig.14 Dcoding Flowchart 50

Fig.15 MATLAB implementation (1) 52

Fig.16 MATLAB implementation (2) 53

Fig.17 MATLAB implementation (3) 54

Fig.18 MATLAB implementation (4) 55

Fig.19 BER performance result 56

 List of Tables

Chapter 6. LDPC Decoder

Table 1 : overview over messages received and sent 35
 by the c-nodes in step 2 of
 the message passing algorithm.

Table 2: Step 3 of the described decoding algorithm. 37
 The v-nodes use the answer messages from the c-nodes
 to perform a majority vote on the bit value.

 VI

 ABSTRACT

LDPC codes have very good error correcting performance approaching Shannon’s

limit. Good error correcting performance enables efficient and reliable

communication system. But LDPC decoding algorithm need to be executed

efficiently to meet the cost, bandwidth, power requirements. Since its discovery

there has been many researches still on construction and implementations of LDPC

codes. LDPC codes can be designed over a wide space with parameters such as

girth, rate, length. LDPC hardware design and implementation depends on the

parity matrix construction. There is a need to develop methods for constructing

LDPC codes over a wide range of rate and length with good performance and ease

of hardware implementation.

This thesis is about construction and hardware implementation of LDPC codes.

But all the issues regarding complexities of constructing/ designing and

implementation of LDPC codes discussed above are too many to cover in this

thesis. The main contribution of this thesis is on development of design of LDPC

construction and implementation of belief propagation algorithm for LDPC

decoding.

 VII

1

 Chapter 1

 Introduction

2

1. Introduction

Communication systems transmit data from source to destination through a

channel or medium like air, wire lines, optical fiber etc. The reliability of the

received data depends on the channel and external noise that can interface or

distort the signal representing the data. The noise introduces error in the

transmitted data. Shannon showed that the reliable transmission could be

achieved if the data rate is less than channel capacity. The theorem shows that a

sequence of codes with rate less than the channel capacity have the capability of

correcting all the errors as the code length goes to infinity.

In digital communication system there are mainly two methods of error

correction. The first one is ARQ (Automatic Repeat Request) is a technique in

which the receiver detects the occurrence of an error and ask the sender to

resend the message. Resending is repeated until a message arrives that the

receiver believes is error free. This method of error correction requires a two

way channel and is not a feasible method for one way systems.

Another way of error correction is FEC (Forward Error Correction) . In this

method, the receiver tries to guess the message by using redundant bits. This

scheme adds redundant bits to a message in the form of extra bits called parity

bits. Using this redundant information, the receiver is able to detect and correct

a message without requesting for a retransmission.

3

Redundancy is achieved through various coding schemes. The sender adds

redundant bits through a process that creates a relationship between the

redundant bits and the actual message bits. The receiver checks this

relationship between the two sets of bits to detect errors and correction too.

LDPC (Low Density Parity Check) codes are a powerful FEC coding scheme.

LDPC codes were developed in 1960 by Robert Gallager at MIT in his PhD

thesis. LDPC codes were forgotten until his work was rediscovered in 1996 and

gradually it became the coding scheme of choice in the late 1990s, used for

applications such as the Deep Space Network and satellite communications.

1.1 Error Detection and Correction

Networks must be able to transfer data from one device to another with

acceptable accuracy. For most applications , a system must guarantee that the

data received are identical to the data transmitted. Any time data transmitted

from one node to the other, they can become corrupted in passage. Many factors

can alter one or more bits of a message. If due to presence of noise the message

gets altered, the receiver should be able to detect and correct if there is any error

due to noise in thethe message received at the other end. To be able to detect or

correct error, redundancy is used. Redundancy is extra bits which is appended

to the message to be sent by the sender and these extra bits i.e. the redundant

bits are used by the receiver for error detection and correction. On obtaining the

correct or intended message the redundant bits are removed and message is

extracted by the receiver.

https://en.wikipedia.org/wiki/Deep_Space_Network
https://en.wikipedia.org/wiki/Satellite_communication

4

 Fig.1. A basic communication system block diagram

1.2 Types of error

Whenever bits flow from one point to another, they are subjected to

unpredictable changes because of interference. This interference can change the

shape of the signal. In a single bit error, a 0 is changed to 1 or a 1 is changed to

0. In burst error, multiple bits are changed.

1.2.1 Single Bit Error

The term single bit error means that only 1 bit of a given data unit is changed

from 1 to 0 or from 0 to 1.

 To understand the impact let us assume that a data unit of 8 bits (00000010)

was sent, but (00001010) was received. Clearly, the fourth bit from the left of

5

the data unit got corrupted during transmission. Fig.2 shows the effect of a

single bit error on a data unit.

 sent 00000010

 received 00001010

 Fig.2 Single bit error

1.2.2 Burst Error

The term Burst error means that 2 or more bits in the data unit have changed

from 1 to 0 or from 0 to 1. Fig.3 shows the effect of a burst error on a data unit.

In this case, (0100010001000011) was sent, but (0101110101100011) was

received. A burst error does not necessarily mean that the errors occur in

consecutive bits. The length of the burst is measured from the first corrupted

bit ti the last corrupted bit.

 Sent 0100010001000011

 Received 0101110101100011

 Fig.3 Burst error of length 8

6

A burst error is more likely to occur than a single-bit error. The duration of noise is

normally longer than the duration of 1 bit, which means that when noise affects

data, it affects a set of bits.

The number of bits affected depends on the data rate and duration of noise. For

example, if we are sending data at 1 kbps, a noise of 1/100 s can affect 10 bits ; if

we are sending data at 1 Mbps, the same noise can affect 10.000 bits.

1.3 Redundancy

The central concept in detecting or correcting errors is redundancy. To be able

todetect or correct errors, we need to send some extra bits with our data. These

extra bits are called redundant bits and these are added by the sender and removed

by the receiver. Their presence allows the receiver to detect or correct corrupted

bits.

1.4 Detection Versus Correction

The correction of errors is more difficult than the detection. In error detection, We

only look to see if there is any error or not. The answer is simple yes or no. We are

not even interested in the number of errors. A single bit error in that case is no

different from a burst error because in error detection we are just bothered about

the presence of error, the position or length of error cannot be detected in that case.

7

In error correction, we need to know exact number of bits that are corrupted and

more importantly, their position/location in the message. The number of errors and

the size of message are important factors. If we need to correct a single error in

an 8 bit data unit, we need to consider eight possible error locations.

1.5 Forward error correction Versus Retransmission

There are two main methods of error correction, Forward error correction is the

process in which the receiver tries to guess the message by using redundant bits.

Whereas correction by transmission is a technique in which the receiver detects the

occurrence of an error and asks the sender to resend the message until a message

arrives that the receiver believes is error free.

1.6 Coding

Redundancy is achieved through various coding schemes. The sender adds the

redundant bits through a process that creates a relationship between the redundant

bits and the actual data bits. The receiver checks the relationship between the two

sets of bits to detect and correct the errors. The ratio of redundant bits to the data

bits and the robustness of the process are important factors in any coding scheme.

We can broadly classify the coding schemes in two groups (1) block coding (2)

convolutional coding. In this thesis we have discussed about LDPC codes which

belongs to a forward error correction block coding scheme.

8

 Chapter 2

 Background of LDPC codes

9

 2. Background of LDPC codes

An (r,s) LDPC code is a Linear Block code with a check matrix H, satisfying

the condition that every column of the matrix has r ones and every row has s

ones.. An LDPC code with small values of r and s , has a sparse parity check

matrix with very few ones in each row and column. Typically, r ≤ log2 𝑛 ,

where n is the blocklength.

2.1 Block Coding

In block coding , messages are divided into blocks of k bits , called datawords.

Then redundant bits are added to each block to make the length n = k+r , where

r is the redundant bits. The resulting n bit blocks are called Codewords . With k

bits, a combination of 𝟐𝒌 datawords can be created ; similarly with n bits, a

combination of 𝟐𝒏 Codewords can be generated.

2.2Linear Block Coding

A block code is linear if and only if exclusive-or (modulo-2 addition) of two

valid codes creates another code. This property allows to create a generator

matrix G that defines the code. All linear block codes including LDPC uses an

encoder matrix called generator matrix G to add redundant information to the

dataword to generate the codeword. These redundant bits are called parity bits

and are appended to the dataword to get the codeword.

10

 Fig.4 Block diagram of linear code encoder and decoder.

A block code is linear if and only if exclusive-or (modulo-2 addition) of two

valid codes creates another code. This property allows to create a generator

matrix G that defines the code.

A linear block code is generally denoted by (n,k) notation, where k denotes the

number of bits in the message and n denotes the number of bits transmitted in the

codeword. All linear block codes including LDPC uses an encoder matrix called

generator matrix G to add redundant information to the dataword to generate the

codeword. These redundant bits are called parity bits and are appended to the

dataword to get the codeword. LDPC codes are class of linear block codes. The

11

name comes from the characteristic of their parity check matrix contains very few

non zero elements here 1 than zeros.

2.3 Generator Matrix ‘G’

The generator matrix G is made up of k linearly independent row vectors of size

n. At the encoder end, the codeword that is to be transmitted is obtained by

multiplying the message(dataword) with the generator matrix G. If u be the

dataword and c be the codeword then,

 c = u G.

Since the encoder need to store only G matrix , it reduces the space complexity

from 𝟐𝒌 × n (arbitrary encoding) to k × n (size of G matrix). The generator

matrix can be put in a systematic form as

 G= [𝑰𝒌l P]

where P is an (n-k)×k sub matrix and I is identity matrix. From generator matrix,

a parity check matrix H is generated which is udes at the decoder end.

2.4 Parity check matrix ‘H’

From generator matrix G , parity check matrix H can be obtained. The two

matrices are related as

 G𝑯𝑻 =0

 If G= [𝐼𝑘 l P], then H obtained can be given as

12

 H = [- 𝑷𝑻 l 𝑰𝒏−𝒌]

At the decoder end if y be the received message, it is checked if it is error free or

not by using this parity check matrix H.

The received message y will be the codeword if

 y𝑯𝑻 =S = 0

This operation results in a value called the syndrome (S). If the syndrome is

equal to zero, there are no errors detected.

If the syndrome is not zero, the value is used to refer to a look-up table listing

error patterns that result in the given syndrome. When the bit error pattern is

identified, it is used to correct the corrupted codeword by flipping the incorrect

bits. Finally, the parity bits generated by the encoder matrix G are removed and

the result is the corrected message.

 2.5 Low Density Parity Check(LDPC) codes

 LDPC codes are class of linear block codes. The name comes from the

characteristic of their parity check matrix contains very few non zero elements here

1 than zeros.

 The BER performance of LDPC codes are heavily dependent on the parity check

„H‟ matrix. Sparser the H matrix ,the lower will be the complexity of the decoder.

For this reason ,many algorithms has been developed H matrix such that maximum

BER performance is obtained and also complexity of decoder is reduced.

13

2.5.1 Representation of LDPC codes

Although LDPC codes are defined by a sparse matrix, a bipartite graph also called

Tanner graph is also used to represent LDPC codes.

A Tanner graph is a graphical representation of the linear code based on the set of

check equations. It is a bipartite graph because it has two sets of nodes : symbol

nodes/variable nodes(V-nodes) and check nodes(C-nodes). Each symbol node is

connected only to the check nodes and similarly, each check node is connected to

only symbol nodes.

Each component of the codeword is represented in the Tanner graph by a symbol

node(V-nodes) . Thus, there are n V-nodes. Each check equation of the code is

represented in the Tanner graph by check nodes(C-nodes). Thus, there are n-k C-

nodes in the Tanner graph. Each check node is connected by an edge to those

symbols that it checks.

14

 Fig.5 Tanner graph corresponding to the parity check matrix in equation (1)

Tanner graph not only helps in representation of the LDPC codes completely, but

also helps to describe the decoding algorithms discussed later in this thesis.

2.5.2 Regular and Irregular LDPC codes

If „r‟ be the number of 1‟s in every column(column weight) and „s‟ be the number

of 1‟s in every row(row weight) , An LDPC code with fixed „r‟ and „s‟ is called a

regular LDPC code. If the number of ones columns and that in the rows are

approximately r and s respectively, it is then called an Irregular LDPC code.

The H matrix in equation (1) has r=2 and s=4.

15

The regularity of LDPC codes can also be observed from its Tanner graph

representation. If in Tanner graph representation of an LDPC code, the V-nodes

are having equal number of incoming edges and the C-nodes also having equal

number of incoming edges , then the LDPC code is regular.

2.6 Project Approach

After gaining a fundamental understanding of LDPC codes, the step taken was to

perform and analyze the LDPC system. It included the encoder design in circuit

maker, MATLAB implementation of LDPC decoder. This project was initially

broken into three phases. In the first phase, the goal was to obtain a good

understanding of LDPC codes and encoding-decoding techniques using circuit

maker. In the second phase, the decoding algorithm was implemented using

MATLAB. In the final phase, it was suppose to be ported to FPGA.

16

 Chapter 3

 LDPC encoder

17

3.LDPC Encoder

3.1 Constructing LDPC Codes

LDPC code construction requires a knowledge of the pattern in which the rows and

columns of the parity check or the check nodes and variable nodes of

corresponding tanner graph are connected. The main objective in code construction

are good decoding performance and easier hardware implementation. This is

mainly achieved by having row-column connections that have a regular pattern.

There are various methods for constructing LDPC code of a given length and rate.

LDPC codes can be constructed by using random constructions (unstructured row-

column connection) or structured connection (row-column connection

predefined) Or a combination of both.

3.2 Random constructions

In random construction method, the rows and columns (check nodes and variable

nodes) are connected without any structure or predefined connection pattern.

Constructions could be done by randomly adding edges to a tanner graph or by „1‟

entries in the corresponding parity check matrix. But this will not produce desired

rate and probably lead to formation of cycle in the graph. But the resulting codes

can be optimized by putting some constraints on making random choices when the

code is built. Random construction with constraints add a connection if and only if

it does not violate the desired row column weights.

Random constructions have flexibility in the design and construction but lack row

column connections regularity, which increases decoder interconnection

complexity.

18

3.2.1(a) Algorithm 1

Step1: Set i=1.

Step2: Generate a random binary vector of length
𝑛𝑟

𝑠
 and a Hamming weight r.

This will be the 𝑖𝑡ℎ column of H.

Step3: If the weight of each row of H at this point is ≤ s , and the scalar product of

each pair of columns is ≤ 1 , set i =i+1.

Else , go to Step2.

Step4: If i=n , stop.

Else, go to Step2.

3.2.1(b) Other random construction algorithms

1. Bit flipping algorithm

H matrix is generated starting with all zero elements in the matrix then randomly

flipping bits in the matrix.

This algorithm constructs an LDPC code connecting rows and columns of a code,

one at a time making sure that the desired girth or row column weights are not

violated.

2.Progressive edge growth algorithm

It is another non algebraic random construction algorithm . It is similar to bit

flipping algorithm.

19

This algorithm builds a tanner graph by connecting nodes edge by edge provided

the edge added has minimal impact on the girth og the graph.

With this algorithm, codes can be obtained with optimized performance.

Like bit flipping algorithm, the major disadvantage with this algorithm is their

hardware complexity making them impractical at very high lengths.

The random and unstructured constructions results in routing complexity and

congestion in decoder implementations.

3.3 Structured constructions

The parity check matrix H could be constrained algebraically to obtain codes with

a particular structure.

Step1: p>
𝑟−1

𝑠−1

Step2: Construct a 𝑝 × 𝑝 matrix „j‟ from the identity matrix 𝐼𝑝 by cyclically

shifting its rows by one position to the right.

Step3: The parity check matrix obtained is

𝑗0 ⋯ 𝑗0

⋮ ⋱ ⋮
𝑗0 ⋯ 𝑗(𝑟−1 𝑠−1)

20

Where 𝑗0 = 𝐼𝑝 and the 𝑙𝑡ℎ power of j is obtained from 𝐼𝑝 by cyclically shifting its

rows by l mod p positions to the right. This matrix has exactly r ones in each

column and s ones in each row. Thus it is a regular or structured LDPC code.

21

 Chapter 4

 LDPC encoder implementation

22

4.a Encoder design

 Fig.6 Low level Encoder implementation

23

4.a.1 Encoder design implementation

After gaining fundamental understanding about LDPC constructions, a LDPC

encoder design is developed using circuit maker. This section deals with some

basic ICs and combinational GATEs. The ICs/GATEs used to develop the design

has been listed below.

Blocks used:

1. 74LS126- LS quad tri state buffer.

2. 74LS173-LS qyad D type tri state flipflop.

24

3. 2 input XOR gates.

4. LEDs.

As can be seen in Fig.6, Each bits of the dataword is fed to a temporary register(

here 74LS126 IC buffer is used to store the input bits).It is basically desired to

multiply the message bits i.e. the dataword with the generator matrix G to obtain

the codeword that would transmitted to the receiver end. This is followed by

modulo-2 operation (XORing) of message bits to obtain the redundant bits that

would be appended to the dataword to get the desired codeword.

For the dataword [11001] the corresponding codeword obtained is

[1100111100].The corresponding operation is shown in Fig.7 in the next page.

25

 Fig.7 For message bits [11001], the corresponding codeword

26

 Fig. 8 LDPC encoder using circuit maker

27

4.b FPGA implementation of LDPC codes
4.b.1 Introduction of Verilog

Now let‟s look to Verilog, using which I have tried to implement the hardware.

Verilog, standardized as IEEE 1364, is a hardware description language (HDL)

used to model electronic systems. It is most commonly used in the design and

verification of digital circuits at the register-transfer level of abstraction. It is also

used in the verification of analog circuits and mixed-signal circuits, as well as in

the design of genetic circuits.

Hardware description languages such as Verilog differ from software programming

languages because they include ways of describing the propagation time and signal

strengths (sensitivity). There are two types of assignment operators; a blocking

assignment (=), and a non-blocking (<=) assignment. The non-blocking assignment

allows designers to describe a state-machine update without needing to declare and

use temporary storage variables.

 Like C, Verilog is case-sensitive and has a basic preprocessor (though less

sophisticated than that of ANSI C/C++). Its control flow keywords (if/else, for,

while, case, etc.) are equivalent, and its operator precedence is compatible with C.

Syntactic differences include: required bit-widths for variable declarations,

demarcation of procedural blocks (Verilog uses begin/end instead of curly braces

{}), and many other minor differences. Verilog requires that variables be given a

definite size. In C these sizes are assumed from the 'type' of the variable (for

instance an integer type may be 8 bits).

A Verilog design consists of a hierarchy of modules. Modules encapsulate design

hierarchy, and communicate with other modules through a set of declared input,

https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Register-transfer_level
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Analogue_electronics
https://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Case-sensitive
https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Keyword_(computer_programming)
https://en.wikipedia.org/wiki/Operator_precedence

28

output, and bidirectional ports. Internally, a module can contain any combination

of the following: net/variable declarations (wire, reg, integer, etc.), concurrent

and sequential statement blocks, and instances of other modules (sub-hierarchies).

Sequential statements are placed inside a begin/end block and executed in

sequential order within the block. However, the blocks themselves are executed

concurrently, making Verilog a dataflow language.

Verilog's concept of 'wire' consists of both signal values (4-state: "1, 0, floating,

undefined") and signal strengths (strong, weak, etc.). This system allows abstract

modeling of shared signal lines, where multiple sources drive a common net. When

a wire has multiple drivers, the wire's (readable) value is resolved by a function of

the source drivers and their strengths.

A subset of statements in the Verilog language are synthesizable. Verilog modules

that conform to a synthesizable coding style, known as RTL (register-transfer

level), can be physically realized by synthesis software. Synthesis software

algorithmically transforms the (abstract) Verilog source into a netlist, a logically

equivalent description consisting only of elementary logic primitives (AND, OR,

NOT, flip-flops, etc.) that are available in a specific FPGA or VLSI technology.

Further manipulations to the netlist ultimately lead to a circuit fabrication blueprint

(such as a photo mask set for an ASIC or a bitstream file for an FPGA).

4.b.2 Reasons of using Verilog

a) Verilog is an international IEEE standard specification language for describing

digital hardware used by industries Worldwide.

b) Verilog enables hardware modelingfrom the gate to system level.

https://en.wikipedia.org/wiki/Dataflow_language
https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Netlist
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/VLSI
https://en.wikipedia.org/wiki/Mask_set
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Bitstream
https://en.wikipedia.org/wiki/FPGA

29

c) Verilog provides a mechanism for digital design and reusable design

documentation.

4.b.3 Capability

a) The language can be used as a medium between the chip vendor and the CAD

tool users.

b) The language supports hierarchy; that is a digital system is modeled as a set of

interconnected components; each component in turn can be modeled as a set of

interconnected subcomponent.

c) The language supports flexible design methodology.

d) It supports synchronous and asynchronous timing models.

e) It supports 3 different description styles: structural, dataflow and behavioral.

f) Different kind of delays, timing constraints and spike can be described very

naturally using this language.

4.b.4 Various stages of FPGA

The various stages of FPGA has been discussed in the next page. FPGAs contain

an array of programmable logic blocks, and a hierarchy of reconfigurable

interconnects that allow the blocks to be "wired together", like many logic gates

that can be inter-wired in different configurations. Logic blocks can be configured

to perform complex combinational functions, or merely simple logic

gates like AND and XOR. In most FPGAs, logic blocks also include memory

elements, which may be simple flip-flops or more complete blocks of memory.

https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Logic_block
https://en.wikipedia.org/wiki/Logic_block
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/AND_gate
https://en.wikipedia.org/wiki/XOR_gate
https://en.wikipedia.org/wiki/Flip-flop_(electronics)

30

The FPGA configuration is generally specified using a hardware description

language (HDL), similar to that used for an application-specific integrated circuit.

 Fig.9 Stages of FPG

https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

31

4.b.5 Test Bench

The correctness of a program can be checked by writing test bench. Test

benches are used to simulate your design without the need of any physical

hardware. The biggest benefit of this is that you can actually inspect every signal

that is in your design.

4.b.6 Verilog implementation of LDPC encoder and result

The Verilog encoder implementation involves multiplication of the message matrix

with the generator matrix. In this project the size of the generator matrix used is

5×10 , so the message dimension is 5 bits.

Step1: Taking the required number of registers for storing the two matrices.

Step2: The matrix multiplication is written between the message matrix (1× 5) and

the generator matrix (5×10). This will be combination of „AND‟ and „OR‟ gates.

Step3: The message bits are transmitted through test bench.

 Fig.10 Encoder test bench wave-form

32

 Chapter 5

 LDPC decoder

33

5. LDPC Decoder

LDPC code decoding tries to reconstruct the transmitted, c, from the possibly

corrupted received word ,y. It is achieved by using parity check matrix, H. The

condition that yH
T
=0 defines the set of parity check constraints that must be

satisfied for the received codeword (y) to be same as the transmitted codeword (c).

5.1 LDPC Hard-decision Decoding Algorithms

Most commonly used decoding algorithms are belief propagation algorithm,

message passing algorithm, and the sum product algorithm.

Before going to these algorithm a simple hard decision algorithm is discussed to

have a better knowledge of decoding theory n technique.

5.1.1 Bit flipping algorithm

An LDPC code can be decoded using simple iterative bit flipping algorithm. This

algorithm can be summarized in the following steps:

 Perform S= yH
T
. Where y is the received codeword and S is the

syndrome.

 Compute all check sums and the number of unsatisfied parity checks

involving each bits of y.

 Flip those bits of y which are involved in largest number of

unsatisfied parity checks.

 Go back to the third step. Keep iterating until either-(a) All checks are

satisfied, or (b) A predetermined number of iterations are reached.

34

The flipping algorithm does not guarantee that errors up to half the minimum

distance are corrected. However, for large block lengths , this sub optimum

algorithm works remarkably well.

The decision of which variable bit is to be flipped using a simple algorithm

explained below in the next part.

The algorithm is explained on the basis of the example code shown in equation (1)

and the corresponding tanner graph in Fig.1.

An error free received codeword would be e.g. c = [1 0 0 1 0 1 0 1]. Let‟s suppose

that we have a BHC channel and the received the codeword with one error bit c1

flipped to 1.

1. In the first step all v-nodes ci send a ”message” to their c-nodes fj containing

the bit they believe to be the correct one for them. At this stage the only

information a v-node ci has, is the corresponding received i-th bit of c, yi.

That means for example, that c0 sends a message containing 1 to f1 and f3,

node c1 sends messages containing y1 (1) to f0 and f1, and so on.

Here f represents all check nodes and c represents the message bits received.

All received message bits are fed to the variable nodes. All variable nodes pass

this bit to the connect check nodes. The next step is discussed in the next page.

35

The table below shows how every variable node sends a message that contains the

bit which it believes to be correct to all the check nodes it is connected to. In return

it receives a response message from the connected check nodes which contains the

bit that check node believes to be correct.

 .

Table 1 : overview over messages received and sent by the c-nodes in step 2 of
the message passing algorithm.

After receiving the response message the variable nodes compares the two

messages and decides whether to retain the bit or flip it. This mainly done by

voting/maximum possibility. This method is discussed in details in the next step.

C-node Received

f 0 received: c1 =1 , c3 =1, c4 =0,
c7 =1
sent: 0=c1, 0=c3, 1=c4, 0= c7

f 1 received: c0 =1, c1 =1, c2 =0, c5
=1
sent: 0=c0, 0=c1, 1=c2, 0=c5

f 2 received: c2=0, c5=1, c6=0, c7=1
sent: 0=c2, 1=c5, 0=c6, 1=c7

f 3 received: c0=1, c3=1, c4=0, c6=0
sent: 1=c0, 1=c3, 0=c4, 0=c6

36

2. In the second step every check nodes fj calculate a response to every

connected variable node. The response message contains the bit that fj

believes to be the correct one for this v-node ci assuming that the other v-

nodes connected to fj are correct.In other words: In the above discussed

example, every c-node fj is connected to 4 v nodes. So a c-node fj looks at

the message received from three v-nodes and calculates the bit that the

fourth v-node should have in order to fulfill the parity check equation.Table

2 gives an overview about this step.

3. Next phase: the v-nodes receive the messages from the check nodes and use

this additional information to decide if their originally received bit is OK. A

simple way to do this is a majority vote. When coming back to our example

that means, that each v-node has three sources of information concerning its

bit. The original bit received and two suggestions from the check nodes.

Table 2 illustrates this step.

4. Go to step 2.

In the above example, the second execution of step 2 would terminate the decoding

process since c1 has voted for 0 in the last step. This corrects the transmission

errors and all check equations are satisfied.

37

v-node Message(y)
received

Message
from the
check nodes

Decision (c)

c 0 1 f 1=0

 f 3=1

1

c 1 1 f 0=0

f 1=0

0

c 2 0 f 1=1

f 2=0

0

c 3 1 f 0=0

f 3=1

1

c 4 0 f 0=1

f 3=0

0

c 5 1 f 1=0

f 2=1

1

c 6 0 f 2=0

f 3=0

0

c 7 1 f 0=1

f 2=1

1

Table 2: Step 3 of the described decoding algorithm. The v-nodes use the answer
messages from the c-nodes to perform a majority vote on the bit value.

38

5.2 LDPC soft-decision decoding algorithm(Belief Propagation Algorithm)

The above description of hard-decision decoding was mainly for the purpose to get

an overview about the idea. Soft-decision decoding of LDPC codes, which is based

on the concept of belief

propagation, yields a better decoding performance. The underlying idea is exactly

the same as in propagation hard decision decoding. Before presenting the

algorithm lets introduce some notations:

• Pi = Pr(ci = 1|yi)

• qij is a message sent by the variable node ci to the check node fj. Every message

contains always the pair qij(0) and qij(1) which stands for the amount of belief that

yi is a ”0” or a ”1”.

• rji is a message sent by the check node fj to the variable node ci. Again there is a

rji(0) and rji(1) that indicates the (current) amount of believe in that yi is a ”0” or a

”1”.

The step numbers in the following description correspond to the

hard decision case.

1. All variable nodes send their qij messages. Since no other information is

avaiable at this step, qij(1) = Pi and qij(0) =1 − Pi.

39

2. The check nodes calculate their response messages rji.

 𝑟𝑗𝑖 (0) =
1

2
 +

1

2
 (1 − 2𝑞𝑖 ′𝑗𝑖 ′∈ 𝑣𝑗/𝑖

(1))

(2)

 𝑟𝑗𝑖 (1) = 1- 𝑟𝑗𝑖 (0)

(3)

So they calculate the probability that there is an even number of 1‟s among the

variable nodes except ci (this is what Vj/i means). This propability is equal to the

probability rji(0) that ci is a 0.

 3. The variable nodes update their response messages to the check nodes. This

is done according to the following equations,

 𝑞𝑖𝑗 (0) = 𝑘𝑖𝑗 (1 − 𝑝𝑖) 𝑟𝑗 ′𝑖𝑗 ′∈𝑐𝑖 𝑗
(0)

(4)

 𝑞𝑖𝑗 1 = 𝑘𝑖𝑗 𝑝𝑖 𝑟𝑗 ′𝑖𝑗 ′∈𝑐𝑖 𝑗
(1)

(5)

here the constant Kij is chosen in a way to ensure that qij(0)+qij(1) = 1. Ci/j now

means all check nodes except fj.

40

At this point the v-nodes also update their current estimation 𝑐𝑖 of their variable ci.

This is done by calculating the probabilities for 0 and 1 and voting for the bigger

one. The used equations

 𝑄𝑖 0 = 𝐾𝑖 (1- 𝑝𝑖) 𝑟𝑗𝑖𝑗∈𝑐𝑖 (0)

(6)

and

 𝑄𝑖 1 = 𝐾𝑖𝑝𝑖 𝑟𝑗𝑖𝑗 ∈𝑐𝑖
(1)

(7)

are quite similar to the ones to compute qij(b) but now the information from every

c-node is used.

 𝑐𝑖 = 1 ; if 𝑄𝑖 1 > 𝑄𝑖 0

Else

(8)

 𝑐𝑖 = 0.

If the current estimated codeword fulfils now the parity check equations the

algorithm terminates. Otherwise termination is ensured through a maximum

number of iterations.

41

 Chapter 6

 LDPC decoder implementation

42

6.1 Introduction

For most applications LDPC encoding and decoding is done using hardware to

speed up processing. Successful application of LDPC codes to various systems

depends mainly on encoders and decoders meeting cost, power, complexity and

speed requirements of those systems. Applications differ on these requirements and

LDPC performance expectations. The large size of LDPC codes, wide range of

rates and unstructured interconnection patterns are some of the characteristics that

make hardware implementation a challenge. Although decoder implementations

are often targeted for a particular application, their architectures are often required

to be scalable, programmable and have low chip area. Some applications require a

wide range on some parameters such as rate and length. Also, application

requirements may change from time to time. In such cases, it is desirable to have a

flexible decoder that could easily be adapted to new requirements. The adaptability

of hardware to new requirements may depend on its architecture.

LDPC decoder architectures differ mainly in the arrangement of check and variable

processing nodes and their interconnections, message passing or scheduling, node

implementations and number of nodes. The interconnection between nodes can be

done using a variety of components such as memory blocks, buses and crossbar

switches. Message scheduling can also take various forms. The most common or

natural scheduling criteria is called flooding. In flooding all check node messages

are sent to all variable nodes after computation and vice versa. Other scheduling

methods include staggering in which only a fraction of nodes send on demand

messages across. Staggering tries to reduce memory conflicts and improve

computation units utilization. Depending on the interconnection network and

storage of messages there might be memory access conflicts.

43

Because the network is very likely not to accommodate all messages at the same

time, scheduling of messages is needed. During message transmission no

computations are done which reduces computation nodes utilization. Decoding

equations can be implemented in different forms, including approximations and

look up tables. LDPC decoders are often classified according to the number of

processing nodes in comparison to the size of the code. Below are the three

classifications based on this criteria

 Number of Processing Nodes:
1. Fully Parallel architectures: A fully parallel implementation of the decoder

consists of mapping directly the symbol and check nodes in the Tanner

graph to the respective symbol and check modules. The edges of the graph

become physical buses of width equal to chosen precision. A fully parallel

implementation, while efficient in speed point of view is demanding in terms

of area, due to interconnect between the processing elements. Although the

computations for calculating the check to symbol and symbol to check

messages are not particularly complex and require a small area to be

implemented, the massive number of interconnections in the graph lead to

complex wiring. In fully parallel architecture the number and complexity of

interconnects results in the implementation where almost 60% of the area is

being dominated by wires. Moreover, the number of computational blocks

required is in one to one relationship with the number of nodes in the Tanner

graph. For medium or long code the resource demands and complexity of

hardware implementation will become infeasible.

44

 Fig.11 Fully parallel LDPC decoder architecture

2. Serial architectures: Fully parallel architectures instantiate each node and

edge of the Tanner graph. The architecture requires maximum hardware with

respect to the size of the code. The other extreme case would be to provide

minimum hardware. Serial architectures have one check and one variable

node computation units. The check node unit processes one row at a time

and the variable node does the same with columns. As in fully parallel

architectures the interconnection network could be bidirectional or

unidirectional. c Any code structure could be executed on this architecture.

45

However, serial implementations would not meet time constraints of most

applications which require high throughputs.

 Fig.12 Serial LDPC decoder architecture with unidirectional connections.

3. Semi-parallel architectures: A trade-off between the routing problem typical

of the parallel architecture and the reduction of the throughput characteristic

of the serial architecture is to use a semi-parallel architecture. This type of

architecture distributes the process across a number of computational blocks.

The check and symbol node messages passed along the edges of the Tanner

46

graph are stored temporarily in a memory. This solution reduces both the

complexity of the routing compared with the parallel architecture and the

complexity in the memory control compared with the serial one. If codes

with more regularity are chosen, this architecture can be designed to take

advantage of the

structure of the parity check matrix, in order to simplify both memory control

and interconnection network. These architectures generally achieve a good

trade-off between hardware complexity and throughput but suffer from memory

access conflicts. These conflicts occur when multiple data accesses per cycle

are required for the same memory bank. These conflicts are difficult to avoid if

the code implemented is of random nature but can be avoided for structured

codes.

47

Fig.13 Semi-parallel LDPC decoder architecture with unidirectional connections.

6.2 Decoding

The decoding algorithms are generally message passing algorithms as a set of

message is being exchanged between the variable nodes and the check nodes.

 A node on the tanner graph uses only the informations given by the nodes

connected to it. A basic decoding is done as follows

1. Every variable node sends the message to connected check nodes, this

message contains the bit that they believe to be correct.

48

2. The check node calculate a response for every variable node connected to it.

The check node while responding to a variable node assumes that the

message received from other connected variable nodes as correct and sends a

message in response which holds the bit that it believes to be correct.

3. The variable nodes receive the message from check node and uses this

additional information to decide the correct bit.

4. Then each check equation is checked if they all satisfy then the message is

correct, else the process is repeated.

5. The v-nodes receive the messages from the check nodes and use this

additional information to decide if their originally received bit is OK. A

simple way to do this is a majority vote. When coming back to our example

that means, that each v-node has three sources of information concerning its

bit. The original bit received and two suggestions from the check nodes.

6. If the current estimated codeword fulfils now the parity check equations the

algorithm terminates. Otherwise termination is ensured through a maximum

number of iterations.

49

 Fig.14 Decoding Flowchart

6.3 Decoder implementation using MATLAB and result

After gaining fundamental understanding of LDPC decoder algorithms and

architecture, the next step taken was to perform and analyze a MATLAB

implementation of belief propagation decoding algorithm of LDPC codes.

50

Getting the correct MATLAB code(in the Appendix) to use was the key in having

a

working LDPC system and being able to verify its operation.

The decoding algorithm used in MATLAB(R2012b) implementation codes was

first decided to be implemented in hardware. However, because decoding

algorithm uses non linear functions, it was difficult to implement in the hardware.

There are basically four main blocks used in making up the decoder design-(1)the

first block is the block that performs the calculations that happens at the variable

nodes,(2)the next block is a memory block to store the edge values sent from the

variable nodes to the check nodes,(3)then is the check node block where each

check nodes update their current estimation,(4)the last block is where final

decision is made.

The objective of this project was to explore the use of FPGA in the encoding and

decoding process of LDPC codes. However the system could be implemented on

MATLAB only and could not be tested on FPGA, this project stands to show the

difficulties one may face when designing an LDPC system. This thesis also

illustrates the performance criteria that are to be considered while developing an

LDPC system.

51

 Fig.15 MATLAB implementation (1)

52

 Fig.16 MATLAB implementation (2)

53

 Fig.17 MATLAB implementation (3)

54

 Fig.18 MATLAB implementation (4)

55

 Fig.19 BER performance result

56

 Chapter 7

 Conclusion

 &

 Future scope

57

7.1 conclusion

In this project we have done analysis of LDPC codes and have studied different

encoding and decoding algorithms.

The construction and hardware implementation of a LDPC system was the main

objective of this thesis. The main objective was to construct good performing

codes which are also easy to implement in hardware. Though we could achieve

some of our objectives only. This work mainly focuses on digital implementation

of encoder and MATLAB implementation of the decoding algorithm.

The conclusion from this project can be summarized as follows:

The error correcting performance of LDPC codes is near to Shannon‟s error

correcting limit.

The error correcting capability of LDPC codes depends on various properties of

parity check matrix such as matrix dimension, girth, regularity etc.

7.2 future scope

Some future work for a follow up to this project would include,

 reduction of hardware complexities.

 Besides hardware size and complexity, decoding latency is one of the

critical factors for most applications. One major drawback of LDPC codes

compared to Turbo codes is their low convergence rate. Turbo codes take on

average 8-10 iterations to converge while LDPC codes typically need

 about 25-30 iterations to match the performance. A large number of

iterations means longer decoding time. The overall decoding time could be

58

reduced by faster convergence of the decoding algorithm. That is another

part were future work and improvement is possible.

 And few other changes could be in terms of speed , size, and power

consumption.

59

APPENDIX

60

61

62

 REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT

Press, 1963.

[2] Ranjan Bose “Information theory, coding and cryptography”, 3
RD

 edition.

[3] Gabofetswe Alafang Malema “LDPC construction and implementation”,

The university of Adelaide, Australia, November 2007.

[4]Edward Liao1, Engling Yeo2, Borivoje Nikolić “LDPC construction and

hardware implementation”, Department of Electrical Engineering & Computer

Sciences, University of California, Berkeley, USA.

[5]LDPC research paper, Department of Electrical and Computer Engineering,

Bradley University,05/2013 .

[6]T. Richardson and R. Urbanke, “The capacity of low-density parity check

codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47,

pp. 599–618, Feb. 2001.

[7]T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching low-density parity check codes,” IEEE Trans. Inform. Theory, vol.

47, pp. 619–637, Feb. 2001.

[8]M. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inform. Theory,

vol. 42, pp. 1710–1722, Nov. 1996.

63

[9]D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of

constructions of irregular Gallager codes,” in Proc. 36th Allerton Conf.

Communication, Control, and Computing, Sept. 1998.

[10]R.M.Tanner “A recursive approach to low complexity codes” IEEE Trans.

Information Theory ,pp.533-547 sept. 1981.

[11]D.MacKay and R.Neal “ Good codes based on very sparce matrices” in

Cryptography and coding 5
th

 IMA conf. Springer 1995

[12]Error detection and correction,

http://en.wikipedia.org/wiki/Error_detection_and_correction ,July 20, 2010

[13]J- Bhasker “Fundamentals of verilog” 3
rd

 edition.

[14]LDPC codes using MATLAB: http://sites.google.com/site/bsnugroho/ldpc .

[15]William Y Ryan “An introduction to LDPC codes” , Department of

electrical and computer engineering , University of Arizon, Aug.,2009.

[16]Behrouz A Farouzan – Data Communication, 4
th

 edition.

[17]Das Subhashree “FPGA implementation of RS codes” , NIT Rourkela.

[18]N.Wiber “Codes and Decoding on general graphs”, Ph.D dissertation,

Linkoping University, Sweden, 1996.

http://en.wikipedia.org/wiki/Error_detection_and_correction
http://sites.google.com/site/bsnugroho/ldpc

64

[19] C. E. Shannon, “Certain results in coding theory for noisy channels,”

Information and Control, vol. 1, pp. 6-25; September,1957.

[20] D. Slepian, “A class of binary signalling alphabets,” Bell Sys. Tech. J., vol.

35, pp. 203-234; January, 1956.

[21] P. Elias, “Coding for two noisy channels,” in “Information Theory,” C.

Cherry, Ed., 3rd London Symp., September, 1955: Butterworths Scientific

Publications, London, Eng., 1956.

[22] F. J. Bloom, et al., “Improvement of binary transmission by null-zone

reception,” PROC. IRE, vol. 45, pp. 963-975; July,1957.

[23] R. M. Fano, “The Transmission of Information,” The Technology Press,

Cambridge, Mass.; 1961.

[24] J. M. Wozencraft and B. Reiffen, “Sequential Decoding,” The Technology

Press, Cambridge, Mass.; 1961.

