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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Importance of Automated tools in Bioelectric signal Processing 

 

In the modern days, a large human population all over the world suffers from various forms of 

cardiovascular diseases (CVD) which is a class of diseases that involve the heart and the associated 

blood vessels. It was reported that over 17.5 million people died, in 2012 with some form of 

cardiovascular disease [8]. The common causes of CVD are high blood pressure, high blood 

cholesterol, poor balanced diet, smoking and abnormal glucose levels, among others.  Hence the 

early detection, prevention and treatment of cardiovascular diseases have important bearing on the 

health of many people. In this backdrop, the biomedical signal processing technique has emerged 

as an active area in research work in the last decade. The process of identifying and classifying 

different forms of CVD can be very troublesome for a human being. So far as the interpretation of 

electrocardiograms (ECG) is concerned, there is a possibility of human error during the ECG 

records analysis which is further aggravated by the presence of noise. Therefore, an alternative is 

to use computational techniques for automatic classification.  The main objective of this thesis is to 

develop tools that can be used for automatic detection and classification of cardiac arrhythmias. 

https://en.wikipedia.org/wiki/Heart
https://en.wikipedia.org/wiki/Blood_vessel
https://en.wikipedia.org/wiki/Hypertension
https://en.wikipedia.org/wiki/Hypercholesterolaemia
https://en.wikipedia.org/wiki/Hypercholesterolaemia
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1.2 The Focus of The thesis 

The primary focus of this thesis is on the exploration of   suitability of employing “Cross Teager-

Kaiser Energy Operator” (CTKEO) based techniques for development of intelligent automated 

medical support systems for diagnosis. In this thesis an attempt has been made to show how these 

methods can be used for development of suitable bioelectric signal processing algorithms, coupled 

with support vector machine classifier that can help to diagnose type of CVD that a patient is 

suffering from. 

It is well known that Electrocardiogram (ECG) is a low cost non-invasive test which effectively 

reveals clinical information related to human heart. ECG is the graphical representation of the 

electrical activity generated by the heart. Cardiac arrhythmia is an abnormal heart rhythm when 

electrical impulses in the heart do not work properly. Different variants of arrhythmias can cause 

different forms of ECG patterns. Therefore, automatic classification of not only the normal heart 

beats and the irregular heartbeats, but the segregation of different types of irregularities in the beats 

on the basis of commonalities in the signatures of the beats depending on the type of disease, can 

serve a powerful medical diagnostic tool. 

In general, the task of automated diagnosis of the ailment consists of two steps, namely,  

1) Extraction of suitable features from the input bioelectric signal, which will bear the 

signatures of the different types of medical disorders. 
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2) Classifying the bioelectric signals into two or more categories utilizing the extracted 

feature, such that each class represents a particular disease. 

Feature extraction can be carried out from the input signal either directly or after subjecting the 

signal to a further processing, using various mathematical tools, statistical methods, transforms, 

etc. This thesis attempts to develop an efficient feature extraction algorithm based employing 

“Cross Teager-Kaiser Energy Operator” (CTKEO) which measures the similarity between two real 

time –functions and  furthermore, to develop support vector machine based classification algorithm 

which can classify different arrhythmia beats utilizing the CTKEO features. 

 

1.3 Previous works on ECG arrhythmia beat Classification 

In selecting an appropriate feature extraction tool, the primary aim should be to extract the hidden 

information present in the ECG signals, as much as possible, thereby improving the classification 

performance. Several feature extraction techniques are used for the analysis of ECG signals, and 

these are categorized as time-domain, frequency-domain and time–frequency techniques. 

In the time domain, the extracted features are the heart-beat interval, duration parameters (QRS, 

QT, and PR) and amplitude parameters (QRS, ST) [1]. Due to the subtle changes in the amplitude 

and duration in the ECG, these time-domain parameters do not provide good discrimination [2]. 

Therefore, frequency-domain methods such as the Fourier transform and the power spectral 
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density (PSD) are used. However, the frequency-domain methods do not provide information 

regarding the evolution of the spectral information of the ECG signals with time. A proper time–

frequency technique can tackle this problem. 

Martis et al. [3] applied a linear method using the discrete wavelet transform (DWT) coefficients 

with the feature reduction technique of principal component analysis (PCA), to discriminate 

between normal and arrhythmia classes. A good classification accuracy of 98.78% with an 

artificial neural network (ANN) was obtained to classify the five main beat classes recommenced 

by the ANSI/AAMI EC57:1998. Most of the linear experiments on ECG have been carried out on 

noise-free data, providing good classification accuracy. However, these linear methods may not 

obtain the same maximum accuracy in the presence of noise [4]. 

Using the fuzzy hybrid ANN classifier and High order Spectral (HOS) analysis features, ECG 

beats were classified [5] and a classification accuracy of 96.06% was obtained. Martis et al. [7] 

applied HOS cumulates with PCA; the average classification accuracy obtained was 94.52% using 

ANN. 

Kutlu and Kuntalp [6] proposed an arrhythmia recognition system based on a combination of 

diverse features including higher order statistics, morphological features, Fourier transform 

coefficients, and higher order statistics of the wavelet package coefficients. Using a wrapper type 

feature selection algorithm to determine the optimal features, the optimal features are selected 
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similarly and then only a vector of data issued to classify the beats into the five main groups 

defined by the Association for the Advancement of Medical Instrumentation (AAMI). The 

classification accuracy values of the k-nearest neighbor were 85.59%, 95.46%, and 99.56%. 

1.4 Overview of The Thesis 

The work in this thesis describes the progress towards the development of CTKEO based 

algorithms for the classification of bioelectric signal like ECG arrhythmia signal. Section 1.2 

introduced the importance of the work undertaken and summarized the approaches in this thesis to 

develop such classification tools. Section 1.3 discussed several significant previous attempts made 

to classify ECG arrhythmia beats. The rest of the thesis is organized as follows: 

 Chapter 2 describes a detailed study of the ECG signal and one of the cardiovascular 

diseases, namely, cardiac arrhythmia. It is seen that there are several types of arrhythmic 

ECG beats. In this chapter the different available ECG databases have also been discussed. 

 Chapter 3 presents a detailed study of “Teager Kaiser Energy Operator” (TKEO) for 

automatic classification of bioelectric signals using a suitable classifier. In this chapter, it 

has also been pointed out how TKEO can also be used for complex signals. Moreover, the 

possibility of coming across signals yielding negative energy, has also been examined. 

 In Chapter 4, the proposed method for classification of arrhythmia beats has been discussed 

in details. In this method, various features are extracted from the CTKEO of a reference 

healthy beat and the other beats. A detailed discussion  on the support vector machine 

(SVM) classifier is presented, which can efficiently classify arrhythmia beats into normal 

beats (N), paced beats (P), premature ventricular contraction beats (V) and other beats 



6 | P a g e  
 

corresponding to left bundle block (LB) and right bundle block (RB). At the end of this 

chapter, the results of findings using different methods are also summarized.  

 Chapter 5 concludes the thesis with a general discussion and ideas for future work. 
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CHAPTER 2 

 

 

Discussions on Electrocardiogram (ECG) 

 

An electrocardiogram (ECG) is a record of the electric activity of the heart and has been widely 

used for detecting heart diseases due to its simplicity and non-invasive nature. By analyzing the 

electrical signal of each heartbeat, i.e., the combination of action impulse waveforms produced 

by different specialized cardiac tissues found in the heart, it is possible to detect some of its 

abnormalities. The traditional approach in the analysis of ECG recordings (for diagnosis of 

diseases) has been centered round the use of human expertise directly, based on knowledge 

acquired in this domain by specialized medical personnel. In the last decades, several works were 

done directed towards automatic ECG-based heartbeat classification methods. Several 

computational algorithms have been used, and newer algorithms and refinements are being 

continuously developed. Very often, not all the researchers involved in the development of this 

newer computational method have ready access to ECG data in abundance for implementing and 

testing their tools. Therefore, several institutions/ organizations have developed ECG signal 

databases, and provide in the following sections, a brief introduction to the ECG signal followed 

by a short description of cardiac arrhythmia has been given. Subsequently, some of the ECG 

databases made available by well-known standard institutions and used for evaluation of the 
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performances of computational tools being developed for automation of the diagnosis, have been 

discussed.  These are the databases recommended in the  standard protocol laid down by  the 

“Association for the Advancement of Medical Instrumentation” (AAMI) for assessing the 

performance of the computational tools being developed for automating the diagnoses of cardiac 

diseases and described in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008).  

2.1 ECG Signal 

The heart is a muscle that contracts rhythmically, thereby pumping blood throughout the body. 

This contraction is initiated at the sinuatrial node that behaves as a natural pace-maker, and 

travels through the rest of the muscle. This electrical signal propagation follows a pattern [1]. As 

a result of this activity, electrical currents are generated on the surface of the body, introducing 

variations in the electrical potential of the skin surface. These signals can be captured or 

measured with the aid of electrodes and appropriate equipment. 

 
            Isolation       High pass filter   Amplification   Low pass filter 

Fig 2.1: Hardware to capture ECG signal 

As shown in Fig 2.1 the difference of electrical potential between the points marked by the 

electrodes on the skin is usually enhanced with the aid of an instrumentation amplifier with 

optical isolation. Then the signal is fed to a high-pass filter and subsequently conditioned by an 

anti-aliasing low-pass filter prior to digitization by an analog-to-digital converter (ADC). The 

graphical registration of this acquisition process is called electrocardiogram (ECG). Although 

Augustus Desiré Waller demonstrated the first human ECG in 1887 [2],   the ability to recognize 



10 | P a g e  

 

the normal cardiac rhythm and/or arrhythmias did not become routine in medical check-ups until 

1960. At present, there are many approaches to measure/record the ECG.  da Silva et al. [3] 

provided a taxonomy of the state-of-the-art ECG measurement methods: (i) in-the-person, (ii) 

on-the-person and (iii) off-the-person.  

Within the in-the-person category, there are equipments designed to be used inside human body, 

such as surgically implanted ones, subdermal applications or even ingestions in the form of pills. 

These devices are used when less invasive approach are not applicable. 

In contrast with the in-the-person category, there is the off-the-person category. Devices of this 

variety are designed to measure ECG without or with minimal skin contact. According to [3], 

this class is oriented towards the future when the all-pervasive use of computer systems becomes 

a reality in medical applications as well. Belonging to this category  are those equipment that are 

based on capacitive devices which measure the electric field changes introduced by the body, 

permitting  ECG measurements at distances of 1 cm or more from the body even with clothing 

on it [3–5]. 

Most of the devices used for ECG recording belong to the on-the-person category. Devices in 

this class normally necessitate the use of electrodes attached to the surface of the skin. Examples 

of such equipments are bedside monitors and holters. The standard devices used for heart-beat 

analysis come from this class. In equipments belonging to this group, three or more electrodes 

are used to obtain the signals, in which one of the electrodes serves as a reference for the others. 

Usually, the reference electrode is placed near the right leg. As such, there can be different 

visions of the ECG signal, depending on the pair of electrodes chosen to obtain the signal. These 

differentiated visions are given the name of leads. 
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A dominant configuration of electrodes is one consisting of 5 electrodes [6]: (i) one of the 

electrodes is positioned on the left arm (LA), (ii) one on the right arm (RA), (iii) one on the left 

leg (LL), (iv) one on the right leg (RL) and (V) one on the chest, to the right of the external (V or 

V1). Another widely employed setup uses10 electrodes [6], where 5 extra electrodes (besides V 

or V1 on the chest and LA, RD, LL and RA on legs and arms) are positioned on the chest (V2 to 

V6) allowing a formation of 12 leads. 

 

Fig. 2.2 – Morphology of the curve for leads I, II and III. 

From these configurations, several different leads can be constructed to visualize the ECG signal. 

For example, Fig. 2.2 illustrates 3 particular leads formed by: (I) the electrical potential 

difference between the LA and RA electrodes; (II) the electrical potential difference between the 

LL and RA electrodes; and (III) the electrical potential difference between the LL and LA 

electrodes. 

Normal rhythm produces four entities such as: 

 The P wave representing atrial depolarization. 

 The QRS complex representing ventricular depolarization. 

 The T wave representing ventricular repolarization, and 

 The U wave representing papillary muscle repolarization. 
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It is to be noted that the U wave is not typically seen and its absence is usually ignored. These 

waves correspond to the field induced by the electrical phenomena occurring on the surface of 

the heart. The presence of cardiac arrhythmias in the subjects can deeply change these waves. 

Lead V and its correlate leads (V1, V2) aid the classification of ventricular related arrhythmias, 

since there are electrodes positioned on the chest, improving the registry of action potentials on 

ventricular muscle. 

 
l 

Fig. 4.3: Fiducial points and various usual intervals (waves) of a heartbeat. 

Consequently, the leads most used for the automatic heart-beat and arrhythmia classification are 

leads II and V and the methods that use a combination of these two leads (and other 

combinations) are the ones that are found to yield the best results [7]. A recent work by Tomasic 

and Trobec [8] reviews methods working with reduced numbers of leads and approaches for the 

synthesis of leads, inferring that the traditional 12 lead system can be synthesized from a smaller 

number of measurements [9]. In contrast, another study published by de Chazal [20] 

demonstrated that similar effectiveness for ECG arrhythmia classification can be obtained at a 

lesser computational cost when using only one lead, compared with methods using multiple leads 

[10]. 
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Although on-the-person equipments are the mainstream devices aiming at heart-disease 

diagnosis, it has been shown [3] that data acquired by off-the-person devices can be highly 

correlated to the data acquired with the traditional on-the-person equipments. The authors claim 

that off-the-person equipments can extend preventive medicine practices by allowing ECG 

monitoring without interference on daily routine. Hence, they have encouraged researchers to 

build ECG databases based on off-the-person devices to evaluate and validate heartbeat 

classification methods for that category.  

2.2 Arrhythmia      

Cardiac arrhythmia is a cardiac condition when electrical impulses in the heart do not work 

properly. Cardiac arrhythmia, also known as cardiac dysrhythmia or irregular heartbeat, stands 

for a group of conditions in which the heartbeat is irregular, too fast, or too slow. A heartbeat 

that is too fast -above 100 beats per minute in adults - is called tachycardia and a heartbeat that is 

too slow - below 60 beats per minute - is called bradycardia [18]. There are two types of 

arrhythmias called atrial and ventricular arrhythmia. About 80% of sudden cardiac deaths result 

from ventricular arrhythmias. The arrhythmias can be classified into two major categories. The 

first category is represented by a single irregular heartbeat, and is called morphological 

arrhythmia. The other category formed by a set of irregular heartbeats, is known as rhythmic 

arrhythmia.   

Arrhythmia may be classified on the basis of: 

 Rate (tachycardia, bradycardia) 

  Mechanism (automaticity, re-entry, triggered), and  

https://en.wikipedia.org/wiki/Cardiac_cycle
https://en.wikipedia.org/wiki/Tachycardia
https://en.wikipedia.org/wiki/Bradycardia
https://en.wikipedia.org/wiki/Tachycardia
https://en.wikipedia.org/wiki/Bradycardia
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  Duration (isolated premature beats, couplets, runs, that is 3 or more beats, non-

sustained= less than 30 seconds or sustained= over 30 seconds).  

Although various types of cardiac arrhythmias exist, the “Association for the Advancement of 

Medical Instrumentation” (AAMI) recommends that only some types should be detected by 

equipment/methods. There are 15 recommended classes for arrhythmia that are classified into 5 

super classes: Normal (N), Supraventricular ectopic beat (SVEB), Ventricular ectopic beat 

(VEB), Fusion beat (F) and Unknown beat (Q) [17]. Table 1 illustrates the 15 classes and their 

symbols, as well as the hierarchy of the 5 groups (super classes). 

Table 1 

Group Symbol Descriptions 

N N Normal beats 

L Left bundle branch block beat 

R Right bundle branch block beat 

e Atrial escape beat 

j Nodal (junctional) escape beat 

SVEB 

Supraventricular ectopic beat 

A Atrial premature beat 

a Aberrated atrial premature beat 

J Nodal (junctional) premature beat 

S Supraventricular premature beat 

VEB 

ventricular ectopic beat 

V Premature ventricular contraction 

E Ventricular escape beat 

F 

Fusion beat 

F Fusion of ventricular and normal beat 

Q 

Unknown beat 

P Paced beat 

f Fusion of paced and normal beat 

U Unclassifiable beat 

 

2.3 The Databases and The AAMI Standard 

Various databases composed of cardiac heartbeats grouped in patients’ records, are freely 

available, and have permitted the creation of standardization for the evaluation of automatic 

arrhythmia classification methods. This standardization, developed by AAMI, is specified in 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0ahUKEwjPoof6qObMAhWFW5QKHfBADy0QFghJMAY&url=http%3A%2F%2Fwww.aami.org%2F&usg=AFQjCNFf_29FsG569ITgHHh0HOedZgGKyw&bvm=bv.122129774,d.dGo
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0ahUKEwjPoof6qObMAhWFW5QKHfBADy0QFghJMAY&url=http%3A%2F%2Fwww.aami.org%2F&usg=AFQjCNFf_29FsG569ITgHHh0HOedZgGKyw&bvm=bv.122129774,d.dGo
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ANSI/AAMI EC57:1998/(R) 2008 [11] and defines the protocol to perform the evaluations to 

make sure the experiments are reproducible and comparable. 

The use of five databases is recommended by the standardization: 

1. MIT-BIH: It is unique since it contemplates the five arrhythmia groups proposed by 

AAMI as described in Table 1. This database contains 48 records of heartbeats at 360 Hz 

for approximately 30 min of 47 different patients. Each record contains two ECG leads 

and in the majority of them the principal lead (lead A) is a modification of lead II 

(electrodes on the chest). The other lead (lead B) is usually lead V1, modified, but in 

some records, this lead is known to be V2, V5 or V4 [12]. Generally, lead A is used to 

detect heartbeats, since the QRS complex is more prominent in this lead. Lead B favors 

the arrhythmic classification of the types SVEB and VEB. More information regarding 

this database can be found in [13]. 

2. EDB: The EDB database is a collection of 90 records acquired from79 subjects, sampled 

at 250 Hz with 12-bit resolution. These records were extracted from 70 men (between 30 

and 84 years old) and 8 women (between 55 and 71 years old). As all of these subjects 

were suffering from a specific cardiac disease (i.e., myocardial ischemia), the database 

was originally built to allow ST-segment and T-wave analysis. More information 

regarding this database can be found in [14]. 

3. AHA: The AHA database consists of 155 records, each one composed of two leads, 

sampled at 250 Hz with 12-bit resolution. Each recording is three hours long and only the 

final 30 min have been annotated. The database was created to evaluate ventricular 
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arrhythmia detectors. However, the database does not differentiate normal sinus rhythm 

from supra ventricular ectopic beats (SVEB). 

4. CU: The CU database is composed of 35 eight-minute ECG recordings, sampled at 250 

Hz with 12-bit resolution. The database was intended to evaluate algorithms aiming at 

detecting episodes of sustained ventricular tachycardia, ventricular flutter, and ventricular 

fibrillation. More information regarding this database can be found in [15]. 

5. NSD: NSD database includes 12 half-hour ECG recordings and 3 half-hour noise 

recordings. The noise inserted in the recordings is typical interferences found in 

ambulatory care services, such as baseline wander, muscle artefact (EMG) and electrode 

motion artefact. The ECG recordings available in the NSD database were created based 

on two clean recordings from MIT-BIH (118 and119). This database is more detailed 

described in [16]. 

The most representative database for arrhythmia is the MIT-BIH, and because of this, it has been 

used in most of the published research. It was also the first database available for this goal and 

has been constantly refined over the years [13]. Here in this study we have used MIT-BIH 

database.  

The majority of the heartbeats recorded in these databases have annotations associated with the 

type of heartbeat or the events. These heartbeat annotations, as much for the class and for the 

salient points (e.g., point R, maximum amplitude of the heartbeat) are fundamental for the 

development and evaluation of automatic arrhythmia classification methods. 
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CHAPTER 3 

 

Teager Kaiser Energy Operator 

 

In the investigations on non-stationary signals, the estimation of the signal energy in the time- 

domain as well as in the frequency domain using Time-Frequency distributions is absolutely 

essential. Such signals are frequently encountered in speech-processing, in radar engineering, 

and also in geophysical, biological, and transient signal analysis and signal processing. Different 

types time-frequency distributions have already been examined and implemented by several 

research workers [1- 3]. 

Useful signals very often get contaminated with noise that can be extrinsic (picked up from the 

environment) or intrinsic (arising in sensors or in communication channels) in nature. 

Consequently, the computation of these time-frequency distributions can be regarded as energy 

estimation problem in the presence of noise. The present work starts by introducing the concept 

of signal energy in general, followed by Kaiser's ―alternative‖ definition of energy operator by 

considering a second order differential equation, which describes the motion of an object 

suspended by a spring. 
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3.1 Signal Energy 

In electrical systems, the instantaneous power of a system can be described as         

                                             Rtvtp /)()(
2

     or   p (t) = │i (t)│
2
  × R                                   (3.1) 

Where R, v(t), i(t) are the resistance, the voltage and the current in the system, respectively. 

Normalizing the above equation by choosing R = 1Ω, it is seen that the power is the square of the 

input signal, regardless of whether one choose to measure the voltage or the current. Therefore 

expression of the instantaneous power is defined as 

                                                  
2

)()( tstp                                                                                (3.2) 

Where s(t) is either voltage or current. 

The energy of the signal over a duration extending from –T0  to +T0  is 
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 The total energy of the signal is defined as 
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                                            (3.4) 

It is quite difficult to define the term ―Energy‖ of a signal in the context of signal processing. In 

physics, energy is a measure of the work done or work that can be done in a system. However, 

people are often unaware or do not have access to the system in which the signal arises. 

Therefore, the signal processing definition of energy differs from that used in physics. The 

definition used in signal processing considers only signal amplitude and may yield the same 

value of energy for two signals with same amplitude but different frequencies, although the work 

done in generating the two signals may differ [4]. As an example, the energy content of two 
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sinusoids with same amplitude but with frequencies of 100 Hz and 1000 Hz turns out to be same 

over a time-span of say 0.01 s.  

To alleviate this shortcoming, Kaiser [5] introduced a measure of energy, based on an 

unpublished work by Teager [6] that takes into account the amplitude as well as the frequency of 

the signal. Thus, according to this Teager-Kaiser definition of energy, signals with different 

frequencies but identical amplitudes contain different energy. Such a definition, often described 

as a nonlinear-energy operator, is different from the classical energy measure also because it is 

an instantaneous measure of energy.  In other words, it is a function of time and can therefore 

track the changes in the signal, and consequently the system-energy. 

3.2 Teager Kaiser Energy Operator 

As already pointed out Teager-Kaiser Energy Operator was first proposed by Teager [6] and 

investigated by Kaiser [5]. It has several applications, e.g. in separation of Amplitude 

Modulation (AM) from Frequency Modulation (FM) [10], in the detection of transient signals 

[13], for suppression of spike noise in radio receivers  [11], and in the detection of bearing fault 

in industrial applications [12]. Kaiser used the following differential equation as the starting 

point for introducing the non-linear energy operator. 

                                                          
 

 
2

2
0

d x t k
x t

dt m
                                                         (3.5) 

This second order differential equation is derived from Newton‘s law of motion of an object with 

mass m  suspended by a spring with stiffness k . This is a simple model of a mechanical-

acoustical system, where the object may oscillate thus creating pressure waves in the surrounding 

medium, although none of the medium's characteristics are included in the model.  
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The solution of equation 3.5 is a periodic oscillation given by ( ) cos( )x t A t    where )(tx  is 

the position of the object at time t , A  is the amplitude of the oscillation, 
k

m
  is the angular 

frequency of the oscillation; and  is the initial phase. If 0   then that the object is not initially 

in equilibrium. 

The total energy of the object is the sum of the potential energy of the spring and the kinetic 

energy of the object, given by                                                

     2 21 1

2 2
E t kx t mv t                                                          (3.6) 

By substituting  
 dx t

v t
dt

 , one gets and ( ) cos( )x t A t   , we get 

)(sin
2

1
)(cos

2

1
)( 22222   tAmtkAtE  

                         )](sin)([cos
2

1 2222   ttAm       [ 2mk  ] 

                                    22

2

1
AmE                                                                                        (3.7) 

From the above equation it is seen that the energy (E) of the object is proportional to both 2A  

and 2 . It is also a function of time. 

From equation (3.7) one can easily see that the energy to generate a simple sinusoidal signal 

varies as a function of both amplitude and frequency. This observation is what Kaiser used to 

derive the Teager Energy Operator. 

 

3.2.1 The Continuous Teager Kaiser Energy Operator 

―Teager Kaiser Energy Operator‖ (TKEO), can be defined in a manner so as to serve as a local 

energy measure for oscillating (simple harmonic) signals. TKEO computes the energy of a real- 
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valued signal x (t) using the follows expression. 

                                      
2
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dt

txd
tx

dt

tdx
tx 








                                                     (3.8)       

This energy operator characterizes the localized property of the signal and depends only on the 

values assumed by the signal and its first and second time derivatives at the particular instant of 

time under consideration, and not on any span of time. TKEO is an energy tracking method that 

has been found to have low computational complexity, quite good time-resolution and ease of 

efficient implementation.  

 

3.2.2 The Discrete Operator 

When equation (3.8) is translated to an equivalent discrete-time form by using the backward-

difference approximation 

[ ] [ 1]
[ ]

s

x n x n
x n

T

  
 , for small value of T,  

It becomes 

                                        
2

2

[ [ ]] [ 1] [ 1]
[ [ ]]

s

x n x n x n
x n

T


  
                                                 (3.9) 

where Ts is the sampling period (i.e. the time-interval between every two adjacent samples), x[i] 

and x [i+1]. In many cases, an assumption of Ts = 1 unit is quite acceptable, since the digital 

frequency in radian/sample bears the information of Ts. As a result, a final discrete-time version 

of TKEO is obtained as 

                                        ]1[]1[]][[]][[ 2  nxnxnxnx                                               (3.10) 

This result is very significant as it shows that the ―Teager-Kaiser Energy‖ (TKE) of a time 

varying sinusoidal signal can be calculated by considering only three consecutive sampled data. 



24 | P a g e  

 

3.2.3 Energies of well-known signals 

 AM Signal:  

Amplitude modulated (AM) signal is the combination of two signals, where one signal is the 

―carrier‖, which is a single-frequency sinusoidal signal and the other, is the information we want 

to transmit, the baseband signal. We can model the amplitude modulated signal as 

)](1[)( tkmAta   

( ) ( )cos( )AM cs t a t t   

Where A  > 0 is the signal amplitude, c  is the carrier frequency (in radians/second), 

1)(1  tm  is the baseband signal, and 0 < k ≤1 is the modulation factor. These AM signals are 

called AM signals with carrier, as we require )(ta  being positive. 

The Teager Energy of an AM signal is 

                                     2 2 2 2 2( ( )) ( )cos ( ) ( ) ( )cos ( ) ( )AM c c cs t a t t a t a t t a t
 

       

                                                      2 2 2( ) cos ( ) ( ( ))c ca t t a t                                                 (3.11) 

From the above equation it can be seen that the Teager Energy of an AM signal is composed of a 

term similar to the energy of a sinusoidal signal, and an oscillatory part scaled by the Teager 

Energy of the amplitude signal. Figure 3.1 shows a sample AM signal and its Teager Energy 

[14]. It is worth noting the similarity between the envelope of the AM signal and the output of 

the Teager Kaiser Energy Operator.  
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(a) AM Signal 

 

(b) TEO Output of AM Signal 

 

Figure 3.1: Teager Energy of an AM signal 

 

 

 FM signals 

A frequency modulated signal (FM signal) can be modeled as  

0

( ) ( ) ( )

t

c mt t m d         

))(cos()( tAtsFM   

The Teager Energy of the above FM signal can be expressed as 

                                                  
2

))(2sin(
)()(())(( 22 t

ttAtsFM





                                    (3.12) 

In figure 3.2, a sample FM signal is shown. Here, the baseband signal is a pure sinusoidal signal. 

The output of the Teager Energy Operator in this case is a sinusoidal signal with the same 

frequency as the baseband signal [14]. 
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(a) FM (Sinusoidal baseband) Signal 

 
(b) TKEO of above Signal 

Figure 3.2: Teager Energy of a FM signal where the baseband signal is a sinusoid. 

 

 AM-FM signals 

The most complex and general case is that of the AM-FM signal. The AM-FM signal is the 

combination of AM and FM signals and it can be modeled in the following manner. 

)](1[)( tkmAta AM   (For AM Signal) 

0

( ) ( ) ( )

t

c m FMt t m d        (For FM Signal) 

))(cos()()( ttats FMAM   

 

The Teager Energy of the above AM-FM signal obtained as 

                             ))(())((cos))(2sin()()(
2

1
)]()([))(( 222 tattttattats FMAM  



      (3.13) 

Here 2
nd

 term of the above equation represents FM signal, while the 3
rd

 term represents AM 

signal. It is observed from the above expression that the similar term from both the AM and FM 

signal energies (from eq. 3.11 and 3.12) appear in the expression. 



27 | P a g e  

 

In figure 3.3, an AM-FM signal is shown. In this case, the operator's tracking capabilities are not 

evident, although one can locate some correlation between the peaks of the Teager Energy and 

the zero-crossings of the AM-FM signal [14]. 

 
(a) AM-FM Signal 

 

 

(b) TKEO output of AM-FM Signal 

Figure 3.3: Teager Energy of an AM-FM signal 

3.2.4 Extension to complex signals 

The Teager Operator can also be extended to cover complex signals. As the Operator is an 

energy operator, one can expect it to always give positive values.  

P. Maragos et. al in their work on image demodulation using multidimensional energy separation 

[7] have defined the TKEO for complex signals as 

                                            )]()(Re[)())(( *2 txtxtxtxC



                                          (3.14) 

Hamila et. al  [8]  have defined the operator for complex signals as 

                                   )]()()()([
2

1
)()())(( *** txtxtxtxtxtxtxC



                                   (3.15) 

Although written differently, the operators above are equal because 
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)()()( *2 txtxtx


  

By definition and omitting t for clarity, one gets 

                                             )])(Re[()]()(Re[ *
jrjr xjxjxxtxtx



  

                                                                 ]Re[ jjrjjrrr xxxjxxjxxx


  

                                                                   jjrr xxxx
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                                                   (3.16) 

and 

))(())([(
2

1
][
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1
*

*
jrjrjrjr xjxjxxjxxxjxxxxx
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                                                ][
2

1
rjjrrrjjjjrjjrrr xjxxjxxxxxxxxjxxjxxx
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  

                                                jjrr xxxx


  

When )(tx  is a real signal, the operator reduces to the conventional definition of the Teager 

Operator. We can gain more insight if we write the complex operator as the sum of the real and 

imaginary parts: )()()( tjxtxtx jr   

)]()([))(( tjxtxtx jrCC   

              )()()()()()(
2

txtxtxtxtxtx jjrrjr



  

             ))(())(( txtx jRrR                                                                                          (3.17) 

Equation (3.17) implies that the Teager Energy of a complex signal is the sum of the energies of 

the real and the imaginary parts of the signal.  

3.2.5 Positivity of the Energy Operator 

As the Teager Energy Operator is an energy operator, and energy is a non-negative quantity, one 

must investigate whether the Teager Energy Operator is zero or positive for all signals. This 
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issue was first addressed by Petros Maragos [9], and was later discussed elaborately by Alan C. 

Bovik and Petros Maragos [11]. 

 Real-valued signals 

The Continuous Teager Energy Operator has already been defined as 

                                      
2

22
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)(
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))((
dt

txd
tx

dt

tdx
tx 




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


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The only way to have the right hand side nonnegative, is to have 

                                              

2 2
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dx t d x t
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 
 

 
                                                                                      (3.18) 

Thus, for real signals, the Teager Energy Operator is nonnegative if any of the following 

conditions is satisfied. 

 

 

1. x(t)=0 

2. 
2

2 )(

dt

txd
=0 

3. x(t) < 0 and 
2

2 )(

dt

txd
>0 

4. x(t) > 0 and 
2

2 )(

dt

txd
<0 

This is because the right hand side of the inequality 3.18 is negative or zero for all of these cases. 

The left hand side is always positive, irrespective of the value of 








dt

tdx )(
 , as it is the square of a 

quantity. Thus, in these cases, ))(( tx ≥ 0. 

 Complex signals 

From the equation 3.15, the complex Teager Energy Operator is defined as 

)]()()()([
2

1
)()())(( *** txtxtxtxtxtxtxC



  
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The above expression reduces to the traditional form whenever )(tx  is a real signal. Treating  

)()()( tjxtxtx jr   as the input to the TEO, the output is  )]()([))(( tjxtxtx jrCC  . It 

implies that the Teager-energy will be positive as long as the largest absolute term is positive. 

Effectively, the output of the TEO is positive for a broader range of signals, as one of the terms 

is now allowed to be negative.  

To have an insight of the positivity constraint, Fig. 3.4 sketches the complex plane, with the 

output of ))(( txrR as the abscissa and the output of ))(( tx jR as the ordinate. Teager energies 

in the shaded area are negative. 

 

Figure 3.4: Complex plane visualizing the region where the Complex Teager Energy Operator is 

negative. 

 

 

3.3 Cross Teager Kaiser Energy Operator 

Cross Teager–Kaiser Energy Operator (CTKEO) was introduced by Kaiser [15], primarily to 

have a measure of the interaction between two real signals x(t) and y(t), and it can be expressed 

as  

                                                     


 yxyxyx ),(                                                        (3.19)  

This function owes its origin to the Teager–Kaiser Energy Operator (TKEO), which is a 

powerful tool for measuring the temporal changes in sinusoidal energy. The concept of   
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operator or CTKEO has been extended to the realm of complex-valued signals [9], yielding a 

new operator denoted by C  and defined as 

                                          ]*[5.0][5.0),(





 yxyxyxyxyxC                                  (3.20) 

Where x(t) and y(t) are two complex-valued signals and x*(t) and y*(t) are their respective 

complex conjugates. A positive symmetric modification of C  represented by B  has also been 

introduced [15], and is defined as  

)],(),([5.0),( xyyxyx CCB   

              )(25.0)(5.0


 yxyxyxyxyxyx                                                    (3.21) 

Where )()()( tjxtxtx jr   and )()()( tjytyty jr  . 

                                                                                                       
)])(())((



 jrjrjrjr xjxjyyxjxjyy
 

             
][

2

1
][

2

1
jjjjjjrrrrrr yxyxyxyxyxyx




 

             
),(),( jjBrrB yxyx 

                                                                                           (3.22)
 

So it is observed from the eq. (3.22) that the cross B  energy operator of )(tx and )(ty  is equal 

to the cross-Teager energies of their real and imaginary parts. 

( , ) ( , ) ( , )B B r r B j jx y x y x y                        (3.23) 

( , ) 0.5[ ]l lB l l l ll l
x y x y x y y x

   

     Where { , }l r j                    (3.24) 

The complex form of the signals is obtained using the Hilbert transform. A number of different 

derivative approximations can be used for the realization of B . 

))(())([(
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1
)])(())([(

2

1
),(
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 jrjrjrjrjrjrjrjrB yjyjxxyjyjxxyjyxjxyjyxjxyx
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3.3.1 Discretizing the Continuous-Time Cross Teager Energy Operator 

Backward difference relations can be used to approximate the derivatives and can be combined 

to obtain an expression closely related to the discrete form 
dB of the continuous B operator. 

dB  Operates on discrete-time signals, i.e. time-series x(n) and y(n). Although the two-sample 

backward difference is elaborated here, it is worth mentioning that higher order difference-

relations can also be used. For simplicity, t is replaced by  n sT  where sT  is the sampling period, 

and x (t) with x (n sT ) or simply x [n]. The substitutions yield 

[ [ ] [ 1]]
( ) k k

s

x n x n
x t

T

  
  

 
2

[ ] 2 1 [ 2]
( )

k k k

s

x n x n x n
x t

T

    
  

           
2 2

1 1 0.5[ 1 1 1 1
( ( ), ( ))

k k k k k k

B k k

s s

x n y n x n y n y n x n
x t y t

T T

      
    

   
2

( 1 , 1 )
( ( ), ( )) dB k k

B k k

s

x n y n
x t y t

T

  
  , where },{ rjk . 

The discrete form of ))(),(( tytxB is given by 

       
2

( 1 , 1 ) ( 1 , 1 )
( ( ), ( )) d dB r r B j j

B

s

x n y n x n y n
x t y t

T

     
   

 

Where   indicates the mapping from continuous to discrete. Hence, from a knowledge of B  

its discrete-time version
dB  shifted by one sample to the left and scaled by 2

sT  , can be obtained. 

It can be easily established that using the two-sample forward difference, shifted by one sample 
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to the left and scaled by 2

sT  , can be obtained from .  On ignoring the one-sample shift and also 

the scaling parameter, ))(),(( tytxB can be converted into    ( n , )
dB x y n  as follows: 

                                        ( ( ), ( )) ( , ) ( , )
d dB B r r B j jx t y t x n y n x n y n                        (3.25) 

               ( , ) 0.5( 1 1 1 1 )
dB k k k k k k k kx n y n x n y n x n y n y n x n                            (3.26)      

Where },{ rjk   

The three-sample symmetric difference can also be utilized but it results a more complicated 

expression. Indeed, the asymmetric approximation is less complicated for implementation and 

faster than the symmetric one because it requires fewer operations. Thus the symmetric 

difference approximation has not been treated here. 

 

3.4 Signals Yielding “Negative Teager Energy” 

Figure 3.5 shows a signal and its‘ Teager Energy. It can be seen that at several instants the output 

of the TKEO is ‗negative‘. This is surely a strange behavior for an energy operator. It therefore 

demands investigations as to how such signals with such TKEO can derived. 

The definition of the TKEO makes it amply clear that the operator is aimed at modeling the 

energy of the source of the signal, and not of the signal.  This gives probably a part of the 

explanation. This has been discussed by Hamila et. al [8]. 
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(a) Two Mixed Sinusoidal Signals 

 

(b) TKEO output of the above signal  

Figure 3.5: The Teager Energy Operator output of the signal is negative for some parts of the 

signal. 

 

The signal in Fig.3.5 has been obtained by combining two sinusoids, where one has significantly 

higher frequency, but has much smaller amplitude than the other signal. It appears as a model of 

two separate sources, one high frequency and one low frequency source, where the high 

frequency source is placed farther away than the low frequency counterpart. However, in this 

case, if one assumes incorrectly that the signal is generated by a single source, then that might 

explain why the Teager Energy is negative. 

The same signal could indeed have been generated by a single system, but that would also have 

been a departure from the simple model that has been considered in the definition of the Teager 

Energy Operator, as the resulting signal consists of two oscillating signals. 
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CHAPTER 4 

 

 

Results And Discussions 

 

The present chapter discusses how cross teager kaiser based feature extraction methodology can 

be associated with support vector machine classifier for efficient classification of arrhythmic 

heart beat of different class. Analyzing each heartbeat of the ECG records can be troublesome for 

human being because the ECG record obtained from holter monitor can be affected by noise and 

also there is a possibility of human error during the analysis of ECG record. To develop SVM 

based bioelectric signal classification algorithm, ECG signal from MIT/BIH arrhythmia database 

is considered [25]. Fig 4.1 describes the steps for a full automatic system for arrhythmia 

classification from signals acquired by an ECG device, and these steps are (1) ECG signal 

preprocessing; (2) heartbeat segmentation; (3) feature extraction; and (4) learning/classification. 

The rest of the chapter is organized as follows: section 4.1 describes the preprocessing steps of 

ECG signal involve denoising and segmentation. Cross teager kaiser based feature extraction 

process is detailed in section 4.2. SVM based classification technique is detailed in section 4.3. 

section 4.4 represents performance results of the classification and summary is presented in 

section 4.5.   
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Fig. 4.1: Stages of Classification of Arrhythmia in ECG beats [21] 

 

4.1 Preprocessing: 

The main objective of preprocessing is Denoising of ECG signal and to identify exact cardiac 

cycle. The ECG signal obtained from holter monitor often contaminated by different types of 

noise namely Contact noise, baseline drift, muscle artifacts, power line interference, electrode 

motion artifact, electromyography artifact etc. On the other hand in preprocessing method 

heartbeat segmentation from the ECG signal is a different approach from automatic classification 

of arrhythmias. The performance of the ECG signal classification depends on the exact detection 

of each cardiac cycle [2]. Therefore the choice of suitable preprocessing method affects the final 

objective of the research. 

Among all proposals for reducing noise in ECG signals, the simplest and most widely used is the 

implementation of recursive digital filters of the finite impulse response (FIR) [4], which was 

made computationally possible with the advance in microcontrollers and microprocessors. In 

order to attenuates known frequency bands namely noise coming from the electrical network (50 

Hz or 60 Hz), since these methods perform perfectly. But the problem is in most cases the 



39 | P a g e  
 

frequency of noise is unknown. Therefore, to determine the noise frequency one should have to 

apply different types of filter to the signal for different frequency bands. But doing so one can 

deforms the morphology of the ECG signal. As a result of that the signal becomes unusable for 

diagnosing cardiac diseases. Other methods have also presented interesting results on noise 

attenuation. Sameni et al. [14] have proposed the use of nonlinear Bayesian filters for ECG 

signal noise reduction, presenting promising results. A new algorithm is proposed based on the 

Extended Kalman Filter [13], which do not distort the parameters of the ECG morphology for 

ECG noise reduction and signal compression, providing a significant contribution because the 

method showed the greatest effectiveness to date. 

In the last decade, many methods based on wavelet transforms have been employed to remove 

noise, since they maintain the ECG signal properties avoiding loss of its important physiological 

details and are simple from a computational point of view [5–7].  

In this thesis paper the pre-processing module is decomposed into two components as shown in 

fig 4.1. The first component involves the de-noising of the ECG signal based on the discrete 

wavelet transform (DWT). For preprocessing of the ECG signal, noise removal involves 

different techniques for various noise sources [1]. The second component is the segmentation of 

the signal. Each component is described in brief as follows: 

 

4.1.1 Denoising 

Since DWT is efficient in analyzing non-stationary signals, it is used in this paper. The 

Daubechies D6 (db6) wavelet basis function is used to denoise the data, with the ECG signals 

decomposed to nine levels [3]. A frequency range from 0 to 0.351 Hz in the ninth level 

approximation sub band is mostly the baseline wander. Furthermore, the frequency ranges of 90–

180 and 45–90 were not considered because the information after 45 Hz is not important for 
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arrhythmia detection. The algorithm decomposes the original signal through DWT and the 

resulting DWT detail coefficients are thresholded by shrinkage (soft) strategy. In this thesis 

paper the automatic thresholding method is employed for each level of decomposition of the 

signal. Reconstructing the original sequence from the thresholded wavelet detail coefficients 

leads to a denoised (smoothed) version of the original sequence. 

 

4.1.2 Segmentation 

Heartbeat segmentation methods have been studied for more than three decades [8 - 11] and the 

generations of these algorithms and newly developing methods reflect the progress of the 

processing power of computers.  

Here after Denoising, 99 samples were chosen from the left side of the QRS mid-point and 100 

samples after QRS mid-point and the QRS mid-point itself as a segment or beat of 200 samples 

[12]. The five types of beat classes in the ANSI/AAMI EC57:1998 standard database are 

represented in two preprocessing categories in figure 2, and those are: (a) Signal beats without 

DWT and (b) smoothing signal beats using DWT + QRS detection of 200 samples. The circle 

illustrates the presence of non-smoothing signal beats. 
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Fig. 4.2: The five types of beat classes in two preprocessing categories: (a) Signal beats without 

DWT (a) denoised signal beats using DWT and QRS detection of 200 samples  

 

4.2 Feature Extraction 

In machine learning tasks such as classification often requires input that mathematically 

convenient to process. In this motivation feature extraction is the crucial step for automated 
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classification of bioelectric signal. A feature is piece information of an individual based on 

which one can differentiate the individual from others. Any information extracted from the 

heartbeat used to distinguish its type maybe considered as a feature. From the ECG signal’s 

morphology one extract features in the time domain and/or in the frequency domain or from the 

cardiac rhythm.  

Feature extraction and feature selection are two different processes for classification. Feature 

extraction is defined as the stage of finding the description of an object whereas feature selection 

can be seen as a search technique for proposing a new feature subset of relevant features in order 

to improve the performance of classification. 

The Cross Teager Kaiser Energy Operator is a mathematical technique which measures the level 

of similarity of two signals. In this proposed feature extraction technique CTKEO is used to 

extract feature from the ECG beats. Here the healthy ECG beat  nA  is correlated with the ECG 

arrhythmia beat  nB . The features can be extracted from resultant sequence are 
ABE . 

)]1()1()1()1([5.0)()()(  nBnAnBnAnBnAnE kkkkkkAB   Where },{ rjk  

Here n  represents the number of samples of each of the signals, then the resultant cross-teager 

Kaiser sequence will have  1n  number of samples. In this study 200n  sample is used for 

each heartbeat. For simplicity nE  has been taken as the Cross-Teager Kaiser sequence. 

The features (F1 to F8) [20] that are extracted from the above resultant sequence are as follows: 

1. F1= maximum value of the sequence ( maxE ) 

2. 
max

2
E

nE

F

w

wn

n
                        



43 | P a g e  
 

3. 








w

wn

n

w

wn

n

E

nE

F3                                   6. 
 


w

wn

n

w

E
F

12
6  

 

4. 








w

wn

n

w

wn

n

E

En

F 4                                  7.
)12(

)6(

7

2









w

FE

F

w

wn

n

 

5. 








w

wn

n

w

wn

n

E

En

F

2

5                               8. 
3

3

)7()1(

)6(

8
Fw

FE

F

w

wn

n







  

Thus, the above eight features are extracted from the cross-teager Kaiser Sequence of each 

arrhythmia class ECG beat for identification of each disease characteristics. 

Here Fig 4.3 represents the Plot of CTKEO between a healthy beat and a disease beat. The above 

mentioned features are extracted the output of CTKEO in fig 4.3 (c).   

 

Fig 4.3: CTKEO Plot of healthy and disease beat 
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4.3 Classification 

Classification is a general process related to categorization, the process in which ideas and 

objects are recognized, differentiated, and understood. An algorithm that implements the 

classification, especially in a concrete implementation, is known as a classifier. The term 

"classifier" sometimes also refers to the mathematical function, implemented by a classification 

algorithm that maps input data to a category. 

In machine learning and statistics, classification is the problem of identifying to which of a set of 

categories a new observation belongs, on the basis of a training set of data containing 

observations whose category membership is known. Here from the fig. 4.4 one can see that with 

the help of a training set of correctly identified observations machine come up with its own 

prediction rule based on which a new example or a testing set would be classified. 

 

Fig 4.4: Machine Learning Classification 

 

The machine learning tasks typically classified into two categories such as: 

1. An instance of supervised learning, i.e. learning where training set of correctly identified 

observations is available.  

2. Unsupervised procedure, also known as clustering, involves grouping data into categories 

based on some measure of inherent similarity or distance. 

https://en.wikipedia.org/wiki/Categorization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Categorical_data
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Distance
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Once the set of features have been defined from the arrhythmic heartbeats, models can be built 

from these data using artificial intelligence algorithms from machine learning for arrhythmia 

heartbeat classification. Here, in this study the most popular algorithm Support Vector Machine 

(SVM) is employed.  

 

4.3.1 Support Vector Machines (SVMs) 

In machine learning, support vector machines (SVMs) are supervised learning models with 

associated learning algorithms, that analyze the data used for classification and regression 

analysis. Suppose there are a set of training examples, each marked for belonging to one of two 

categories. An SVM training algorithm builds a model based on the features of training example 

that assigns new examples into one category or the other, making it a non-probabilistic binary 

linear classifier. More accurately, one can think of an SVM model as representing the examples 

as points in space, mapped so that each of the examples of the separate classes are divided by a 

gap that is as wide as possible. New examples are then mapped into that same space and 

predicted to belong to a category based on which side of the gap they fall on. 

The original SVM algorithm was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis 

in 1963[24]. In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik suggested 

a way to create nonlinear classifiers by applying the kernel trick to maximum-margin 

hyperplanes[4].  

More accurately, a support vector machine constructs a hyperplane or set of hyperplanes in a 

high or infinite-dimensional space, which can be used for classification, regression analysis. 

Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the 

nearest training-data point of any class (so called functional margin), since in general the larger 

the margin the lower the generalization error of the classifier. The machine achieves this 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
https://en.wikipedia.org/wiki/Alexey_Chervonenkis
https://en.wikipedia.org/w/index.php?title=Bernhard_E._Boser&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Isabelle_M._Guyon&action=edit&redlink=1
https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
https://en.wikipedia.org/wiki/Kernel_trick
https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/Generalization_error
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desirable property on the basis of the principle of Structural Risk Minimization (SRM) principle. 

The SRM principle seeks to minimize the upper bound of the generalization error consisting of 

the sum of the training error and a confidence interval [22]. 

In addition to performing linear classification, SVMs can efficiently perform a non-linear 

classification using the kernel trick by mapping their inputs into high-dimensional feature spaces. 

 

 Linear SVM 

Suppose there are a training dataset of n  points of the form  

),(),.......,,( 11 nn yxyx


 

Where ix


 is an N-dimensional is input feature vector and iy are either +1 or -1 indicates the class 

to which the points ix


 belongs. For linearly separable case one can select two parallel hyperplane 

that separates the two classes of data, so that the distance between them is as large as possible. 

The region bounded by these two parallel hyperplanes is called “margin” and the hyperplane that 

lies in middle of them is called maximum-margin hyperplane. The support vectors denote those 

data points, which are closest to the maximum-margin hyperplane, and they are most difficult to 

classify [16].  

 
Fig 4.5: SVM separating hyperplanes  

https://en.wikipedia.org/wiki/Kernel_trick
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From fig 4.5 one can see that the hyperplane 1H does not separate the classes. On the other hand 

2H separates the classes but distance from data points is small whereas in case of 3H , this 

hyperplane separates the classes with maximum margin. 

The equation of hyperplane for a set of data point x


 can be written as  

0. bxw  

w  is the adjustable weight vector and b  is the bias. For linearly separable case the two parallel 

hyperplanes can be formulated as follows 

1. bxw   

And                                                          1. bxw  

Now if one tries to prevent data points from falling on the margin, then the hyperplanes can be 

reformulated as  

                                                                1. bxw  if 1iy                                           (4.1) 

And                                                          1. bxw  if 1iy                                        (4.2) 

Now combining eq. (4.1) and eq. (4.3) one can write that 

                                                               01).(  bxwyi                                                       (4.3) 

 

The distance from origin to the optimal hyper plane is
w

b
 and w  is the Euclidean norm of w 

[15]. As shown in fig. 4.6 that for some data points ),( ii yx


, 1. bxw  is satisfied and for some 

other data points ),( ii yx


, 1. bxw  is satisfied. The main objective here is to maximize the  
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Fig. 4.6: The SVM for the linearly separable case 

margin of separation and to do so it is necessary to determine the value of b  and w  . As it is 

known that maximum margin hyperplane is halfway between the two parallel hyperplane, then 

the distance between two hyper planes is 
w

2
. So to maximize the distance between two planes 

one should minimize w . Hence the constrained optimization problem can be stated as: For the 

given training samples n

iii yx 1)},{( 
 

minimize                   
2

2

1
)( ww                                                                                     (4.4a) 

subject to               1).( bxwdi  ,  ni ,...,2,1                                                               (4.4b) 

But in practice in most cases of classification based SVM the researchers are experienced the 

pattern of linearly non-separable data i.e. the data points of different classes does overlap. 

Therefore, in order to deal with such situations, it is necessary to introduce a new set of slack 

variables 
n

ii 1}{   that measures the amount of violation of constraints [17]. Then the optimization 

problem can be reformulated as  

minimize                   k
n

i

iCww )(
2

1
),(

2

                                                                 (4.5a) 

subject to               ii bxwd  1).(  ,  i=1,2………,n                                                   (4.5b) 
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                                0i , i=1, 2………, n 

Where C is called the regularization parameter. The second part of the above objective function 

eq. (4.5b) seeks to penalize the data points located in the incorrect side of the decision boundary. 

If the data points overlap considerably in feature space, then the penalty term becomes very 

large, and the hyperplane may not generalize well. 

 

 

Fig. 4.7: The SVM for the linearly non-separable case 

 
 

 

 Non-Linear SVM 

The basic approaches discussed above can be extended to nonlinear decision surfaces. In case of 

nonlinear SVM, the same data points are transformed from the input space to the high 

dimensional feature space with some nonlinear mapping [16]. In this high dimensional feature 

space the spreading of data points provides a linear hyperplane [18]. Now suppose the training 

data is mapped to some other (possibly infinite dimensional) Euclidean space H  through a 

nonlinear function   such that HRn : . Therefore in this high dimensional feature space the 

input vector x  can be characterized as )(x  [18]. Then of course the training algorithm would 

only depend on the data through dot products in H  i.e. on functions of the form )().( ixx  . Here 
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the algorithm used to create maximum margin hyperplane is similar to linear SVM except that 

every dot product is replaced by kernel trick represented as )().(),( ii xxxxk  . The 

transformation of data from input space to high dimensional feature space is done by kernel trick. 

The kernel trick is only used in training algorithm. Then the decision function is given by 





n

i

iii bxxkdsignxf
1

)),(()(   Where ni ,...,2,1   

Here i  = Lagrangian Multiplier. For training of the SVM classifier, only the kernel is required. 

Gaussian radial basis function (RBF) is one of such kernel and is given as follows: 

2

2

2),( 

yx

eyxk




  

Where 
2  = kernel parameter or width. The values, chosen for the two kernel parameters 

 2,C  significantly affect the classification accuracy of SVM classifier. Large values of 

 2,C  may lead to over fitting problem for the training data [18]. So the values must be chosen 

carefully.  

 Multiclass SVM 

The aim in Multiclass SVM classification is to assign labels to instances by using support vector 

machines, where the labels are drawn from a finite set of several elements. In this motivation the 

dominating approach for doing so is to construct multiple binary classification problems from 

single multiclass problem [19]. Common methods used for building such multiple binary 

classifiers are as followed: 

(i) Between one of the labels and the rest (one versus-all)  

(ii) Between every pair of classes (one-versus-one).  

https://en.wikipedia.org/wiki/Binary_classification
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For classification of new example in case of one versus all method data points would be 

classified under a certain class if and only if that class’s SVM accepted it and all other classes’ 

SVM rejected it. On the other hand on-versus-one methods creates 
2

)1( N
N  classifiers where    

N = no of classes. Here each classifier is trained with data from two classes to distinguish 

samples of one class from the other. After that the classification of unknown data is done 

according to the maximum voting rule where each SVM votes for one class. 

 Ten-fold Cross Validation 

Cross-validation, sometimes called rotation estimation, is a model validation technique for 

assessing how the results of a statistical analysis will generalize to an independent data set. It is 

mainly used in settings where the goal is prediction, and one wants to estimate how accurately a 

predictive model will perform in practice. In a prediction problem, a model is trained using 

dataset of known data (training dataset), and a dataset of unknown data against is tested against 

the model. In k-fold cross-validation, the original sample is randomly partitioned into k  equal 

sized subsamples. In this validation technique, only one subsample is used for testing purpose 

and the rest )1( k  subsamples are used to train the model. After that the same process is 

repeated for k  times for testing each of the k subsample. Therefore to generate a single 

estimation one should average the k no of results. The advantage of this method over repeated 

random sub-sampling (see below) is that all observations are used for both training and 

validation, and each observation is used for validation exactly once. 10-fold cross-validation is 

commonly used but in general k  remains an unfixed parameter.  

Here fig 4.8 represents proposed classification technique used for this research work. 

https://en.wikipedia.org/wiki/Model_validation
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Accuracy
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Fig 4.8: Structure of the binary ensemble SVM Classifier 

 

4.3.2 Evaluation Method 

To evaluate the performance of the classification, one can use the standard statistical indices of 

sensitivity (Se), specificity, and accuracy (Acc), derived from four parameters of confusion 

matrix: correctly detected beats (true positives = TP), undetected beats (false negatives = FN), 

correctly undetected beats (true negatives = TN) and falsely detected beats (false positives = FP) 

respectively. These statistical indices are defined as follows: 

 

Confusion matrix = 

 

 

 

 Actual 
Yes No 

Predicted Yes TP FP 

No FN TN 
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4.4 Results 

The experiments on the automated arrhythmia detection system are conducted using the MIT-

BIH arrhythmia database. Here in this study 8 features are used. Then the feature vectors are 

used to classify arrhythmia beats using SVM-RBF kernel method. The nonlinear SVM was based 

on the popular Gaussian kernel (referred to as the SVM-RBF). Here the classification process is 

done by three different approaches. 

 

Case - I 

(Using SVM-RBF Classifier with tenfold cross-validation technique) 

 

 Dataset descriptions 

In this proposed classification method the dataset is collected from MIT/BIH database. This 

dataset is distributed into 5 classes where class 1 represent normal ECG beats and class 2-5 

represents four different class of arrhythmic beats. In this method 10 different records (from 

MIT/BIH database) are used. Table 1 shows detail description of the classes, no of beats used for 

classification. 

 Table 1: Dataset description of case I  

Class 
no 

Record Example used from  MIT-BIH 
 

No. of beats used 
 

Description 

1 101,105 20 Normal Beat (N) 

2 102,104,107 60 Paced Beat (P) 

3 109,111 60 Left Bundle Branch Block Beat (LB) 

4 118,124 60 Right Bundle Branch Block Beat (RB) 

5 200 60 Ventricular Bigeminy (V) 
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 Results 

Table 2 shows that how accurately one classifies arrhythmic beats from normal beats. To do so 

here each normal beat is treated as a reference beat and then correlated with every arrhythmic 

beats. So for each reference beat we get 880 feature vector. Table 1 shows the averaged 

classification accuracy obtained with respect to each reference beat. 

 

Table 2: classification results of case I 
 Paced Beat 

(P) 
Left Bundle Branch Block 

Beat (LB) 
Right Bundle Branch Block 

Beat (RB) 
Ventricular 

Bigeminy (V) 

Accuracy 98.05% 97.71% 98.11% 95% 

 

 

Case - II 

(Using SVM-RBF Classifier with tenfold cross-validation technique) 

 

 Dataset descriptions 

Also in this proposed classification method the dataset is collected from MIT/BIH database. But 

this method is different from previous method because here only one normal (reference beat) is 

selected arbitrarily where 240 beats are selected for each class of arrhythmia. The detailed 

dataset is described in table 2.  

 
Table 3: Data set description used for case II 

Class 
no 

Record Example used from  MIT-BIH 
 

No. of beats used 
 

Description 

1 101 1  Normal Beat (N) 
2 102,104,107 240 Paced Beat (P) 
3 109,111,214 240 Left Bundle Branch Block Beat (LB) 
4 118,124,212 240 Right Bundle Branch Block Beat (RB) 
5 200 240 Ventricular Bigeminy (V) 

Feature Vector 960×8 

 
 
 

 Results 

Here in this method the feature vector is acquired by correlating one reference healthy beat with 

four other classes of arrhythmic beats. As for this proposed classification technique 8 
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distinguished features are selected, the size of the feature vector is 8960 . Table 4 shows the 

performance of classification using SVM-RBF Classifier with tenfold cross-validation technique.   

 

Table 4: Performance of Case 2 

 Paced beat 

(P) 

Left Bundle Branch Block 

Beat(LB) 

Right Bundle Branch Block 

Beat (RB) 

Ventricular 

Bigeminy 

(V) 

Accuracy 99.27% 98.75% 96.25% 96.88% 

Sensitivity 97.50% 96.25% 95.83% 92% 

Specificity 99.73% 99.60% 96.40% 98.62% 

Confusion 

matrix 

 

 

234 2 

6 718 

 

231 3 

9 717 

 

230 26 

10 694 

 

220 10 

20 710 

 

 

Case – III 

(Using Multiclass SVM-RBF Classifier with Testing Dataset and training dataset) 

 

 Dataset description 

In this method multiclass SVM classification technique is use to classify normal ECG beats from 

four others arrhythmic beats. Here two different datasets is formed by selecting beats from 

different records. The training set is different from previously describes dataset because here 100 

normal ECG beats are selected. And in testing data 100 different beats are picked up for each 

class from different records used in training dataset. 

 Training Data: 

 

Table 5: Description of Training data used in Case III 

Class 
no 

Record Example used from  MIT-BIH 
 

No. of beats used 
 

Description 

1 101 100 Normal Beat (N) 
2 102,104,107 240 Paced Beat (P) 
3 109,111,214 240 Left Bundle Branch Block Beat (LB) 
4 118,124,212 240 Right Bundle Branch Block Beat (RB) 
5 200 240 Ventricular Bigeminy (V) 

Feature Vector 1060×8 
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 Training Dataset 

Table 6: Description of Testing data used in Case III 
Class 

no 
Record Example used from  MIT-BIH 

 
No. of beats used 

 
Description 

1 123 100 Normal Beat (N) 
2 217 100 Paced Beat (P) 
3 207 100 Left Bundle Branch Block Beat (LB) 
4 231 100 Right Bundle Branch Block Beat (RB) 
5 106 100 Ventricular Bigeminy (V) 

Feature Vector/class 100×8 

 
 

 Results 

To train the multiclass SVM classifier the feature vector is obtained from training dataset. Here 

one reference beat (normal beat) is selected arbitrarily and correlated with other beats namely 

normal beats and arrhythmic beats. As a result of that the size of training feature vector is 

81060 . Applying similar process for testing we get 8100 feature vector for each class. 

Table 7 shows the result by performing multiclass classification. Here one can see that the 

diagonal elements represent correctly identified rhythms. 

  

Confusion matrix =  

Classes Predicted Classes 
 

N P LB RB V 
N 83 0 9 0 8 

P 7 87 0 6 0 

LB 5 0 84 5 6 

RB 2 3 0 88 7 

V 10 0 7 4 79 

 

4.5 Summary 

In this study, it is observed that the proposed combination of 8 features are able to extract the 

hidden information from the non-stationary ECG signal and discriminant features very well 

using the experimental MIT-BIH data. The technique provides a good extraction of the most 

discriminant features and clearly distinguishes the different arrhythmia classes. The features of 
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the ECG beat are extracted using cross teager kaiser method. To carry out these computations, 

MATLAB 2015b was used. All the methods including Denoising, segmentation, feature 

extraction and classification algorithms are developed in MATLAB with the custom software. 

Based on the performance evaluation, the sensitivity, specificity and accuracy of the confusion 

matrix with the SVM-RBF classifiers are summarized. Here three different approaches are used 

to classify arrhythmia beats and those are as follows: 

 Case 1 describes Classification between healthy and disease beats using SVM-RBF 

classifier with tenfold cross validation technique. 

 Case 2 describes Classification among 4 different class beats of arrhythmia using SVM-

RBF classifier with tenfold cross-validation technique. 

 Case 3 describes classification among 4 different class beats and healthy beats of 

arrhythmia using multi class SVM-RBF classifier. Here individually test each class of 

arrhythmia using a training dataset. 

Here comparing above three methods one can see from the result that SVM-RBF tenfold cross 

validation technique gives better accuracy than multiclass SVM-RBF classification technique. 

The worst class accuracy of the proposed features was obtained for the RB and V beats (approx 

97%), while approx 99% was obtained for the P and LB beats.  
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Chapter 5 

 

 

Conclusions and Future work 

 

5.1 General Discussion 

In the present work, a Teager Kaiser Energy operator based technique is developed as a feature 

extraction methodology for automatic classification of bioelectric signals. As elaborated earlier, 

millions of people around the globe are suffering from cardiovascular disease and researchers are 

trying to develop a computer aided automatic detection system to detect them. Against this 

backdrop the scope of this thesis are kept bounded for development of such effective algorithm 

for classification of arrhythmia from ECG beats. Bioelectric signals were processed using eight 

different features acquired from cross teager Kaiser Algorithm and two different SVM-RBF 

classifiers are developed.  

The main contributions of this research work can be outlined as follows: 

 The development of computer aided diagnostic tool for automatic classification of 

cardiac arrhythmia. An accurate and reliable Cross Teager Kaiser Algorithm has been 

developed for feature extraction. In this context, SVM classifier is presented which can 

efficiently classify arrhythmia beats into normal beats (N), paced beats (P), Ventricular 
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Bigeminy (V) and other beats which include left bundle block beats (LB), right bundle 

block beats (RB). 

 To classify arrhythmia beats into different classes three different approaches are adopted. 

Among them it is observed that classification using binary ensemble SVM-RBF classifier 

with tenfold classification technique gives acceptable performance in disease 

classification. 

5.2 Future Scope of works 

The present work can be extended in several directions. Some of the possible avenues can be 

summarized as follows: 

 The algorithm, that is proposed in this thesis is developed for the classification of heart 

beats. Researchers may build cross Teager Kaiser energy based algorithm for other 

bioelectric signal e.g. Electromyogram (EMG), Electroencephalogram (EEG) signal 

processing. 

 The algorithm, that is proposed here may encourage researchers in future to make in-

depth study of the feasibility of implementing several other kernel based classifiers 

including different non linear kernel function based SVM. 

 The algorithm used in this thesis can be extended in the future to the two-dimensional 

biomedical image processing problems e.g. for the detection of the location of tumors or 

cancer cells inside the human body.  

Finally the work presented in this thesis should be of great help to the patients as well as the 

medical practitioner in future. After all a strong medical support system can not only enhance the 

capabilities and knowledge of the people involved in this work but also produce direct impact on 

the quality of service provided. 


