MICROCONTROLLERS AND APPLICATIONS

BY

DY. p, VENKATESWARAN ME. Tel E. (J.U), Ph. D. (3U)
MISTE MIETE R.1E.()SMIEEE (USA)

o o e) :
RSN ISER) @OBFTSE G BNGHNEERING
BEEARRATT - B2 0. [ESMEEREWIRRL-D

ACKNOWLEDGEME + TS

IS DrPT. OF B, 6

JADAVPUR UNIVERSITY CALCUTTA - ~00 032.

Mr. VIVEK G. KHEKALE
CENTRE FOR ELECTRONICS DESIGN TECH.:\)LO(‘“’
CEDT - AURANGABAD MAHARASTRA

TOPICS

o INTRODUCTION
- 8051
FEATURES
PIN-OUT DETAILS
MEMORY ORGANIZATION
ADDRESSING MODES
INSTRUCTION SET
SAMPLE PROGRAMS
APPLICATIONS

|
i
|
'

l. Introduction

“The microprocessors made an impact on industries of vast diversification in nature

such as machine tools [1], bio-medical instrumentation and chemical processes {1, ete.,

thus’ proved its utility as a general purpose system design (GPSD) tool (2], with
]

Suitable interfacing devices. The néccssity to ecvolve a higher performance

architecture, to be used as a specific purpose system design (SPSD) tool [2] for

dedicated applications leads to the development of microcontrollers,

The microprocessor architecture has three basic segments arithmgtic / logic unit
(ALU), l'egigter unit and control unit [1]. Other hardware requirements such as, for
clock generator, RAM, ROM / EPROM, parallel and serial | / O ports are to be

supported in the form of external chips and that is the dxﬂerence between

i .
microprocessors and microcontrollers [2].

Microcontrollers, also called as Single-chip microcomputers are designed on a single-
chip such. that besides microprocessing unit, it includes RAM, ROM / EPROM, l /0

ports, timer / counter and other circuitry required for microcomputer working [3]. This

is shown in Fig 1.

Microcontrollers are used primarily to perform dedicated functions [1]. They are also

used as independent controllers in machines or as slave processors in the distributed

processing environment [1].

«— MICROPROCESSOR —
ALU Register
Unit

Control Unit

A

Fig. 1 : Block diagram of Microcontroller

LDR and Stepper Motor

MICROCONTROLLER

RAM

ROM/EPROM

1/0 Ports

Timer/Counter
&

Data Converters (AD\DA)

h 4

Sensor and actuator are the two major cmponents of a positioning system. The

requirements of the control task determines the nature of these two components and

subsequently the cost, also. Light dependant resistor (LDR), which exhibits light

]
A |

5

S A
EVOLUTION OF MICROCONTROLLERS

In 1971, Intel corporation developed the first 4 bit microprocesor architecture
Soon, Motorola, Zilog and other manufactures brought out their respective
microprocessors to the market. The 80835, an 8-bit micrprocesor from Intel, made a
big impact in the market.

One design trend is to go for 16 and higher bit MICTOProcessors 1o improve
the data handling capabilities and speed of execution. 8086 and 8088 are the 16-bit
micro processors from Intel Corporation. The 8088 is a proceessor with 8-bit data
bus and 16-bit .capabilities. Another design trend i1s to go for higher performance

architecture for dedicated applications, meant to be used as specific purpose system
design tool.

For cxampie microcomputer design based on microprocessor involves the
interfacing of several hardwares such as memory, parallel VO ports, serial /O ports,
timer, etc. Thus any microprocessor based application design necessitates the
handling of multiple chips, resulting in increased PCB size and lesser reliability in
the functioning of the circuit. This concept was totally changed with the introduction
of single-chip microcomputer/microcontroller by Intel Corporation in 1976. Because
of recent advances in semiconductor design and fabrication technology, it is possible
to integrate the entire system on a single chip.

For example, Intel’s MCS-48 microcontroller family has RAM, ROM/EPROM,
Parallel 1/O ports, timer/counter besides an 8-bit CPU. Thus with microcontrollers,
the designer can make the system design more compact at less cost and yet
powerful. In 1980, Intel came up with MCS-51 series of microcontrollers featuring
serial interface facility, also. This second generation microcontrollers are more
popular for sophisticated real-time instrumentation and industrial control applications
This was followed by MCS-96 family of microcontrollers, fastest among Intel’s
series, incorporating A/D converter also. with a 16 bit CPEL.

Intel products are upward compatible with successive architectures.
Penipherals and interfacing chips are casily available in the market for Intel
products. Moreover, Intel provides well documentation support and hence Intel
products are more popular.

MCS - 51 Family and its features :

The 8051 1s the core of MCS-51 family and 1ts features are (14.1):

8-bit T4 meant for control applications

Incorporated with Boolean (single-bit) processor

128 bytes Scratch-pad memory (on —chip data RAM)

4K bytes on-chip program memory (PM)

64K expandable program and data memory (PM and DM) space

32 bidierctional, individually accessible 'O lines. and can be accessed as a group
of 8 lines.

Two 16-bit Timi er/Counter

Serial interface facility

6/5 veeter anterrupts with two levels of prionty

On-chip c¢lock oseillator

Pin description :
Fig 2 shows the MCS-51 Pin diagram Various signals available ‘at the 40
pins can be classified under the following categories:

I Port 0

2 Port.

3 Pogt 2

4 Port 3

Bus-control signals

6 On-chip oscillator signals
-

Power supply signals

4. MCS-51 Addressing modes and Instruction Set

4.1 Introduction

All MCS-51 family members execute the same Instruction set, which is designed to suit
8-bit control applications [14.a]. The instruction set is supported by 111 instructions
(64 smgle cyde) [14.c]. The boolean processing (single-bif) facllmes, thus treating
one-bit variables as a separate data entity, is typical of microcontroller instruction set.
This allows direct bit manipulation in control and switching (logic) applications (14.a].
MCS-51 instruction set provides various addressing modes, of which b addressing is
unique to microcontrollers. This chapter begins with a discussion on ‘Addressing

modes’ followed by ‘Instruction Set’. Few sample programs are also inciuded at the

end of this chapter.

4.2 Addressing modes

Different addressing modes of MCS-51 imstruction set, are as follows ik

I. Direct addressing

The 8-bit address of the operand is given in the instruction.
(e.g) MOV A, dlrcct (The content of memory location ‘direct’ , 15 moved to
accumulator)

Only internal (on-chip) data RAM and special function registers(SFR) can be directly
addressed.

43

2. Register Direct addressing

(eg.) ADD A, Rn (The content of register ‘Rn’ is added with the content
of accumulator and the result is stored in the
accumulator)

The register Rn (corresponds to RO-R7) is pointed in the current register bank. Here,

one of the operand is taken from the registers, RO through R7.

3. Register Indirect addressing)
This mode points towards internal data RAM, addressed indirectly through Ri
(corresponds to RO or R1).

(e.g.) MOV A, @Ri (The content of internal data RAM pointed at by RO or
R1 is transferred to accumulator)

4. Immediate addressing
The 8- or 16-bit operand is the part of the instruction itself
(eg) ORL Ap#data = (The 8-bit data given in the instruction is logically

‘OR’ed with the content of accumulator and the result is
. stored in the accumulator).

5. Absolute Near addressing

This mode is used by ‘ACALL’ and ‘AJMP’ instructions. The 11-bit absolute address
of the 16-bit calljump location is provided in the given 2-byte instruction. By
concatenating the binary format of the content of upper 5-bits of program counter
(PC), upper 3-bits and lower 8-bits of the given ACALL/AJMP instruction, the 16-bit
call/jump location is obtained. (Details of this are given under ‘Unconditional Jump’ of

program branching instructions, in Section 4.3),

6. Relative addressing
An 8-bit signed offset is provided in the instruction to specify the jump location. This
mode i1s used by short jump-SIMP and conditional jump instructions. The range of the

jump is -128 to +127 memory bytes relative to the first instruction following the

SJMP/conditional jump instructions.

7. Bit addressing

This addressing mode is used to access any ‘bit addresable locations’ in the internal

data RAM or SFR.

(e.g.) SETB 20H (Set the bit with address 20H in the internal data RAM)

8. Indexed addressing

This addressing mode, which can access only program memory is meant for reading
lookup tables. Either data pointer (DPTR) or program counter (PC) is used as a 16-bit
base register. The accumulator must be provided with the table entry-number. By
adding the contents of accumulator and base pointer, the address of table entry-
number is obtained [14.a]. (The two instructions used for reading lookup tables is
given in Table 4.3.C. of Section 4.3). Another use ofthis addressing mode is in
computing the destination address as the sum of base register and accumulator

contents, called ‘Case Jump’. (Details of this are given under ‘Unconditional Jump’ of

Program branching instructions, in Section 4.3).

4.3 Instruction Set

The various instructions in the MCS-51 instruction set can be classified under the

following five categories :

1. Arithmatic instructions

2. Logical instructions

35 Data transfer instructions

4. Boolean instructions

5. Program branching instructions.

The menu and the description of instructions under each category is given below.

1. ARITHMATIC INSTRUCTIONS

The arithmatic instructions are listed in Table 4.1 [14.a]. The different addressing
modes a\;ailable to access the operand ‘<byte>‘ in each instruction, is also shown in the
table. For ADD A, <byte> instruction, the operand <byte> may reside in the internal
data RAM. Then, it can be accessed by direct addressing, as

ADD A,30H

The operand may reside in any one of the registers RO-R7 in the selected register bank.
By register direct addressing, the operand can then be obtained, as given below :

ADD ARS

The <byte> operand, which is available in the internal data RAM can. also be obtained
through register indirect addressing, as given below :

ADD A,@RI

Table 4.1 : MCS-51 Arithmatic instructions [14.a]

Addressing modes

Mnemonic Operation Dir. R.D. Gl Imm.
!
ADD A<byte> A=A+ <byte> v v v v
ADDC A, <byte> A=A +<byte>+ € v v v v L
SUBB A, byte> A=A -<byte>-C v v v S |
INC A A=A+1 accumulator only
INC <byte> <byte> = <byte> + 1 v v v X
INC DPTR BEIR = DPIR + 1 data pointer only
DEC A A=A-] accumulator only
DEC <byte> <byte> = <byte> - 1 v v v X
MUL AB A x B : (B) = high byte A(acc) and B only
: (A) = low-byte
DIV AB A/B : (A) = quot., (B) = rema. A(acc) and B only
DA A Decimal Adjust accumulator only

St

In this case, the register R1 must hold the address of the internal data RAM, where the

operand <byte> is available. Or the operand <byte> may be the data itself, accessed by

immediate addressing, as

ADD A, #OFH

Increment or decrement operations can be done on any byte in the internal data RAM

directly, without the need to go through the accumulator.

Data pointer (DPTR) holds the 16-bit address of the external memory and access to

external memory is through DPTR only. Increment operation can be done on DPTR

also.

MUL AB instruction multiplies the 8-bit contents of accumulator and B register and

leaves the high-byte of the result in B register, low-byte in accumulator.

DIV AB instruction divides the 8-bit contents of accumulator by the 8-bit contents of
B register and leaves the quotient and remainder in accumulator and B register,

respectively.

During BCD arithmatic, the addition instructions (ADD & ADDC) must be followed

by decimal adjust (DA) operation, thus ensuring that the result is also in BCD. DA A

does not convert a binary number to BCD.

2. LOGICAL INSTRUCTIONS

Table 4.2 [14.a] shows the MCS-51 logical instructions. Any boolean operations, such
as AND, OR, EX-OR, NOT on bytes are performed on a bit-by-bit basis. For example,
ORing the data 73H (0111 0011B) with the accumulator content 27H (0010 0111B)

will leave the result 77H (0111 0111B) in the accumulator.

For ANL A, <byte> instruction, the <byte> operand can be accessed by any one of the

addressing modes, as given below :

ANL A30H (Dir - direct addressing)
ANL ARS (R.D. - register direct)
ANL A @RI (R.I. - register indirect)

ANL A#OFH (Imm. - immediate addressing)

Boolean operation can be performed with immediate constant using direct addressing,
without the need to use accumulator. Otherwise, previous accumulator contents are to
be stacked, for any such operation, thus saving the time.

(e.g.) ANL 30H,#2CH (The content of internal data RAM with address 30H is
logically ANDed with the data 2CH and the result is
with 30H).

Accumulator contents can be shifted to left/right by 1 bit, also through carry by rorate

instructions.

Table 4.2 : MCS-51 Logical instructions [14.a]

Addressing modes
Mnemonic Operation Dir. RD. Bl
ANL A <byte> A = A AND <byte> v v v
ANL <byte> A <byte> = <byte> AND A f 54 X
ANL <byte>,#data <byte> = <byte> AND data v X X
ORL A <byte> A = A OR <byte> v v v
ORL <byte>,A <byte> = <byte> OR A v X X
ORL <byte> #data <byte> = <byte> OR data v X X
XRL A <byte> A = A XOR <byte> v v v
XRL <byte>, A <byte> = <byte> XOR A v X X
XRL <byte> #data <byte> = <byte> XOR data v X X
CRL A A = 00H accumulator only
CRPL A A=A accumulator only
RL A Rotate acc left by 1 bit accumulator only
RLC A Rotate acc left through carry accumulator only
RR A Rotate acc right by 1 bit accumulator only
RRC A Rotate acc right through carry accumulator only
SWAP A Swap nibbles in A(Az o+ A7) accumulator only

2)
g

o N L RS

I

(574

30

The high and low nibbles of accumulator gets interchanged after the execution of
SWAP A instruction. This instruction can be conveniently used during BCD

manipulation.

3. DATA TRANSFER INSTRUCTIONS
Table 4.3.A [14.a] shows the instructions available for moving data around within

internal RAM, and also the addressing modes for each instructions.

Data can be transferred between any two internal RAM or SFR locations by using
MOV <dest> <Src> instruction, without the need to go through the accumulator. (In
8052, the upper 128 bytes of data RAM can be accessed only by indirect addressing,
and SFR space only by direct addressing).

The MOV 'DPTR, #data 16, instruction initializes the data pointer with 16-bit address
for external (program/data) memory access.

For all MCS-51 devices, the stack is with on-chip RAM and growing upwardly.
During PUSH execution, the stack pointer (SP) is first incremented and then the byte
is copied into the stack. During POP execution, first the stack pointer (SP) is
decremented and the byte is copied from the stack location into destination address. To
identify the byte being saved and retrieved, PUSH and POP use only direct addressing.
But the stack itself is identified using SP by indirect addressing. It implies that the
stack can go into the upper 128 bytes, when implemcnted'as in 8052, but nof into the
SFR space. For the devices 8031 and 8051, which do not implement upper 128 bytes,
if the SP points to the upper 128 byte, then the bytes that are PUSHed will be /ost and

the POPed (retrieved) bytes will be indeterminate.

Table 43 A : MCS-51 Data transfer instructions that access internal data RAM [14.a]
Addressing modes
Mnemonic Operation Dir. R.D. R Imm.
MOV A <Src> A = <Src> v v v v
MOV <dest> A <dest>= A v v v X
MOV <dest>,<Src> <dest> = <Src> v v v v
MOV DPTR #data 16 DPTR = 16-bit immediate X X X v
constant
PUSH <Src> INC SP, MOV “@SP”, v X X X
<Src>
POP <dest> DEC SP, MOV <dest>, v X X X
@Spﬂ)
XCH A, <byte> ACC and <byte> exchange v/ v v X
XCHD A, @Ri ACC and @Ri exchange X X v X

low nibbles

16,

52

The accumulator contents and addressed byte got their data exchanged, after the
execution of XCH A,<byte> instruction. Only the /ower nibbles can be exchanged with

XCHD A,@Ri instruction.

External RAM/ROM

Table 43.B [l4.a] shows the data transfer instructions that access external
(program/data) memory space. The external, one-byte address can be accessed
indirectly through Ri (RO or R1), while the two-byte is through data pointer
(@DPTR). In case of two-byte external addressing, the entire Port 0 and 2 are to be

used for the memory access. For any external access, either the source or the

destination of the data is accumulator only.

Lookup Tables

Table 4.3.C. shows the two instructions available for reading lookup tables in progam
memory, using indexed addressing. As the access is with program memory, the lookup
tables can be read but cannot be updated. The mnemonic MOVC stands for ‘Move

Constant’. (Lookup table read operation is given in Section 4.2 under ‘Indexed

addressing’).

Table 43 B : MCS-51 Data transfer instructions that access external RAM/ROM [14.a]

Operation

Addressing modes

R1I

Address

width Mnemonic

8-bits MOVX A @Ri Read external RAM/ROM (@Ri

8-bits MOVX @Ri,A Write external RAM @Ri

16-bits MOVX A,@DPTR Read external RAM/ROM @DPTR X
16-bits MOVX @DPTR,A Write external RAM @DPTR

With
RO/RI
only

with
DPTR
only

Table 4.3.C : MCS-51 Data transfer instruction :
Lookup table read instructions [14.a]

MOVC A, @A+DPTR Read program memory at (A + DPTR)

MOVC A @A+PC ~ Read program memory at (A + PC)

€9

54

4. BOOLEAN INSTRUCTIONS

All MCS-51 devices incorporates boolean {(single-bit) processor. A complete and
compact boolean instruction set provides move, clear, set, complement along with
conditional jump instructions. Bit accessing is unique to microcontroller architecture.
There are 128 bit addressable locations in the internal data RAM in the address range
20H to 7FH. There are 88 (128 in 8052/8032) more bit addressable locations in the
SFR area between the addresses 80H-FFH. All the bit access is through direct

addressing.

Table 4.4 [14-a] shows the Bolean instruction set of MCS - 51.

All the bits including the carry bit in the program status word (PSW) is bit addressable,
and CY acts as the Boolean Accumulator. The given bit addressable location,also the
complement of it, can be logically ANDed with the carry bit. Similarly OR logic
operation also can be performed. As Ex-OR operation can be implemented by

software, separate EX-OR menu is not included.

Move opeation can be performed between the carry bit and any other bit addressable

locations.

Carry bit can be cleared, set as well as complemented. Complement operation can be

performed on any other bit addressable locations also.

Table 4.4 : MCS-51 Boolean Instructions [14-a]

Mnemonic Operation

ANL C,bit C =C. AND. bit
ANL C, /bit C=C. AND bit
ORL C, bit €= C'OR bit
ORL C, /bit C=C. OR bit
MOV C, bit €= bit

MOV bit, C bit=C

CLR C C=0

SETB C el

CPLC C=C

CPL bit bit = bit

JC, rel Jump if C = 1
JNC, rel Jump if C=0
JB bit, rel Jump if bit = 1
JNB bit, rel Jump if bit = 0
JBC bit, rel Jump if bit = 1; CLR bit

55

50

There are jump instruction, which execute a jump, if carry/bit addressable location is
set (JC/JB). Jump can also be implemented when carry/bit addressable location is reset
(JNC/INB). ‘JBC’ jumps to the address if bit is set and before making a jump, it clears

the bit.

5. PROGRAM BRANCHING INSTRUCTIONS

Table 4.5 A [14-a] shows the program branching instruction, that executes a jump

unconditionally.

Table 4.5 A : Program branching :
Unconditional Jump instructions [14-a]

Mnemonic Operation

SIMP rel Short Jump (relative address)
LIMP addr 16 Long Jump

AJMP addr 11 Absolute Jump

JMP @ A+DPTR Jump to (A+DPTR)

Unconditional Jump

For short jump instruction - SJMP, the jump distance is limited to a range of - 128 to
+127 memory bytes relative to the instruction following it. SJMP instruction is 2 bytes
wide, consisting of opcode and relative offset byte. The relative offest byte, given in
signed magnitude (two"s complement) form represents the jump distance, which is

added to the PC in two’s complement arithmatic in order to calculate the destination

57

jump address, during the execution of SJMP. (For such instructions, when assembler
is available, it is suffice to specify the destination address as a lable or as 8-bit/16-bit
constants. The assembler will take care of inserting the destination address in the

correct format for the given instruction)

The long jump - LIMP instruction is 3 bytes wide, consisting of opcode and 16-bit
destination address as operand, which can be anywhere in the 64k program memory

area,

The absolute jump - AJMP instruction incorporates lower 11-bits of the 16-bit
destination address. The AJMP instruction is 2 bytes wide, consisting of opcode,
which itself contains 3 of the 11-address bits, followed by another byte which is the

lower 8-bits of the destination address, as mentioned below

Let the 2-bytes long AJMP, add11 be written as four nibbles
ATMESRIAIT S0V R St S TR o, ol 4.1
Writing the four nibbles, bit-wise,

DY XoiYu Yo Yol Yo XXy Xoo X% @ - oo e (4.2)

Then, the lower 11-address bits of the 16-bit jump location is obtained by

concatenating the upper 3-bits and lower 8-bits of equ (4.2), as given below.

Alo Ag As A-,r Aa AS A4 AJ Az A1 AQ
+ - it - i + 4

YiYe¥s XiXeXsXy XsXoX1 Xy g (GRBY)

58

When the AJMP, add 11 instruction is executed, these 11-bits are simply substituted for
low 11-bits in the 2C. The high 5-bits of the PC remains the same, as given below

Ais AlsAn Az AnlAnAsAs ArAcAsAy AsArAL A
Yoo ok bl RN S ST S T T e T8
PC'}PCG PCs PC4 PC3 Y'; Yg Y5 X';X(.XS X4 X3 Xz X1X0
By this way, the complete 16-bit addres of the jump location is obtained [3]. As the

high 5-bits are always the same, the destination jump location must be within the same

2K block of the instruction following the AJMP [14 a].

As the three bits (Y7 Ys Ys), from the opcode, can have 2’ = 8 different combinations
from (0 0 0) to (1 1 1), the MCS - 51 instruction set is supplied with eight AJMP
instructions with opcodes O1H, 2IH, 4IH, 6IH, 8IH, AIH, CIH, EIH [2]. Thus,
depends on the page of the jump location required, an AJMP instruction with

appropriate opcode can be chosen.

With JMP @ A+DPTR, the destination address is computed as the sum of accumulator

and DPTR contents, an example of case jump.

Unconditional Call

Table 4.5 B shows the MCS-51 unconditional call and return instruction.

59

Table 4.5 B : Program branching :
Unconditional Call and Return Instructions [14.a]

Mnemonic Operation

LCALL addr 16 Long Subroutine Call
ACALL addr 11 Absolute Subroutine Call
RET Return from Subroutine

RETI Return from Interrupt

The long call-LCALL instruction is 3-bytes long with 16-bit address as the operand

and the subroutine can be anywhere in the 64k program memory area. The absolute
call-ACALL instruction is 2-bytes long, which contains 11-bits of the 16-bit call
location and the subroutine must be in the same 2K block of the instruction, following
the ACALL. As in the case of AJMP instructions, depends an the page of the call
location, appropriate ACALL instruction can be chosen among the eight ACALL

instructions with the opcodes 11H, 3IH, 5IH, 7IH, 9IH, B1d , DIH and FIH.

To return the execution to the main program after a call, subroutines must end with

RET instruction. RETI is used during the return from the interrupt service routine.

Conditional Jump

Table 4.5.C [14.a] shows the MCS-51 Conditional Jump instructions. In all the cases,

the destination address is limited to the jump distance of -128 to +127 memory bytes

Table 4.5 C : Program Branching : Conditional Jump [14 a]

Addressing modes

Mnemonic Operation Dir. R.D. R1I Imm.
JZ rel Jumpif A=0 Accumulator only

INZ rel JumpifA= O Accumulator only

DINZ <byte>, rel Decrement and jump, if not Zero v v X X
CINE A, <byte> rel Jump if A # <byte> v X X v
CINE <byte>, # data, rel Jump if <byte> # # data v X X v

NOP

No Operation

61

relative to the first byte, following the conditional Jump instructions, which is

represented as a relative offset byre.

As there is no O bit in the program status word (PSW), the JZ and JNZ instructions

check the accumulator data for that conditions.

The Decrement and Jump, if not Zero - DINZ instruction is meant for loop control,

and the compare and jump, if not Zero - CINZ instruction also can be used for it.

4.3 Sample Programs
I(a) Write a program to add the content of any two registers in the internal data

RAM amd store the result at 30H, in the internal data RAM (b) change the register

bank and repeat the same task [3].

Program :

I(a) MOV RO,#O05H
MOV RI1, #01H
MOV A, RO
ADD A, R1
MOV 30H, A
LPO : SIMP LPO (Halt)

Note : By default, register bank O is always selected.

62

I(b) SETB D3
SETB D4 (Register Bank 3 is selected)
MOV RO # 05H
MOV R1#OI1H
MOV A, RO
ADD A,R1
MOV 30H, A
LEL: T SIMBESIEP]

2. Write a program to subtract the contents of internal data RAM location 40H from

41H using register indirect addressing [3].

Program :
Let the content of 40H and 41H be 01H and 05H, respectively.
ie (40H) = 01H & (41H) = OSH.
CLR C
MOV RI1, # 40H
MOV RO, #41H
MOV A,@RO ~ N
SUBB A, @ R\l_)- Ro
MOV 42H, A
LP2. SIMP ILP2

The result of the subtraction is stroed in 42H, in the internal data memory.

Note : SUBB implies subtract with borrow. When borrow is not required during the

subtraction process, clear the carry flag, beforehand.

3. Write a program to add the datas 10H and 20H, using immediate addressing [3]
Program ; 10H + 20H -

MOV A, # 10H

ADD A, # 20H

EPs : SIMPELP3

4. Write a program to (a) multiply any two 8-bit datas (b) divide any two 8-bit
data [3]. ;

Program :

4(a) OSHx 02H
MOV A, # 05H
MOV addrB, # 02H
MUL AB

LP41: SJMP LP41

4(b) 04H/02H
MOV A, # 04H
MOV addrB, # 02H
DIV AB

LP42 . SIMP LP42

63

