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CHAPTER 1 

 

INTRODUCTION 

 

Medical imaging is the technology and process of creating visual representations of the interior of 

a body for clinical analysis and medical intervention, as well as visual representation of the 

function of some organs or tissues. The purpose of medical imaging is to reveal internal structures 

hidden by the skin and bones, as well as to diagnose and treat disease. It also establishes a database 

of normal anatomy and physiology to make it possible to identify abnormalities. [13] 

Over the last few decades, the rapid development of noninvasive brain imaging technologies has 

opened new horizons in analyzing and studying the brain anatomy and function. Enormous 

progress in accessing brain injury and exploring brain anatomy has been made using magnetic 

resonance imaging (MRI) [1]. The ability of MRI to produce high resolution spatial images and 

its sensitivity towards differentiating neurological tissues helps in diagnosis, prognosis, pre-

surgical and post-surgical treatment planning for various diseases, e.g., multiple sclerosis, 

Parkinson’s disease, epilepsy, cerebral atrophy, Alzheimer’s disease etc. [5]. 

Brain MRI segmentation is thus a crucial task because it influences the outcome of the entire 

analysis since different processing steps rely on accurate segmentation of anatomical regions. For 

example, MRI segmentation is commonly used for measuring and visualizing different brain 

structures, for delineating lesions, for analyzing brain development, and for image guided 

interventions and surgical planning.  

Until recently, manual tracing of brain regions by experts in neuro-anatomy has been the accepted 

standard. However, there are quite a few limitations of manual segmentation. As the size of the 

MRI datasets has increased, the time and cost required for the labor intensive process of manual 

tracing has become unaffordable. An experienced researcher may require a few hours to trace a 

single structure, and more than a week to trace all of the major structures of the brain [2]. 

Moreover, differences in criteria among experts can lead to methodically different volume 

estimates of some brain regions. So the highest consistency and sensitivity is achieved when a 
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single individual traces the entire dataset. However, time becomes a major constraint in this aspect 

and also the criteria used by even a trained expert can subtly drift during the course of a long 

study. For these reasons, automated procedures for segmenting and quantifying the brain have 

attracted considerable interest and has led to development of various segmentation techniques of 

different accuracy and degree of complexity. These automated methods provide consistent results 

with repeated iterations on a given dataset. Improvements in the segmentation algorithms can be 

accommodated with relative ease even on large data sets by re-analysis with updated software [2]. 

The automated segmentation methods, with application to brain MRI, may be grouped as follows: 

(1) intensity-based methods (including thresholding, region growing, classification, and 

clustering); 

(2) atlas-based methods; 

(3) surface-based methods (including active contours and surfaces, and multiphase active 

contours); 

(4) hybrid segmentation methods 

 

Over the years, many researchers have proposed various segmentation techniques that are widely 

being used. One of the earliest works in this domain include 3-D reconstruction of the brain from 

anisotropic MRI brain data [9]. The scheme encompasses an automatic segmentation technique 

that includes a gray level thresholding of white matter and gray matter, a global white matter 

segmentation with 3-D connectivity and gray matter segmentation with a local 3-D connectivity. 

Expectation/Maximization (EM) segmentation, binary mathematical morphology and active 

contour models have been utilized in [3] for brain MRI segmentation. Each of these techniques 

has been customized for the problem of brain tissue segmentation such that the resultant method 

is more robust than its components. A fully automatic segmentation of brain MRI employing 

anisotropic filters, ‘snakes’ contouring techniques and a priori knowledge has been proposed in 

[12]. It is a multistage process, involving removal of the background noise leaving a head mask, 

then finding a rough outline of the brain, then refinement of the rough brain outline to a final mask. 

A constrained Gaussian mixture model framework for automated tissue segmentation of noisy, 

low-contrast MR images of the brain is presented in [8]. The intensity of a tissue is considered a 

global feature and is incorporated into the model through tying of all the related Gaussian 

parameters. The expectation-maximization (EM) algorithm is utilized to learn the parameter-tied, 
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constrained Gaussian mixture model. An elaborate initialization scheme is suggested to link the 

set of Gaussians per tissue type, such that each Gaussian in the set has similar intensity 

characteristics with minimal overlapping spatial supports. A framework that combines atlas 

registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction 

(PABIC) has been proposed in [10] for the purpose of automated brain MRI segmentation. 

Original techniques are proposed to estimate necessary initial parameters of FC segmentation. 

Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. 

Finally, the FC technique has been re-applied on the PABIC corrected MRI to get the final 

segmentation. In [5], a novel, optimal multilevel thresholding algorithm called BACTFOR has 

been proposed for automatic brain MRI segmentation. The work in [5] is especially suitable for 

multimodal image histograms, for segmentation of T2 weighted brain MRI. In [11], an adaptive 

mean-shift methodology has been utilized to segment the MRI brain voxels into its constituent 

tissues. In this work, the MRI image space has been represented by a high-dimensional feature 

space that includes multimodal intensity features as well as spatial features. An adaptive mean-

shift algorithm clusters the joint spatial-intensity feature space, thus extracting a representative set 

of high-density points within the feature space, otherwise known as modes. Tissue segmentation 

is obtained by a follow-up phase of intensity-based mode clustering into the three tissue categories. 

Particle swarm optimization (PSO) aided level set based global fitting energy active contour 

approach has been employed in [4] for robust medical image segmentation including brain MRI. 

In this work, a robust version of the Chan and Vese algorithm which is expected to achieve 

satisfactory segmentation performance, irrespective of the initial choice of contour has been 

utilized. For the purpose of automated brain MRI segmentation, a conditional spatial fuzzy C-

means clustering algorithm has been proposed in [6] to improve the robustness of the conventional 

FCM. In this work, the problem of sensitivity to noise and intensity inhomogeneity in MRI data 

is efficiently reduced by incorporating local and global spatial information into a weighted 

membership function. In [7], supervised classification has been employed for automatic 

segmentation of MR brain images of preterm infants.  The algorithm uses supervised voxel 

classification in three subsequent stages for tissue labelling, dedicated analysis and multi-class 

classification respectively. 
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This thesis work, presents two comparatively new, unsupervised brain MRI segmentation schemes 

based on clustering and thresholding methods. In the first scheme, a novel mathematical 

morphology aided image enhancement technique has been utilized and a better clustering 

performance has been obtained upon application of FCM. In the second scheme, a comparatively 

recent metaheuristic algorithm called the Bat Algorithm (BA) has been applied to obtain a 

thresholding based brain MRI segmentation and in order to improve the performance, a successful 

modification to the basic BA to form a Modified Hybridized Bat Algorithm (MHBA) has been 

carried out. Moreover, for telehealth applications, a microcontroller based communication system 

has been developed which utilizes the existing LAN setup of a distributed system like a hospital 

or a diagnostic center. It acts as a dedicated store-and-forward system also having the provision 

for real-time data transfer and it can be used to transmit the data points corresponding to the 

segmented regions of the brain MRI as and when required to an off-site medical practitioner. 

 

The thesis is organized as follows: 

 Chapter 2 presents a mathematical morphology aided novel brain T2 MR image enhancement 

technique followed by clustering using Fuzzy C-means clustering (FCM) algorithm.  

 Chapter 3 proposes a novel Modified Hybridized Bat Algorithm (MHBA) for multilevel 

thresholding of brain MRI and compares the segmentation results with those obtained from using 

the basic Bat Algorithm (BA). 

 Chapter 4 explains the proposed microcontroller based communication scheme for telehealth 

applications. 

 Chapter 5 concludes the thesis along with a discussion for future scope of work. 
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          CHAPTER 2 

 

MATHEMATICAL MORPHOLOGY AIDED SEGMENTATION 

OF BRAIN MRI USING FUZZY C-MEANS CLUSTERING 

 

2.1 Introduction 

The term ‘morphology’ means the study of shape, form or structure of objects. Mathematical 

morphology deals with the mathematical theory of describing shapes using set theory, integral 

geometry and lattice algebra. It was developed in 1964 by the collaborative work of Georges 

Matheron and Jean Serra. Appropriately used, morphological operators tend to simplify image 

processing by preserving the essential shape characteristics and eliminating irrelevant features [2]. 

Mathematical morphology based image processing has gained immense popularity in the recent 

past and there still remains a lot to be explored. The scope of mathematical morphology in image 

processing spans image enhancement, image segmentation, image measurements, texture analysis 

etc.  and it has found its use in various areas of image processing applications.  

Pesaresi et al. [4] proposed a novel method of high resolution satellite imagery segmentation based 

on the mathematical morphology based characteristic of connected components in images. The 

proposed method used the residuals of morphological opening and closing transforms based on 

geodesic metric. Valero et al. [16] used directional mathematical morphology based operators for 

detection of road networks in very high resolution remote sensing images. In order to extract 

structural pixel information, the authors used Path Openings and Path Closings. Pan et al. [6] 

proposed a novel method of segmentation of pores in wood microscopic images based on 

mathematical morphology employing a variable structuring element and also by adaptive 

thresholding. Landström et al. [7] developed an automated on-line crack detection system for steel 

slabs based on 3D profile data of steel slab surfaces utilizing morphological image processing 

techniques and statistical classification by logistic regression. Serna et al. [10] used mathematical 

morphology and supervised learning for detection, segmentation and classification of 3D urban 

objects. Liu et al. [12] proposed a novel binarization method for strip steel defect image with non-

uniform illumination based on mathematical morphology and genetic algorithm. The proposed 

method in [12] constituted an enhancement operator based on mathematical morphology and the 
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experimental results have shown that the proposed method outperforms the traditional image 

binarization methods. In [22], mathematical morphology has been applied to sensor network 

applications. The images have been compressed using the quad tree data structure and also 

processed in this structure using morphological operations to achieve the sensing purpose. Jimeno-

Morenilla et al. [28] proposed a design and manufacturing model based on set theory and 

mathematical morphology. Yu et al. [24] developed a novel shape representation algorithm based 

on mathematical morphology and the algorithm proved to be immune to noise and occlusion and 

invariant under rotation, translation and scaling. 

Moreover, in recent times mathematical morphology has found numerous applications in state-of-

the-art biomedical image processing techniques. Said et al. [21] used mathematical morphology 

for teeth segmentation in digitized dental x-ray films. Naegel [25] proposed a novel scheme for 

labeling of vertebrae from 3D CT-scan images employing mathematical morphology. Halkiotis et 

al. [26] utilized mathematical morphology along with neural networks for automatically detecting 

clustered microcalcifications in digital mammograms. In this method, morphological filters have 

been applied to remove noise and regional maxima that do not correspond to calcifications. A 

novel fovea center detection based on the retina anatomy and mathematical morphology was 

proposed by Welfer et al. [29]. Luengo-Oroz et al. [5] employed morphological techniques for 

robust iris segmentation on uncalibrated noisy images. Bouraoui et al. [19] have used 

mathematical morphology concepts of grey-level-hit-or-miss transform for the design of an 

automatic method for segmenting coronary arteries in large 3D CTA (computed tomography 

angiography). Hassan et al. [20] and Sigurðsson et al. [18] respectively employed mathematical 

morphology for retinal blood vessel segmentation. Mathematical morphology has also been 

implemented for bone marrow biopsy segmentation in [23]. Dufour et al. [30] used mathematical 

morphology vessel segmentation and filtering of 3D angiographic data.  

Mathematical morphology has also found quite a few applications in brain MRI processing. 

Stokking et al. [13] merged morphological operators like erosion and geodesic dilation along with 

thresholding and region growing techniques for fully automatic brain extraction from MRI-T1 

data. Gui et al. [8] proposed a more elaborate and detailed method where MR images of the 

neonatal brain were segmented both globally (intracranial cavity, cerebellum, brainstem and the 

two hemispheres) and at tissue level (cortical and subcortical gray matter, myelinated and 

unmyelinated white matter, and cerebrospinal fluid) using morphological operators aided by 
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region growing and watershed transform. Our present work in this chapter focuses on utilizing 

mathematical morphology based operators for developing a novel and simple pre-processing and 

image enhancement technique resulting in efficient segmentation of human brain MRI-T2 images 

into three regions- white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The 

enhanced MRI-T2 images are segmented using fuzzy C-means (FCM) clustering method. Fuzzy 

segmentation methods, especially FCM algorithms have found a wide use in brain MRI 

segmentation because in comparison to hard segmentation methods they retain much more 

information and result in more efficient segmentation of brain tissues [31-36].  

The rest of the chapter is organized as follows. In Section 2.2 an overview of mathematical 

morphology is presented. Section 2.3 deals with elaborately discussing the scheme of the proposed 

work. The basics of the FCM algorithm is also discussed in this section.  Section 2.4 contains the 

detailed experimental results and discussions. The chapter is concluded in Section 2.5. 

 

2.2 Overview of Mathematical Morphology 

2.2.1 Basic mathematical background: 

Mathematical morphology acts as an effective method for extracting specific shapes and structures 

of interest from a binary or gray-scale digital image. The basic tools are the morphological 

operations dilation and erosion. A morphological operator transforms an image by means of a 

structuring element (which is chosen by the user) into a new image. A structuring element is 

nothing but a small set used to probe the image thereby highlighting the structures having similar 

shape. [1].  

Mathematical morphology can be applied to a finite set P if [43] 

1. Its elements can be partially ordered (where the ordering is denoted by “≤” which has its usual 

meaning ) i.e., for all a, b, cP 

                  𝑎 ≤ 𝑎 

                                                                                (𝑎 ≤ 𝑏, 𝑏 ≤ 𝑎) 𝑎 = 𝑏 

              (𝑎 ≤ 𝑏, 𝑏 ≤ 𝑐) 𝑎 ≤ 𝑐 

and 
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2. Each non-empty subset of P has a maximum and minimum. (The maximum and minimum are 

also defined in the usual sense). 

This concept of partial ordering can further be extended to digital images by applying the rules to 

the individual pixels. For instance, for two images f and g the relation 𝑓 ≤ 𝑔 holds if: 

 𝑓 ≤ 𝑔      ∀𝑥: (𝑓(𝑥) ≤ 𝑔(𝑥)),  

where “∀𝑥” refers to all possible pixel locations. The “maximum image” and “minimum image” 

of two images can also be defined on a pixel-wise basis: 

  (max{𝑓, 𝑔})(𝑥) = max{𝑓(𝑥), 𝑔(𝑥)} 

             (min{𝑓, 𝑔})(𝑥) = min{𝑓(𝑥), 𝑔(𝑥)} 

The concepts of ordering, maximum and minimum are fundamental in mathematical morphology. 

The basic morphological operations are discussed as follows. 

 

2.2.1 Dilation: 

The dilation of a set (binary image) X by a structuring element B is denoted by B(X) and is defined 

as the locus of points x such that B hits X when its origin coincides with x [1]: 

𝐵(𝑋) = {𝑥|𝐵𝑥 ∩ 𝑋 ≠ ∅}.       (2.1) 

0 0 0 0 0      0 0 0 0 0 

0 0 1 0 0      0 1 1 1 0 

0 1 1 1 0  1 1 1  1 1 1 1 1 

0 0 1 0 0   b)   0 1 1 1 0 

0 0 0 0 0      0 0 0 0 0 

  a)          c)   

  

Fig 2.1 shows a simple 5x5 binary image X (a). White pixels have intensity 1 and black pixels 

have intensity 0. A 1x3 simple structuring element B (b). The resultant image after dilation 

operation (c).  

The dilation by a symmetrical structuring element is described more intuitively by [43]: 

 Place the structuring element anywhere in the image. 
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 Does it hit the set? Then origin of the structuring element is a part of the dilated image.  

 

In case of gray level images, dilation is defined as: The dilated value at a given pixel x is the 

maximum of the image f in the window defined by the structuring element when its origin is at x 

[1]: 

  [
𝐵

(𝑓)](𝑥) = 𝑚𝑎𝑥𝑏∈𝐵 𝑓(𝑥 + 𝑏)     (2.2) 

 

                

Fig 2.2 Original gray scale image (a). Example of dilation by a 3x3 square structuring element 

(b). 

 

2.2.3 Erosion 

The erosion of a set (binary image) X by a structuring element B is denoted by B(X) and is defined 

as the locus of points x such that B is included in X when its origin coincides with x [1]: 

 휀𝐵(𝑋) = {𝑥|𝐵𝑥 𝑋}.         (2.3) 

0 0 0 0 0      0 0 0 0 0 

0 0 1 0 0      0 0 0 0 0 

0 1 1 1 0  1 1 1  0 0 1 0 0 

0 0 1 0 0   b)   0 0 0 0 0 

0 0 0 0 0      0 0 0 0 0 

  a)          c)   

a) b) 
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Fig 2.3 shows a simple 5x5 binary image X (a). White pixels have intensity 1 and black pixels 

have intensity 0. A 1x3 simple structuring element B (b). The resultant image after erosion 

operation (c).  

  

The erosion by a symmetrical structuring element is described more intuitively by [43]: 

 Place the structuring element anywhere in the image 

 Is it fully contained by the set (i.e., a subset)? Then the origin of the structuring element is part of 

the eroded set. 

In case of gray scale image, the definition of erosion is given by: The eroded value at a given pixel 

x is the minimum value of the image f in the window defined by the structuring element when its 

origin is at x [1]: 

    [휀𝐵(𝑓)](𝑥) = 𝑚𝑖𝑛𝑏∈𝐵𝑓(𝑥 + 𝐵).    (2.4)   

         

Fig 2.4 Original gray scale image (a). Example of erosion by a 3x3 square structuring element (b). 

 

2.2.4 Opening 

The opening  of an image f by a structuring element B is denoted by B(f) and is defined as the 

erosion of f by B followed by the dilation with the reflected structuring element (SE) B’[1]:  

   𝛾𝐵(𝑓) = 𝛿𝐵′[휀𝐵(𝑓)],       (2.5) 

It can be further explained as [43]: 

"Does the structuring element fit the set?" Each time the answer to this question is affirmative, 

the whole SE must be kept (for the erosion, it is the origin of the SE that is kept). 

a) b) 
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Therefore, the opened set is the union of all SEs fitting the set: 

   𝛾𝐵(𝑋) = ⋃ {𝐵𝑥|𝐵𝑥  𝑋}𝑥 .      (2.6) 

Once an image has been eroded, there exists in general no inverse transformation to get the original 

image back. The idea behind the morphological opening is to dilate the eroded image to recover 

as much as possible the original image. 

 

0 0 0 0 0      0 0 0 0 0 

0 0 1 0 0      0 0 0 0 0 

0 1 1 1 0  1 1 1  0 1 1 1 0 

0 0 1 0 0   b)   0 0 0 0 0 

0 0 0 0 0      0 0 0 0 0 

  a)          c)   

Fig 2.5 shows a simple 5x5 binary image X (a). White pixels have intensity 1 and black pixels 

have intensity 0. A 1x3 simple structuring element B (b). The resultant image after opening 

operation (c).  

 

2.2.5 Closing: 

The closing  of an image f by a structuring element B is denoted by B(f) and is defined as the 

dilation of f by B followed by the erosion with the reflected structuring element (SE) B’ [1]:  

   ∅𝐵(𝑓) = 휀𝐵′[𝛿𝐵(𝑓)],       (2.6) 

Another definition [43]: 

“Does the structuring element fit the background of the set?”. Each time the answer is affirmative, 

all points of the structuring element belong to the complement of the closing set: 

   ∅𝐵(𝑋) = [⋃ {𝐵𝑥|𝐵𝑥  𝑋𝑐}𝑥 ]𝑐 .      (2.7) 

The idea behind the morphological closing is to build an operator tending to recover the initial 

shape of the image structures that have been dilated. This is achieved by eroding the dilated image.  
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0 0 0 0 0      0 0 0 0 0 

0 0 1 0 0      1 1 1 1 1 

0 1 1 1 0  1 1 1  1 1 1 1 1 

0 0 1 0 0   b)   1 1 1 1 1 

0 0 0 0 0      0 0 0 0 0 

  a)          c)   

Fig 2.6 shows a simple 5x5 binary image X (a). White pixels have intensity 1 and black pixels 

have intensity 0. A 1x3 simple structuring element B (b). The resultant image after closing 

operation (c).  

                    
Fig 2.7 Example of opening (b) and closing (c) by a square structuring element on 

a grey valued MR image (a). 

 

2.2.5 Morphological top hat filters: 

An opening can be used to remove structures smaller than a certain size from an image, while not 

–or rather, as little as possible–altering larger structures. The closing operation can be used to 

close up holes and cavities that are smaller than a certain size. If an opening removes small 

structures, then the difference of the original image and the opened image should bring them out. 

This is exactly what the white top hat T(f) filter does, which is defined as the residue of the original 

and opening [1,43]: 

    𝑇(𝑓) = 𝑓 − 𝛾(𝑓).      (2.8) 

The top hat filter brings out or highlights small bright structures of the image that are smaller in 

size and similar in shape to the structuring element. Another important feature of the top hat filter 

is that not only does it show small structures, but it shows them with a grey value that is relative 

to the local background: the grey value of the extracted small structures is relative to the local 

a) b) c) 
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grey value in the neighborhood in the original image. In this way, slow grey value variations in 

the background of an image, e.g., an illumination gradient in a photograph can be removed [43]. 

The counterpart of the white top hat is the black top hat filter T*(f) which is defined by the residue 

of closed image and original image [1,43]: 

    𝑇∗(𝑓) = ∅(𝑓) − 𝑓.      (2.9) 

As the white top hat extracts small “white” structures (larger grey value than the background), the 

black top hat extracts small “dark” structures, i.e., holes and cavities. The shape size and 

orientation of the structuring element used for top hat filtration completely depends on the 

morphology of the image artifacts that are wished to be extracted.  

 

Fig 2.8 Original image f and its opening  by B (a). Image after applying white top hat filter (b).  

   

 

Fig 2.9 Original image f and its closing  by B (a). Image after applying black top hat filter (b). 

 

2.3 Proposed scheme of work 

a) b) 

a) b) 
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The methodology of our proposed work can be represented very simply by the following block 

diagram: 

 

Fig 2.10 Block Diagram of proposed methodology 

 

2.3.1 Pre-processing: 

MR images are obtained based on the principle that whenever protons are exposed to 

electromagnetic radiation they absorb energy and after some time, to return to their equilibrium 

stage the nuclei reradiate this energy which is observed as the MR image. MR images are mostly 

corrupted by two irregularities- one is the intensity inhomogeneity which is nothing but the low 

frequency spatially varying artifact causing a smooth signal intensity variation within tissue of the 

same physical properties, and the other is a noise following Gaussian distribution [37]. The 

presence of these irregularities highly reduces the tissue segmentation performance and thus have 

to be removed. In our work a simple method for noise removal has been proposed which takes the 

aid of mathematical morphology and other conventional filters. The pre-processing steps are: 

 

 

Fig 2.11 Block diagram of pre-processing steps. 

For the removal of Gaussian noise, a 3x3 median filter has been used. Then, to improve the output 

of the median filter, a morphological opening operator is used with a very small circular 

structuring element to remove the remaining maximum values that are smaller than the structuring 

element [18]. Next, in order to remove the other irrelevant image artifacts and extract the brain, 

Otsu’s thresholding is performed, after that the convex hull of the binary image is extracted, the 

maximum area of foreground objects is calculated and an area opening is performed to produce 

MR Image Pre-processing
Morphological 
Enhanement

Segmentation Post-processing

Median 
Filtration

Image 
opening

Thresholding Convex hull
Area 

opening
Masking
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the final mask which extracts the brain from its surroundings. The entire pre-processing steps are 

shown in Fig 2.12. 

  

    

 

Fig 2.12 Pre-processing steps: (a) original image, (b) image after median filtration and opening, 

(c) image after thresholding using Otsu’s method, (d) convex hull image, (e) maximum area image 

after area opening, (f) final processed image after masking (a) with (e). 

a) b) 

c) d) 

e) f) 
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2.3.2 Image Enhancement by Mathematical Morphology: 

Morphological top hat filters are applied on the processed MR image. In order to get effective 

results from a morphological operation, choosing an appropriate structuring element is very 

important. Line and circular structuring elements are chosen since they correspond to the 

structures of the lateral ventricles and the CSF filled furrows of the brain. There will not be any 

change with the line-like CSF structures if the structuring elements are parallel with these brain 

structures [20]. So, the best response has been obtained by applying linear structuring elements to 

the digital image at various directions. The line structuring element are applied in 4 directions: 0o, 

45o,90o and 135o. Then the computational results have been summed up at these 4 directions. Thus 

the gray differences between the CSF structures and the background are increased [20]. The 

resultant image is then morphologically closed by a circular SE.   

 

 

Fig 2.13 (a), (c): original MR images, (b), (d): corresponding morphologically enhanced MR 

images 

a) b) 

c) d) 
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2.3.3 Segmentation of brain tissues using FCM:  

Fuzzy C-means clustering is employed for segmenting the brain MRI tissues into three clusters- 

WM, GM and CSF. The FCM clustering algorithm proposed by Dunn and improved by Bezdek, 

is an improvement of the hard k-means algorithm [34]. FCM is a fuzzy clustering method based 

on the minimization of a quadratic criterion where clusters are represented by their respective 

centers. It assigns a class membership to a data point, depending on the similarity of the data point 

to a particular class relative to all other classes. The standard FCM objective function of 

partitioning an image into c clusters is given by: 

 𝐽𝑚(, ) = ∑ ∑ 
𝑖𝑗 
𝑚 𝑑2(𝑥𝑗 , 𝑣𝑖)𝑛

𝑗=1
𝑐
𝑖=1                 (2.10)  

subject to    ∑ 
𝑖𝑗

= 1𝑐
𝑖=1            (2.11) 

Where X=(x1,x2,…,xj,…,xn) is a data matrix of size pxn, p represents the dimension of each xj 

“feature” vectors (pixel numbers in the image). The feature vector X in MR images is the pixel 

intensity, so p=1. ij is the membership of the jth data in ith cluster ci, m presents the index of 

fuzziness (in this study, m=2), and i is the fuzzy cluster centroid of the ith cluster. Using the 

Euclidean norm, the distance metric d measures the similarity between a feature vector xj and a 

cluster centroid vi in the feature space i.e., 

𝑑2(𝑥𝑗 , 𝑖) = ||𝑥𝑗 − 𝑖||
2         (2.12) 

||.|| is any norm expressing the similarity measure. 

Typically, the Euclidean distance measure is used. The objective function is minimized when the 

large membership values are assigned to input patterns that are close to their nearest cluster centers 

and low membership values are assigned when they are far from the cluster centers. Minimizing 

the objective function with the given constrain (2.11), the following equations are obtained. 

𝜕𝐽𝑚

𝜕𝑖𝑗

= 0, 𝑎𝑛𝑑 
𝜕𝐽𝑚

𝜕𝑖
= 0.         (2.13) 

These lead to the following iterative solutions: 
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𝑖𝑗

=
1

||𝑥𝑗−𝑖||
2

𝑚−1

∑ ||𝑥𝑗−𝑖||
2

𝑚−1𝑐
𝑖=1

⁄

        (2.14) 

And  

𝑣𝑖 =
∑ 𝑖𝑗

𝑚𝑥𝑘
𝑛
𝑗=1

∑ 
𝑖𝑘
𝑚𝑛

𝑗=1

          (2.15) 

The flowchart of the FCM algorithm is given as follows: 

     

 

 

   

  F 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Begin 

Input: No. of clusters c, degree of fuzziness m=2 and error= 

Initialize randomly cluster centers i
(0) using equation (2.15) 

 K=0 

  K=k+1 

Find membership matrix U(k) using cluster centers i
(k-1) using equation (2.14) 

Update cluster centersi
(k) using membership matrix U(k) 

Check if 

||𝑖
𝑘 − 𝑖

𝑘−1||

<  

     Return I and ij 

yes 

no 

 

Fig 2.14 Flowchart of FCM algorithm 
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2.4 Results and Discussions 

The performance of the proposed method is evaluated on real-patient brain MRI both qualitatively 

and quantitatively. The segmentation results of our proposed method have been compared with 

those of the standard FCM algorithm. 

The proposed work has been implemented by the language of Matlab® 2015a on a personal 

computer with a 3.8 Ghz CPU, 4.00GB RAM under 32-bit Windows 7 operating system. 

 

2.4.1 Dataset Description and parameter setting: 

The database constitutes real-patient MRI Multiple sclerosis database (MRI MS DB) obtained 

from Institute of Neurology and Genetics, Nicosia, Cyprus. The transverse T2-weighted MR 

images were obtained using a 1.5T whole body Philips ACS NT MR imager [37-40]. 11 MRI 

slices from 4 patients have been used for the proposed work making a total of 44 MR images. 

Each image has 8-bit representation and is of size 512x512. 

In the morphological pre-processing and image enhancement part, length of the linear structuring 

elements as well as the radius of the circular structuring element, each has been chosen to be equal 

to 3 units, as such a choice has been found to yield the best overall results in this study. For the 

FCM algorithm, the following considerations are made: degree of fuzziness m=2, maximum 

number of iterations=100, and minimum amount of improvement=10-5. Iteration stops if 

maximum number of iterations is exceeded or the improvement between two consecutive 

iterations is equal to or less than 10-5.  

 

2.4.2 Qualitative Evaluation: 

The qualitative evaluation deals with visually comparing the segmented tissue regions- white 

matter (WM), gray matter (GM) and cerebro-spinal fluid (CSF) based on standard FCM clustering 

and our proposed morphological pre-processing based FCM clustering. The images of Fig 2.15 

present a visual comparison between the brain MRI segmentation results obtained using FCM 

only and our proposed method i.e., using a mathematical morphology based pre-processing along 

with FCM clustering algorithm. The images clearly show that the proposed method segments the 
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intricate ‘bright’ structural details of the brain like the CSF filled grooves and ventricles better 

than the conventional FCM clustering method directly applied on raw images. Moreover, Fig 2.16 

shows a qualitative view of the segmented CSF structures of various MRI slices from a number 

of patients selected from the available database, by both the conventional and proposed methods 

and an improvement in the segmentation result is observed.  

 

a) 

b) c) 

d) e) 

f) g) 

h) i) 



Page | 23  
 

Fig 2.15 (a) original MR image, slice #14 

 (b),(d),(f),(h): Clustered image, WM, GM and CSF respectively using conventional FCM 

 (c),(e),(g),(i): Clustered image, WM, GM and CSF respectively using proposed method 

 

 

Fig 2.16 1st and 3rd column: CSF segments obtained using conventional FCM 

   2nd and 4th column: CSF segments obtained using proposed method. 

 

2.4.3 Quantitative Evaluation: 

As the ‘ground truth’ of segmentation for real patient MRI is not readily available, quantitative 

analysis based on cluster validity functions have been considered only. 

 

a) b) c) d) 

e) f) g) h) 

i) j) k) l) 

m) n) o) p) 
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2.4.3.1 Cluster validity functions: 

(a) Partition coefficient (Vpc): Vpc [34,39,34(31),34(32)]is an important indicator of fuzzy partition 

and provides best performance with less fuzziness. It is defined as follows: 

𝑉𝑝𝑐 =
1

𝑛
∑ ∑ 

𝑖𝑗
2𝑛

𝑗=1
𝑐
𝑖=1      (2.16) 

As Vpc (0≤Vpc≤1) increases, the clustering becomes ‘better’ i.e., more optimal.  

(b) Partition Entropy (Vpe): Vpe [38,39,34(32)] is defined as follows: 

𝑉𝑝𝑒 = −
1

𝑛
∑ ∑ [

𝑖𝑗
𝑙𝑜𝑔

𝑖𝑗
]𝑛

𝑗=1
𝑐
𝑖=1     (2.17) 

As Vpe (0≤Vpe≤1) decreases, the clustering becomes ‘better’ i.e., more optimal.  

Vpc and Vpe are calculated for each image in both the cases of our proposed method and 

conventional FCM clustering method. The quantitative results are shown for 4 different patients 

in Fig 2.17 and Fig 2.18. Fig 2.19 shows the comparison of the average Vpc and Vpe values for each 

of the 4 patients. 
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Fig 2.17 Partition coefficient values for the proposed method and conventional FCM 
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Fig 2.18 Partition entropy values for the proposed method and conventional FCM 
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Fig 2.19 Comparison of average Partition Coefficient (Vpc) and average Partition Entropy (Vpe) 

values for the proposed method and conventional FCM 

 

As shown in Fig 2.17, the Vpc values as produced by the proposed method, is higher for each MRI 

slice, for each patient. From Fig 2.18, it can also be seen that the proposed method has yielded 

lower Vpe values for each MRI slice, for each patient. The only exception is slice no. 8 of patient 

no. 2 where the proposed method has produced a slightly worse value for both Vpc and Vpe. Hence, 

it can be said that for both Vpc and Vpe our proposed method comprising of morphological pre-

processing, has resulted in better clustering results in comparison to the case where clustering has 

been done solely with the help of conventional FCM without applying image enhancement. 

Moreover, from Fig 2.19 it can also be seen that for each patient, the average Vpc and Vpe values, 

taken over the 11 MRI slices, are better in comparison to the conventional FCM method applied 

on raw images. 

 

2.5 Conclusions 

In this chapter, a novel and simple mathematical morphology based method has been studied for 

the purpose of real-patient brain MR image enhancement. The technique comprises of the 
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application of morphological operators like opening, closing and tophat filtration to the brain MRI 

slices of real patients for the purpose of noise removal and contrast enhancement. Conventional 

Fuzzy C-means (FCM) clustering method has then been applied to the enhanced brain MRI slices 

to segment the image into three segments i.e., white matter (WM), gray matter (GM) and 

cerebrospinal fluid (CSF). Qualitative analysis has shown that the proposed method does a better 

job in extracting the intricate and ‘bright’ CSF structures than the conventional FCM clustering 

method on raw MR images. Moreover, in absence of the availability of MRI segmentation ‘ground 

truth’, cluster validity functions like partition coefficient (Vpc) and partition entropy (Vpe) have 

been employed to check the performance of the proposed method over conventional FCM 

clustering. It has been observed that the proposed method also yields better clustering results in 

comparison to the conventional FCM clustering on raw MR images. 
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          CHAPTER 3 

 

MULTILEVEL OPTIMAL THRESHOLDING OF BRAIN MRI 

USING MODIFIED HYBRIDIZED BAT ALGORITHM 

 

3.1 Introduction 

Metaheuristic algorithms are genuinely creative in exploring paths to a solution and are becoming 

extremely popular, robust and powerful methods for solving many tough optimization problems. 

The vast majority of such algorithms have been inspired or derived from the behavior of biological 

systems and/or physical systems, such as simulated annealing (SA), particle swarm optimization 

(PSO), differential evolution (DE), genetic algorithm (GA), harmony search (HS), artificial bee 

colony algorithm (ABC), firefly algorithm (FA), cuckoo search algorithm (CS) etc. Algorithms 

such as GA, PSO, DE are very useful but they are not fully capable in dealing with multimodal 

optimization problems [14]. The attraction behavior, light intensity coding and distance 

dependence based FA [19] provides a surprising capability to deal with non-linear, multimodal 

optimization problems efficiently [14]. The CS algorithm based on the brooding behavior of some 

cuckoo species has very good convergence behavior [14].  

The Bat Algorithm (BA) is a comparatively recent and very promising metaheuristic algorithm 

proposed by X.S Yang in 2010 [1]. It is based on the echolocation behavior of microbats and has 

found a wide application in various types of optimization problems in recent times. The properties 

of bat algorithm that gives it an edge over other recent metaheuristic algorithms are: frequency 

tuning, automatic zooming and parameter control [1,14]. Huang et al. [32] used BA for solving 

large scale optimization problems. Khan et al. [33] proposed a fuzzy clustering algorithm based 

on BA for ergonomic screening of office workplaces. Horng et al. [34] used a chaotic levy flight 

based BA for parameter estimation in nonlinear dynamic biological systems. Zhang et al. [35] 

developed an image matching technique using BA with mutation. Bing Meng et al. [7] proposed 

a novel bat algorithm with habitat selection and Doppler Effect to solve optimization problems. 

Karri et al. [8] utilized BA for image compression. Gao et al. [10] proposed a novel visual tracking 

method using BA. Adarsh et al. [11] used chaotic BA for economic load dispatch. Coelho et al. 
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[12] proposed an enhanced BA approach for reducing electrical power consumption of air 

conditioning systems. Osaba et al. [9] used an improved version of discrete BA for symmetric and 

asymmetric travelling salesman problem. 

Multilevel image thresholding is a very important image processing technique that is used to 

subdivide an image into disjoint sets of pixels sharing similar properties such as intensity, color 

or texture on the basis of optimally selected thresholds. The various different methods for 

calculating optimum image thresholds include maximizing gray level variance [36], entropy [37], 

similarity [38] and measure of fuzziness [39]. Among all these, the entropy of the image histogram 

is the most popular optimization method. Over the last decade there has been a remarkable 

achievement in multilevel image thresholding using fuzzy entropy based objective functions [21-

27].  

Bat algorithm has been utilized in a few recent works for multilevel image thresholding. Alihodzic 

et al. [5] proposed an improved bat algorithm based on Kapur’s entropy and Otsu’s criterion for 

image thresholding. Ye et al. [6] used a fuzzy entropy based bat algorithm for optimal thresholding 

of conventional benchmark images. In both the works, the authors have compared the results 

obtained from bat algorithm with the results of other metaheuristic nature-inspired algorithms like 

PSO, DE, CS, FA, GA, ABC, ACO and concluded that the bat algorithm based methods produced 

overall better results. But the bat algorithm suffers from a drawback that at times it tends to get 

trapped into local optima and this becomes a great problem when a large number of thresholds are 

to be dealt with. In the present chapter an attempt has been made to overcome this drawback by 

proposing a modified hybridized bat algorithm for multilevel thresholding of brain MR images 

and the fuzzy entropy of the image histogram has been used as the objective function. Finally, a 

comparison has been made between the segmentation results obtained from the basic version of 

the bat algorithm with the hybridized method. 

The rest of the chapter is organized as follows. In section 3.2 the entropy based image thresholding 

method is discussed. Section 3.3 deals with the basic bat algorithm adapted for multilevel image 

thresholding. In section 3.4 the proposed hybridized bat algorithm is discussed in details. The 

detailed results and discussions are portrayed in section 3.5. Finally, the chapter is concluded in 

section 3.6. 
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3.2 Entropy based Multilevel Image Thresholding 

3.2.1 Overview: 

Multilevel image thresholding is the process where an image is segmented into n+1 distinct 

regions using n distinct image intensity values called thresholds. Let us consider a gray scale 

image I as a set of pixels A, multilevel thresholding can be defined as dividing the set A into n+1 

disjoint subsets (A0, A1, …., An) by some numbers which are nothing but gray intensity values (t0, 

t1, …., tn-1) such that [5] 

 𝐴0 = {(𝑥, 𝑦): 0 ≤ 𝑓(𝑥, 𝑦) < 𝑡0}, 

 𝐴1 = {(𝑥, 𝑦): 𝑡0 ≤ 𝑓(𝑥, 𝑦) < 𝑡1}, 

 𝐴2 = {(𝑥, 𝑦): 𝑡1 ≤ 𝑓(𝑥, 𝑦) < 𝑡2},           (3.1) 

 . 

 . 

 . 

 𝐴𝑛 = {(𝑥, 𝑦): 𝑡𝑛−1 ≤ 𝑓(𝑥, 𝑦) ≤ 𝐿 − 1}, 

where (x, y) is a pixel defined by coordinates x and y in the Cartesian coordinate system, f(x, y) 

represents the gray value corresponding to pixel (x, y). For an 8-bit digital image L = 28, thus f(x) 

takes values in the range [0, 255]. The aim of any multilevel thresholding problem is to calculate 

the optimal threshold values (t0, t1… tn-1). Thus, 

  i, j           𝐴𝑖 ∩ 𝐴𝑗 = ∅    and            ⋃ 𝐴𝑖 = 𝐼𝑛
𝑖=0          (3.2)  

In information theory, entropy measures the amount of uncertainty of an unknown or random 

quantity. The entropy-based thresholding methods are derived from maximization of Shannon’s 

entropy. Entropic thresholding " considers the image foreground and background as two different 

signal sources, so that when the sum of the two class entropies reaches its maximum, the image is 

said to be optimally thresholded " [28]. The different variations of the entropic thresholding 

methods are Pun entropy [40, 41], Kapur entropy [29], Yen entropy [42], Johannasen entropy [43], 

Sahoo entropy [44], Mello entropy [45], Silva entropy [46], Kullback cross-entropy [47], Li cross-

entropy [48], Attas cross-entropy [49], Osaimi cross-entropy [50], Saeed cross-entropy [51], Brink 

cross-entropy [52], Pal cross-entropy [53], Ajlan cross-entropy [54], Shanbag fuzzy-entropy [55], 

Cheng fuzzy-entropy [25], Zhao fuzzy-entropy [25], Tao fuzzy-entropy [22]. Out of all these 
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entropic methods, Kapur entropy and Tao fuzzy-entropy have found the most prominence in 

finding optimal thresholds for multilevel image thresholding.   

Image processing has to deal with many ambiguous situations and the fuzzy set theory is a useful 

mathematical tool for handling such ambiguity or uncertainty. For this reason, the fuzzy entropy 

based method has found an edge over other methods and there have been numerous applications 

of fuzzy entropies in image segmentation. 

 

3.2.2 Fuzzy entropy based multilevel image thresholding:  

A fuzzy entropy is a function on fuzzy sets that becomes smaller when the sharpness of its 

argument fuzzy set is improved [22]. The concept of entropy in the theory of fuzzy sets was first 

introduced by Luca and Termini in 1972. Afterwards it has been successfully implemented to 

solve numerous image thresholding problems. Zhao et al.,2001 established the relation between 

probability partition (PP) and entropy based fuzzy c-partition (FP) in image thresholding. Tao et 

al., 2003 [22] first designed a three-level thresholding method based on this concept of fuzzy 

entropy for image segmentation.  

Let D={(x,y):x=0,1,…,M-1;y=0,1,…,N-1} and G={0,1,…,L-1}, where M,N and L are three 

positive integers standing for width (in pixels), height (in pixels) and maximum gray level 

intensity of the image. Hence, 

I(x,y)G      (x,y)D  where  0 ≤ 𝐼(𝑥, 𝑦) ≤ 𝐿 − 1   is the gray level value of the image at the 

pixel (x,y). 

So the image can be mapped in a way I: D→G. 

𝐷𝑘 = {(𝑥, 𝑦): 𝐼(𝑥, 𝑦) = 𝑘, (𝑥, 𝑦) ∈ 𝐷, 𝑘 = 0,1,2, … , 𝐿 − 1}           (3.3) 

Let the histogram of the given image be H = {h0, h1, …., hL-1} where hk represents the number of 

pixels having gray level intensity equal to k. The normalized value hnk is given as: 

ℎ𝑛𝑘 =
ℎ𝑘

𝑀∗𝑁
                            k=0, 1, 2…., L-1           (3.4) 

0 ≤ hnk ≤ 1,                 and                ∑ ℎ𝑛𝑘
𝐿−1
𝑘=0 = 1           (3.5) 
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If pk is the probability of occurrence of the gray level k in the image, then pk= hnk. 

Our objective is to classify domain D of the gray level image of interest into three classes Ed, Em 

and Eb. Ed consists of ‘dark’ pixels i.e pixels of ‘low’ gray level intensity, Em consists of ‘medium’ 

intensity value pixels and Eb consists of ‘bright’ pixels i.e pixels of ‘high’ gray level intensity. 3= 

{Ed, Em, Eb} [24] is an unknown probabilistic partition of D whose probability distribution is given 

by  

pd= PEd) , pm= P(Em), pb=P(Eb).            (3.6) 

A fuzzy set is an extension of a crisp set. In a fuzzy set an element may partially belong to a set. 

Let A be a fuzzy set, where AX is defined as A={(x,A(x))|xX}, where 0≤A(x)≤1 is called 

the membership function which defines to what extent x belongs to A. 

Three functions- the Z(k,a1,b1,c1)-function, U(k,a1,b1,c1,a2,b2,c2) and S(k,a2,b2,c2)-function (Fig. 

3.1) are used to approximate the memberships of d, m and b of our image with 28=256 gray 

levels. The two thresholds T1 and T2 for three-level image thresholding depend on the values of 

these six parameters, namely, a1, b1, c1, a2, b2, c2 [22]. Hence, the objective is to find these six 

parameters such that the required optimum thresholds T1 and T2 are obtained. The following 

conditions must be satisfied: 

0≤a1≤ b1≤ c1 ≤a2 ≤b2≤ c2≤255.  

For each k=0, 1, 2, …., 255; let 

 𝐷𝑘𝑑 = {(𝑥, 𝑦): 𝐼(𝑥, 𝑦) ≤ 𝑇1, (𝑥, 𝑦) ∈ 𝐷𝑘} 

𝐷𝑘𝑚 = {(𝑥, 𝑦): 𝑇1 < 𝐼(𝑥, 𝑦) ≤ 𝑇2, (𝑥, 𝑦) ∈ 𝐷𝑘}             (3.7) 

𝐷𝑘𝑏 = {(𝑥, 𝑦): 𝐼(𝑥, 𝑦) > 𝑇2, (𝑥, 𝑦) ∈ 𝐷𝑘}  

Then, 

 𝑃𝑘𝑑 = 𝑃(𝐷𝑘𝑑) = 𝑝𝑘 ∗ 𝑝𝑑|𝑘     

𝑃𝑘𝑚 = 𝑃(𝐷𝑘𝑚) = 𝑝𝑘 ∗ 𝑝𝑚|𝑘                    (3.8) 

𝑃𝑘𝑏 = 𝑃(𝐷𝑘𝑏) = 𝑝𝑘 ∗ 𝑝𝑏|𝑘   
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where, pd|k, pm|k and pd|k are the conditional probability that a pixel belongs to fuzzy sets ‘dark’, 

’medium’ and ‘bright’ respectively provided it has a gray level intensity equal to k, subject to a 

constraint pd|k + pm|k + pd|k = 1 (k=0, 1, 2, …, 255). ‘*’ denotes scalar multiplication. 

 

Pd = P(Ed) = ∑ 𝑃(𝐷𝑘𝑑)
255
𝑘=0   

= ∑ 𝑃(𝐷𝑘)
255
𝑘=0  * P(Ed|Dk) = ∑ 𝑝𝑘

255
𝑘=0  * 𝑝𝑑|𝑘 

 

Pm = P(Em) = ∑ 𝑃(𝐷𝑘𝑚)
255
𝑘=0   

= ∑ 𝑃(𝐷𝑘)
255
𝑘=0  * P(Em|Dk) = ∑ 𝑝𝑘

255
𝑘=0  * 𝑝𝑚|𝑘           (3.9) 

 

Pb = P(Eb) = ∑ 𝑃(𝐷𝑘𝑏)
255
𝑘=0   

= ∑ 𝑃(𝐷𝑘)
255
𝑘=0  * P(Eb|Dk) = ∑ 𝑝𝑘

255
𝑘=0  * 𝑝𝑏|𝑘  

 

It is considered that the conditional probabilities are same as the membership values of a pixel 

with intensity k to belong to the fuzzy sets ‘dark’, ‘medium’ and ‘gray’. Thus pd|k, pm|k, pd|k are 

same as d, m and b respectively. So, it can be concluded:  

pd = ∑ 𝑝𝑘
255
𝑘=0 * d(k) 

pm = ∑ 𝑝𝑘
255
𝑘=0 * m(k)             (3.10) 

pb = ∑ 𝑝𝑘
255
𝑘=0 * b(k) 

As shown in Fig.3.1, the Z(k,a1,b1,c1)-function, U(k,a1,b1,c1,a2,b2,c2)-function and S(k,a2,b2,c2)-

function act as the membership function d(k), m(k) and b(k) respectively. They are given as 

follows:  
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d(k) = 

{
 
 

 
 
1                                                       𝑘 ≤ 𝑎1

1 −
(𝑘−𝑎1)

2

(𝑐1−𝑎1)∗(𝑏1−𝑎1)
            𝑎1 < 𝑘 ≤ 𝑏1

(𝑘−𝑐1)
2

(𝑐1−𝑎1)∗(𝑐1−𝑏1)
                    𝑏1 < 𝑘 ≤ 𝑐1

0                                                    𝑘 > 𝑐1

 

 

m(k) = 

{
 
 
 
 
 

 
 
 
 
 
0                                                          𝑘 ≤ 𝑎1

(𝑘−𝑎1)
2

(𝑐1−𝑎1)∗(𝑏1−𝑎1)
                         𝑎1 < 𝑘 ≤ 𝑏1

1 −
(𝑘−𝑐1)

2

(𝑐1−𝑎1)∗(𝑐1−𝑏1)
                  𝑏1 < 𝑘 ≤ 𝑐1

  1                                                𝑐1 < 𝑘 ≤ 𝑎2

1 −
(𝑘−𝑎2)

2

(𝑐2−𝑎2)∗(𝑏2−𝑎2)
                 𝑎2 < 𝑘 ≤ 𝑏2

(𝑘−𝑐2)
2

(𝑐2−𝑎2)∗(𝑐2−𝑏2)
                         𝑏2 < 𝑘 ≤ 𝑐2

0                                        𝑐2 < 𝑘

         (3.11) 

 

b(k) = 

{
 
 

 
 
0                                                               𝑘 ≤ 𝑎2

(𝑘−𝑎2)
2

(𝑐2−𝑎2)∗(𝑏2−𝑎2)
                             𝑎2 < 𝑘 ≤ 𝑏2

1 −
(𝑘−𝑐2)

2

(𝑐2−𝑎2)∗(𝑐2−𝑏2)
                    𝑏2 < 𝑘 ≤ 𝑐2

1                                                            𝑘 > 𝑐2

 

 

 

The fuzzy entropy function of each of the three classes are given as follows [22] : 

Hd  = −∑
𝑝𝑘∗ 𝑑(𝑘)

𝑝𝑑

255
𝑘=0  * ln(

𝑝𝑘∗ 𝑑(𝑘)

𝑝𝑑
) 

Hm  = −∑
𝑝𝑘∗ 𝑚(𝑘)

𝑝𝑚

255
𝑘=0  * ln(

𝑝𝑘∗ 𝑚(𝑘)

𝑝𝑚
)         (3.12) 

Hd  = −∑
𝑝𝑘∗ 𝑏(𝑘)

𝑝𝑏

255
𝑘=0  * ln(

𝑝𝑘∗ 𝑏(𝑘)

𝑝𝑏
) 

The total fuzzy entropy is then calculated by summing up the fuzzy entropy of each class as: 
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H(a1, b1, c1, a2, b2, c2) = Hd + Hm + Hb        (3.13) 

The objective of this work is to find the optimal combination of these six parameters a1, b1, c1, 

a2, b2 and c2 such that H(a1, b1, c1, a2, b2, c2) is maximum. Then the most appropriate thresholds 

T1 and T2 which segment the image into three classes can be computed as follows: 

d(T1) = m(T1) = 0.5 

m(T2) = b(T2) = 0.5           (3.14) 

Based on the formulas the solution can be given as: 

T1= {
𝑎1 +√(𝑐1 − 𝑎1) ∗ (𝑏1 − 𝑎1)/2                 (𝑎1 + 𝑐1)/2 ≤ 𝑏1 ≤ 𝑐1

𝑐1 −√(𝑐1 − 𝑎1) ∗ (𝑐1 − 𝑏1)/2               𝑎1 ≤ 𝑏1 ≤ (𝑎1 + 𝑐1)/2      
   

T2= {
𝑎2 +√(𝑐2 − 𝑎2) ∗ (𝑏2 − 𝑎2)/2                 (𝑎2 + 𝑐2)/2 ≤ 𝑏2 ≤ 𝑐2 

𝑐2 −√(𝑐2 − 𝑎2) ∗ (𝑐2 − 𝑏2)/2               𝑎2 ≤ 𝑏2 ≤ (𝑎2 + 𝑐2)/2      
     (3.15) 

It can be seen that for maximum fuzzy entropy based thresholding each threshold corresponds to 

3 parameters. Similarly, for three optimal thresholds 9 parameters, for four optimal thresholds 12 

parameters will be required and so on. As the number of thresholds increases, the membership 

functions for each set will have to be updated accordingly.  

 

Fig 3.1 Membership function graph (Tao et al. 2007) 
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3.3 Basic Bat Algorithm (BA) adapted for Multilevel Image Thresholding 

3.3.1 Echolocation behaviour of micro bats: 

The Bat algorithm deals with the echolocation behavior of micro bats. To help them find prey in 

darkness, most bat species developed a remarkable sonar called echolocation. They emit 

extremely high pitch sound pulses and receive the echo that bounces back from the surrounding 

objects. By determining how long it takes a noise to return, the bats figure out how far the 

object/prey is.  Micro bats can avoid obstacles as thin as a human hair. The typical range of 

frequencies for most bat species are in the region between 25kHz and 100kHz, though some 

species can emit higher frequencies up to 150 kHz. Each ultrasonic burst may last typically 5 to 

20 ms, and microbats emit about 10 to 20 such sound bursts every second. When hunting for prey, 

the rate of pulse emission can be sped up to about 200 pulses per second when they fly near their 

prey. The emitted pulse could be as loud as 110 dB, and they are in the ultrasonic region. The 

loudness also varies from the loudest when searching for prey and to a quieter base when homing 

towards the prey. Such echolocation behaviour of microbats can be formulated in such a way that 

it can be associated with the objective function to be optimized [1]. 

 

3.3.2 Assumptions: 

Some basic approximate or idealized rules have been developed for simplicity of application of 

this algorithm as defined by [1]. 

1. All bats use echolocation to sense distance, and they also ‘know’ the difference between 

food/prey and background barriers in some magical way; 

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying wavelength 

 and loudness A0 to search for prey. They can automatically adjust the wavelength (or frequency) 

of their emitted pulses and adjust the rate of pulse emission r  [0,1],depending on the proximity 

of their target; 

3. Although the loudness can vary in many ways, it is assumed that the loudness varies from a 

large (positive) A0 to a minimum constant value Amin.  
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In general, in most of the image thresholding applications it is supposed f[0,2], A[1,2] and 

r[0,1]. Ai=2 denotes maximum loudness while Ai=1 denotes the minimum loudness. Similarly, 

ri=0 denotes no pulse emission at all and ri=1 signifies maximum level of pulse emission 

indicating that the bat has just found its prey. 

 

3.3.3 The Bat Algorithm: 

The purpose of the bat algorithm is to maximize the fuzzy entropy based objective function given 

by (3.13) so as to give rise to k threshold values based on (3.15), according to which the images 

will be segmented into multiple levels.  The details of the developed BA approach are given as 

follows: 

Step 1 (generate initial population of solutions). The initial bat population of n bats (solutions) is 

generated randomly by a uniform random distribution. Initializing the bat population means 

initializing the position of each of the n bats. The position of each bat is d-dimensional where d 

denotes the dimension of the search space. So, bi,j  denotes the jth dimension in the position vector 

of the ith bat. The value of bi,j  is restricted to {0, 1, …, L-1} ,where, L= 28=256 , and bi,j   bi,j+1 

holds for all j. Thus the initial solution is a nxd matrix B which can be represented as: 

 

B = 

[
 
 
 
 
 
𝑏1,1 𝑏1,2 𝑏1,3 … . 𝑏1,𝑑
𝑏2,1 𝑏2,2 𝑏2,3 … . 𝑏2,𝑑
    .
    .
    .
𝑏𝑛,1 𝑏𝑛,2 𝑏𝑛,3 … . 𝑏𝑛,𝑑]

 
 
 
 
 

          (3.16) 

Out of these n random solutions, the bat algorithm finds the solution bbest which maximizes the 

fitness function and then the iterative search process starts. In this initialization step, the pulse rate 

ri   of each bat is also initialized randomly usually in the range [0,1] and the loudness of each bat 

Ai is initialized randomly in the range [1,2]. 
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Step 2 (calculation of new solutions). By movement of the virtual bats new solutions are generated 

in each iteration. The current iteration is denoted by time instant t. The virtual bats are moved 

according to the equation 

   𝑏𝑖
𝑡 = 𝑏𝑖

𝑡−1 + 𝑣𝑖
𝑡,           (3.17) 

where vi
t denotes the velocity of bat movement and it is given by the expression 

    𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑏𝑖
𝑡−1 − 𝑏𝑏𝑒𝑠𝑡) ∗ 𝑓𝑖  ,       (3.18) 

vi is initialized as a null vector, fi denotes the frequency of the ith bat, and bbest  is the current global 

best solution. fi is given by the equation 

   𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ∗ 𝛽,         (3.19) 

where β  [0,1] is a random vector drawn from the uniform random distribution. The 

recommended values fmax = 2, fmin =0 have been chosen.  

Step 3 (improving the current best solution). For each current solution bi
t the following random 

walk step is performed. 

   𝑏𝑖,𝑛𝑒𝑤
𝑡 = {

𝑏𝑏𝑒𝑠𝑡 +  𝐴
𝑡 , 𝑟𝑎𝑛𝑑1 > 𝑟𝑖
𝑏𝑖
𝑡,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

       (3.20) 

 

where rand1 is a uniform random number in range [0,1], ri is the pulse rate emitted by the ith bat, 

 is also another random number within [-1,1] and At = <Ai
t> is the average loudness of all bats 

at this time step. If after movement of the bats the value of the bi
t vector overflows the permissible 

bounds, a computational step is incorporated which clips the values and brings them within the 

defined boundary.  

Step 4 (accepting new solution).  The solution 𝑏𝑖,𝑛𝑒𝑤
𝑡  obtained from Step 3 is accepted as the new 

solution and 𝑓(𝑏𝑖,𝑛𝑒𝑤
𝑡 ) is accepted as the new fitness value subject to the following condition  

(𝑏𝑖
𝑡, 𝑓(𝑏𝑖

𝑡)) = {

(𝑏𝑖,𝑛𝑒𝑤
𝑡 , 𝑓(𝑏𝑖,𝑛𝑒𝑤

𝑡 )) ,

𝑖𝑓 (( 𝑟𝑎𝑛𝑑2 < 𝐴𝑖) 𝑎𝑛𝑑 𝑓(𝑏𝑖,𝑛𝑒𝑤
𝑡 ) > 𝑓(𝑏𝑖

𝑡−1))

               (𝑏𝑖
𝑡−1, 𝑓(𝑏𝑖

𝑡−1)),        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (3.21) 
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where rand2 is a uniform random number in the range [0,1]. 

After this computation Ai is decreased and ri is increased following the formula  

   Ai
t+1 = αAi

t           (3.22) 

   ri
t+1 = ri

0(1-𝑒−𝑡)         (3.23) 

where α and  are constants and free parameters. ri
0 is the initial pulse rate value of the ith bat.  

   𝐴𝑖
𝑡 → 0,  𝑟𝑖 

𝑡 →  𝑟𝑖
0, as t → ∞. 

This is the mathematical modelling of the natural phenomenon that when a bat nears towards a 

prey its loudness value decreases while its pulse emission rate increases.  is similar to the cooling 

factor of a cooling schedule in simulated annealing algorithm. Generally α is set equal to  in the 

range [0,1] and initialized at the beginning of algorithm execution. 

Step 5 (memorizing best solution so far).  

   If f(𝑏𝑖,𝑛𝑒𝑤
𝑡 ) > 𝑓(𝑏𝑏𝑒𝑠𝑡) 

   bbest = 𝑏𝑖,𝑛𝑒𝑤
𝑡  and f(bbest) =f( 𝑏𝑖,𝑛𝑒𝑤

𝑡 )       (3.24) 

The best solution so far is recorded. 

Step 6 (check stopping criteria). If the termination criterion is met or the maximum number of 

iterations is reached, then the algorithm is terminated. Otherwise increase the iteration number by 

1 and repeat from step 2 to step 6. 

 

3.3.4 Pseudo code of basic bat algorithm (BA): 

 

Objective function f(b), b = (b1, b2, …., bd) 

Initialize bat population bi = (i=1, 2,….,n) and vi 

Define pulse frequency fi  at bi 

Set values for  and  

Initialize pulse rate ri and loudness Ai 
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while (t < Max number of iterations) 

Generate new solutions by adjusting frequency, and updating velocities  

and locations/solutions [equations (3.17) to (3.19)] 

if (rand > ri) 

Select a solution among the best solutions 

Generate a local solution around the selected best solution 

end if 

Generate a new solution by flying randomly 

if (rand < Ai & f(bi) > f(bbest)) 

Accept the new solutions 

Increase ri   and reduce Ai 

end if 

Rank the bats and find the current best bbest 

end while 

Postprocess results and visualization 

 

The key features that make the bat algorithm successful and advantageous over other metaheuristic 

algorithms are [14]: 

 Frequency tuning: BA uses echolocation and frequency tuning to solve optimization problems. 

This frequency tuning parameter is similar to the key feature of particle swarm optimization (PSO) 

and contributes to the exploration.  

 Automatic zooming: BA has the capability of automatically zooming into a region where a 

promising solution has been found. This exploitation is done by local random walk similar to one 

of the key features of harmony search optimization (HS). Hence speed of convergence increases. 

 Parameter control: In general, metaheuristic algorithms use fixed, pre-tuned algorithm dependent 

parameters. But in BA, as the iteration progresses the control parameters Ai and ri adjust their 

values and the algorithm intelligently switches from exploration to exploitation. This enhances 

the efficiency of the BA. 

Thus BA possesses the advantages of other swarm-intelligence based metaheuristic algorithms. 
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3.4 Proposed Modified Hybridized Bat Algorithm (MHBA) 

3.4.1 Background behind improvement of BA:  

Although it has already been mentioned in the previous section the advantages that make the basic 

bat algorithm a very good choice for solving various optimization problems, but as the complexity 

of the problem increases, the BA starts losing its brilliance. In the present case of selecting optimal 

thresholds for multilevel MRI segmentation, as the number of thresholds increases, especially for 

the fuzzy entropy objective function, BA often fails. The solutions then tend to get trapped near 

the local maximum as the exploration capability of basic BA falls short for such complex 

situations dealing with the search space having a very large dimension. Hence, in order to improve 

the exploration capability of the BA, some features from the differential evolution (DE) algorithm 

[18], such as the concepts of mutation and crossover are included. Moreover, as suggested by [5], 

the concept of scout bees taken from the artificial bee colony (ABC) optimization algorithm [15] 

has also been incorporated. In addition to that, in order to mimic the bat’s echolocation behaviour 

more intricately, the impact of Doppler Effect in echoes [7] which was previously ignored in the 

basic BA has also been considered. By incorporating all these special features in our proposed 

MHBA algorithm, there has been an attempt to achieve a good balance between intensification 

and diversification strategies, thus making the algorithm more efficient. 

 

3.4.2 Doppler Effect in MHBA: 

The Doppler Effect is the change in frequency of a wave for an observer moving relative to its 

source. Given the Doppler Effect, the perceived sound frequency can change due to the relative 

motion between the observer and the source.  Let us suppose fs and fr are the frequencies of the 

source and the receiver, respectively; and vr and vs are the speeds of the receiver and the source, 

respectively. 0 is the wavelength, and v is the wave speed in the medium. Assuming moving 

source and moving receiver, the fr can be formulated as follows: 

                                                   𝑓𝑟 =
𝑣 ± 𝑣𝑟
𝑣 ∓ 𝑣𝑠

𝑓𝑠                                                                                   (3.25)       
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The - and + signs for the values substituted for vr and vs depend on the direction of the velocity. + 

is used for the relative motion of the receiver or the source toward the other, and – for the relative 

motion of one away from the other. In conclusion, the perceived source frequency is decreased if 

either is moving away from the other, and increased if either is moving toward the other.  

Given the Doppler Effect, the formula for updating bi,j
t and vi,j

t at time step t are slightly different 

from the corresponding parts in original BA, and is done according to (3.26), (3.27), (3.28) and 

(3.29) respectively. Apart from assigning a frequency randomly chosen from the interval fmin to 

fmax, the frequency also depends on the Doppler Effect and the bat’s compensation rate Ci for 

Doppler Effect. Since the objective of the bats is to catch the prey, + sign should be adopted in 

(3.25). Here, the global best solution bbest,j  may be regarded as the prey. The bats may positively 

compensate for the Doppler Effect in echoes and fly forwards to catch the prey when bbest,j  is 

greater than bi,j at the tth time instant. If bbest,j  is smaller than bi,j , the bats may negatively 

compensate for the Doppler effect in echoes and slows down to capture its prey. The compensation 

rate varies with individual bats. 

 

3.4.3 Crossover, Mutation and Scout technique in MHBA:  

For an algorithm to be efficient and effective, it must be able to generate a diverse range of 

solutions including the potentially optimal solutions so as to explore the whole search space 

effectively, while it intensifies its search around the neighbourhood of an optimal or nearly optimal 

solution. As the dimension of the search space increases as it is with our case of fuzzy entropy 

based multilevel image thresholding, the basic BA often fails to produce optimal results since it 

lacks in effective diversification. In order to enhance this diversification ability of the BA, the 

concepts of crossover and mutation from DE algorithm [5] which essentially have the essence of 

randomization, have been incorporated. Mutation and crossover is the process by which DE 

generates new vectors by adding the weighted difference between two population vectors to a 

third vector. As shown in (3.31), F is the differential weight which is a real constant factor and 

[0,2], Cr [0,1] is the constant crossover probability and these value is fixed by the user. So it is 

seen that during the beginning of the iteration as ri
t is of small value, mutation and crossover 

operator is highly predominant and results in effective diversification. As the number of iterations 

increase, intensification enhances and the algorithm approaches towards getting optimal solutions.  
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Moreover, some solutions may still be there which have a tendency to get stuck in some local 

optimum. In order to fix this, the launch of scout phase of the ABC algorithm has been introduced. 

When a solution refuses to improve after a fixed number of consecutive iterations, it will 

eventually exceed the predetermined number of allowed trials called limit. Then that particular 

solution is again initialized randomly.  

 

3.4.4 Proposed Modified Hybridized Bat Algorithm (MHBA): 

 

Step 1 (generate initial population of solutions). Similar to basic BA, our proposed MHBA first 

randomly generates n bat populations of d-dimensions and matrix (3.16) is created. So, bi,j  denotes 

the jth dimension in the position vector of the ith bat. The value of bi,j  is restricted to {0, 1, …, L-

1} ,where, L= 28=256 , and bi,j   bi,j+1 holds for all j. Apart from initializing Ai and ri, the parameter 

limit which presents the number of allowed attempts to improve a bat is also initialized. The 

parameters in the differential evolution (DE) algorithm such as the differential weight F and 

crossover probability Cr are also initialized. Out of these n random solutions, the bat algorithm 

finds the solution bbest which maximizes the fitness function and then the iterative search process 

starts. 

 

Step 2 (calculation of new solutions considering Doppler effect in echoes). Considering the 

Doppler effect [7], the formula of updating the current solution in each iteration slightly differs 

from that of basic BA. An additional parameter w called inertia weight is incorporated to update 

velocity. It controls to what degree the previous velocity of an individual is inherited. The current 

iteration is denoted by time instant t. Mathematically; the process of updating is done as follows: 

  𝑓𝑖,𝑗 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ∗ 𝛽,        (3.26) 

  𝑓𝑖,𝑗 =
(𝑐+𝑣𝑖,𝑗

𝑡−1)

(𝑐+𝑣𝑏𝑒𝑠𝑡,𝑗
𝑡−1 )

∗ 𝑓𝑖,𝑗 ∗ (1 + 𝐶𝑖 ∗
(𝑏𝑏𝑒𝑠𝑡,𝑗−𝑏𝑖,𝑗

𝑡−1)

|𝑏𝑏𝑒𝑠𝑡,𝑗−𝑏𝑖,𝑗
𝑡−1|+𝜀

 ),      (3.27) 

  𝑣𝑖,𝑗
𝑡 = 𝑤 ∗ 𝑣𝑖,𝑗

𝑡−1 + (𝑏𝑏𝑒𝑠𝑡,𝑗 − 𝑏𝑖,𝑗
𝑡−1) ∗ 𝑓𝑖,𝑗 ,       (3.28) 
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 𝑏𝑖,𝑗
𝑡 = 𝑏𝑖,𝑗

𝑡−1 + 𝑣𝑖
𝑡,           (3.29) 

where, w[0,1] and β  [0,1] are uniform random vectors. fmax = 2 and fmin = 0 similar to basic 

BA.  is the smallest possible constant available in the computer, it avoids zero-division-error. Ci 

is a positive number randomly chosen in the interval [0,1]. 0 means the bat cannot compensate for 

Doppler effect in echoes, while 1 means the bat can fully compensate for it. c is the speed of sound 

in air (c = 340m/s), vbest,j is the velocity corresponding to the global best position.  

 

Step 3 (improving the current best solution by differential operators). For each solution bi
t, the 

following operator given (3.30) has been applied 

  𝑏𝑛𝑒𝑤 = {
𝑏𝑑𝑖𝑓𝑓
𝑡 , 𝑖𝑓 𝑟𝑎𝑛𝑑1 > 𝑟𝑖

𝑡 

𝑏𝑙𝑜𝑐
𝑡 ,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                                         (3.30) 

where 𝑟𝑎𝑛𝑑1 is randomization term in the range [0, 1], 𝑟i
t is the pulse rate function defined by 

(3.23), bt
diff is the differential operator for mutation and crossover, and bt

loc is the operator based 

on the local search in the BA. The differential mutation and crossover operations are performed 

by 

        𝑏𝑑𝑖𝑓,𝑗
𝑡 = {

𝑏𝑐,𝑗
𝑡 + 𝐹(𝑏𝑎,𝑗

𝑡 − 𝑏𝑏,𝑗
𝑡 )        𝑖𝑓 (𝑟𝑎𝑛𝑑2 < 𝐶𝑟 𝑜𝑟 𝑗 = 𝑗𝑟)

𝑏𝑖,𝑗
𝑡               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                                     (3.31) 

where F is the differential weight which scales the rate of modification, Cr is the crossover 

probability and rand2 is a uniform random number drawn from the interval [0,1]. jr is randomly 

selected from the interval [1,d] where d is the dimension of the search space; ba, bb and bc are three 

randomly chosen bats (solutions) out of the n prospective solutions at the cycle t, such that 

abci. Here, the “DE/rand/1/bin” scheme pertaining to the DE algorithm [18] has been used. 

Normally, F is chosen in the range 0.4 to 1.0, and Cr is chosen close to 1 to increase the speed of 

convergence [18]. In this thesis work, F=0.5 and Cr=0.9 has been chosen. 

This step ensures proper diversification during initial stages and then as the number of iterations 

increases, proper intensification is ensured. Thus a proper balance of intensification and 

diversification is obtained and the efficiency of the algorithm is enhanced. The local search is 

performed by 
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   𝑏𝑙𝑜𝑐,𝑗
𝑡 = {

𝑏𝑙𝑏𝑒𝑠𝑡,𝑗 
𝑡               𝑖𝑓(𝑓(𝑏𝑙𝑏𝑒𝑠𝑡,𝑗

𝑡 ) > 𝑓(𝑏𝑖,𝑗
𝑡 ))

𝑏𝑖,𝑗
𝑡                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

     (3.32)  

          where,  𝑏𝑙𝑏𝑒𝑠𝑡,𝑗
𝑡 = 𝑏𝑏𝑒𝑠𝑡,𝑗

𝑡−1 + 𝜖𝐴𝑡        (3.33) 

Just like basic BA,  is uniform random number in the range [-1,1] and At = <Ai,j
t> is the average 

loudness of all bats at this time step. At the end of step 3, the boundary conditions for all j (j=1, 

2... d) are checked and an overflow, if any, is suitably adjusted.  

 

Step 4 (accepting new solution). After completion of step 3, the new solutions generated so far are 

accepted base on 

         (𝑏𝑖
𝑡 , 𝑓𝑖𝑡(𝑏𝑖

𝑡)) = {
(𝑏𝑛𝑒𝑤

𝑡 , 𝑓(𝑏𝑛𝑒𝑤
𝑡 ))   𝑖𝑓 (𝑟𝑎𝑛𝑑3 < 𝐴𝑖

𝑡  𝑎𝑛𝑑 𝑓(𝑏𝑛𝑒𝑤
𝑡 ) > 𝑓(𝑏𝑖

𝑡−1))

(𝑏𝑖
𝑡−1, 𝑓(𝑏𝑖

𝑡−1))      ,   𝑡𝑟𝑖 = 𝑡𝑟𝑖 + 1,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
   (3.34) 

where rand3 is a uniform random number from [0,1] and tri is the trial array of size 1xn which 

records the number of attempts through which a given solution bi
t could not improve. The 

incorporation of the trial array is inspired by the launch of scouts in the scout phase of ABC 

algorithm. Every time a particular ith solution cannot improve in a subsequent iteration, tri 

increases by 1 as shown in (3.34). Also, after a certain continuous number of cycles determined 

by the limit, if the solution cannot be improved further, it is abandoned and replaced by a randomly 

generated solution. The value of limit has been chosen to be 150. Subsequently, the ith element of 

the trial vector is set to 0. This modification prevents the solution from getting trapped in a local 

maximum, as well as improves the exploration process. Moreover, if the solution is improved, 𝐴𝑖
𝑡 

is decreased and rt
i is increased following the formulas (3.22) and (3.23) respectively.  

Step 5 (memorizing best solution so far). The best solution, so far obtained is memorized in a 

similar fashion as basic BA, according to (3.24). 

 

Step 6 (check stopping criteria). If the termination criterion is met or the maximum number of 

iterations is reached, then the algorithm is terminated. Otherwise increase the iteration number by 

1 and repeat from step 2 to step 6. 
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3.4.5 Pseudocode of MHBA:  

  

Input:  n: Number of individuals (bats) contained by the population. 

 d: Dimension of search space. 

 N_gen: Maximum number of iterations. 

 Cr: Crossover probability. 

 F: Differential weight. 

 limit: Trial limit. 

 w: Inertia weight. 

 c: Speed of sound in air. 

 C: Compensation rate for Doppler effect in echoes. 

 fmin, fmax, , , Amin, Amax, rmin, rmax,: Parameters in basic BA. 

t=0; Initialize the population and the related parameters. 

Evaluate objective function for each bat using (3.13). 

Find the best solution. 

While(t N_gen) 

 For i= 1 to n 

  Generate new solutions using (3.26) to (3.29). 

  If(rand(0,1) ri) 

   For j= 1 to d 

    If(rand(0,1) ≤ Cr ||  j== randi[1,d]) 

     Perform mutation and crossover using (3.31) 

    End If 

   End For 

  Else  

   Perform local random walk using (3.33) 

  End If Else 

  Evaluate the objective function of each individual solution using (3.13) 
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  Accept solutions using (3.34) 

  Decrease Ai using (3.22) 

  Increase ri using (3.23) 

  If tri  limit 

  Abandon ith solution and replace by a random solution, satisfying constraints 

  End If 

  Update global best solution using (3.24) 

End For 

t=t+1; 

End while 

Output: The individual with best objective value in population. 
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3.5 Results and Discussions: 

Our purpose is to perform efficient brain MRI segmentation using the proposed MHBA algorithm 

and compare the results with the basic BA. The real-patient MRI Multiple sclerosis database (MRI 

MS DB) obtained from Institute of Neurology and Genetics, Nicosia, Cyprus has been 

downloaded to be used as the database of the present work. The transverse T2-weighted MR 

images were obtained using a 1.5T whole body Philips ACS NT MR imager [57-60]. Each image 

has 8-bit representation and is of size 512x512. Hence there are L= 28= 256 gray levels in each 

image and its corresponding histogram. The MR images have been initially pre-processed to 

remove any unwanted image artifacts and noise. Then the proposed MHBA algorithm has been 

applied to 10 pre-processed MRI slices and the segmentation results have been compared with 

those obtained from applying the basic BA. 

The work has been implemented by the language of Matlab® 2015a on a personal computer with 

a 3.8 Ghz CPU, 4.00GB RAM under 32-bit Windows 7 operating system. 

 

3.5.1 Parameter Setting: 

Parameter Meaning Values 

n Number of bats in the population 50 

N_gen Number of iterations 1000 

fi Frequency of each bat [0,2] 

ri Rate of pulse emission of each bat [0,1] 

Ai Loudness of each bat [1,2] 

 Loudness decrement constant 0.9 

 Pulse rate increment constant 0.9 

Table 1: Parameters used in basic BA. 
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Parameter Meaning Values 

n Number of bats in the population 50 

N_gen Number of iterations 1000 

fi Frequency of each bat [0,2] 

ri Rate of pulse emission of each bat [0,1] 

Ai Loudness of each bat [1,2] 

 Loudness decrement constant 0.9 

 Pulse rate increment constant 0.9 

Cr Crossover probability 0.9 

F Differential weight 0.5 

limit Trial limit 150 

w Inertia weight [0,1] 

C Compensation rate for Doppler effect in 

echoes of each bat 

[0,1] 

 

Table 2: Parameters used in proposed MHBA. 

 

The number of thresholds (k) implemented in the experiments were 2, 3 and 4. Since metaheuristic 

algorithms have stochastic characteristics, each experiment was repeated 30 times for each image 

and each threshold and the average solution was considered. For one run of each image and each 

threshold, the total number of objective function evaluation is n x N_gen= 50000. One of the major 

challenges for satisfactory performance of metaheuristic algorithms is the choice of its numerous 

free parameters. In the present work, parameters as shown in Table 1 and Table 2 for BA and 

MHBA respectively, have been selected based on trial and error, and also based on some prior 

knowledge [5,7]. 

 

 

3.5.2 Qualitative and Quantitative Analysis:  
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MRI 

Slice 

Number 

K Basic BA Threshold values Proposed MHBA Threshold 

values 

09 2 [116 , 180] [92 , 182] 

3 [109 , 151 , 218] [64 , 132 , 202] 

4 [86 , 126 , 168 , 225] [70 , 120 , 164, 214] 

10 2 [118 , 185] [97 , 179] 

3 [109 , 151 , 208] [62 , 124 , 197] 

4 [88 , 131 , 172 , 227] [48 , 99 , 153 , 211] 

11 2 [121 , 200] [91 , 168] 

3 [108 , 149 , 217] [71 , 130 , 206] 

4 [94 , 133 , 172 , 222] [56 , 107 , 157 , 215] 

12 2 [124 , 190] [98 , 181] 

3 [113 , 157 , 218] [63 , 133 , 201] 

4 [91 , 134 , 172 , 225] [54 , 112 , 160 , 218] 

13 2 [120 , 186] [103 , 186] 

3 [110 , 155 , 219] [67 , 130 , 200] 

4 [91 , 136 , 174 , 219] [55 , 107 , 161 , 213] 

14 2 [122 , 183] [97 , 179] 

3 [105 , 146 , 205] [68 , 130 , 197] 

4 [89 , 132 , 170 , 209] [43 , 96 , 148 , 212] 

15 2 [123 , 212] [107 , 186] 

3 [107 , 146 , 220] [68 , 133 , 200] 

4 [89 , 131 , 170 , 225] [53 , 107 , 165 , 221] 

16 2 [119 , 210] [79 , 188] 

3 [107 , 152 , 221] [65 , 133 , 211] 

4 [85 , 125 , 168 , 224] [52 , 100 , 160 , 218] 

17 2 [121 , 201] [91 , 185] 

3 [107 , 152 , 215] [76 , 141 , 210] 

4 [77 , 118 , 168 , 216] [44 , 105 , 163 , 214] 

18 2 [119 , 205] [101, 195] 

3 [107 , 151 , 220] [64 , 140 , 211] 

4 [74 , 126 , 158 , 218] [38 , 103 , 152 , 217] 

 

Table 3: Threshold values in BA and MHBA. 
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            (a) (b) 

 (c)  (d)    (e)

 (f)  (g)  (h) 

 

Fig 3.2 (a) Original image for slice #10, (b) Histogram for slice #10 

 (c) Segmented image using BA for k=2, (d) Segmented image using BA for k=3 

 (e) Segmented image using BA for k=4, (f) Segmented image using MHBA for k=2 

 (g) Segmented image using MHBA for k=3, (h) Segmented image using MHBA for k=4 
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          (a) (b) 

 (c)  (d)  (e)

 (f)  (g)  (h) 

 

Fig 3.3 (a) Original image for slice #14, (b) Histogram for slice #14 

 (c) Segmented image using BA for k=2, (d) Segmented image using BA for k=3 

 (e) Segmented image using BA for k=4, (f) Segmented image using MHBA for k=2 

 (g) Segmented image using MHBA for k=3, (h) Segmented image using MHBA for k=4 
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             (a)  (b) 

 (c)  (d)  (e) 

 (f)  (g)  (h) 

Fig 3.4(a) Original image for slice #17, (b) Histogram for slice #17 

 (c) Segmented image using BA for k=2, (d) Segmented image using BA for k=3 

 (e) Segmented image using BA for k=4, (f) Segmented image using MHBA for k=2 

 (g) Segmented image using MHBA for k=3, (h) Segmented image using MHBA for k=4 

 

In order to quantitatively judge the quality of thresholding-based segmentation algorithms a 

validity function called the uniformity factor has been employed, which has been extensively used 

in several literatures [20,30]. This uniformity factor is given as 
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  𝑉𝑢 = 1 − 2 ∗ 𝑘 ∗
∑ ∑ (𝐼𝑖−𝜇𝑗)

2
𝑖∈𝑅𝑗

𝑘
𝑗=0

𝑁∗(𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛)
2           (3.35)  

where,  

  k  → Number of thresholds, 

  Rj → jth segmented region, 

  N → Total number of pixels in the given image, 

  Ii → Gray level of pixel i, 

  j → Mean gray level of pixels in the jth region, 

  Imax → Maximum gray level of pixels in the given image, 

  Imin → Minimum gray level of pixels in the given image. 

The value of Vu should be a positive fraction in the range [0,1]. A higher value of Vu conveys a 

high level of uniformity among the pixels of each segment of the image, thus depicting a better 

quality of thresholding. Conversely, a lower value of Vu means a worse quality of thresholding. 

 

 

MRI 

Slice 

No. 

K 

Mean  

Entropy 

Maximum  

Entropy 

Minimum  

Entropy 

St. Dev of 

Entropy 

Uniformity  

(Vu) 

BA MHBA BA MHBA BA MHBA BA MHBA BA MHBA 

09 

2 11.866 11.861 11.873 11.873 11.806 11.822 0.017 0.020 0.9796 0.9830 

3 15.497 15.526 15.564 15.564 15.351 15.458 0.047 0.028 0.9726 0.9865 

4 18.675 18.709 18.773 18.775 18.090 18.263 0.162 0.122 0.9767 0.9841 

10 

2 11.798 11.788 11.809 11.808 11.698 11.738 0.030 0.031 0.9795 0.9832 

3 15.346 15.410 15.440 15.455 15.165 15.296 0.068 0.037 0.9748 0.9875 

4 18.564 18.570 18.660 18.661 18.167 18.068 0.142 0.153 0.9773 0.9902 

11 

2 11.947 11.795 11.967 11.809 11.891 11.738 0.022 0.026 0.9801 0.9846 

3 15.631 15.668 15.703 15.692 15.503 15.568 0.058 0.028 0.9761 0.9859 

4 18.838 18.880 18.926 18.935 18.596 18.275 0.087 0.120 0.9757 0.9893 
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MRI 

Slice 

No. 

K 

Mean Entropy 
Maximum 

Entropy 

Minimum 

Entropy 

St. Dev of 

Entropy 
Uniformity (Vu) 

BA MHBA BA MHBA BA MHBA BA MHBA BA MHBA 

12 

2 11.859 11.870 11.878 11.878 11.805 11.855 0.028 0.0094 0.9804 0.9858 

3 15.617 15.584 15.638 15.638 15.432 15.525 0.061 0.030 0.9755 0.9867 

4 18.753 18.760 18.843 18.843 18.138 18.142 0.128 0.1646 0.9791 0.9883 

13 

2 11.897 11.912 11.920 11.920 11.810 11.835 0.041 0.021 0.9807 0.9844 

3 15.618 15.643 15.660 15.664 15.543 15.591 0.045 0.021 0.9755 0.9868 

4 18.855 18.887 18.949 18.957 18.677 18.817 0.066 0.047 0.9772 0.9891 

14 

2 11.865 11.866 11.867 11.867 11.864 11.865 0.001 0.001 0.9829 0.9875 

3 15.605 15.636 15.654 15.656 15.508 15.608 0.042 0.016 0.9808 0.9877 

4 18.926 18.945 18.990 18.992 18.685 18.857 0.069 0.0457 0.9809 0.9916 

15 

2 11.720 11.738 11.743 11.743 11.649 11.681 0.028 0.015 0.9830 0.9866 

3 15.442 15.466 15.495 15.496 15.278 15.445 0.056 0.012 0.9816 0.9869 

4 18.584 18.587 18.712 18.710 18.021 18.022 0.176 0.222 0.9825 0.9917 

16 

2 11.597 11.611 11.616 11.616 11.548 11.5851 0.019 0.010 0.9852 0.9873 

3 15.268 15.304 15.321 15.322 15.147 15.260 0.053 0.014 0.9832 0.9875 

4 18.433 18.510 18.587 18.5890 17.905 17.949 0.207 0.153 0.9850 0.9917 

17 

2 11.377 11.385 11.389 11.389 11.333 11.379 0.016 0.004 0.9874 0.9890 

3 15.047 15.101 15.118 15.121 14.940 15.021 0.058 0.0183 0.9864 0.9894 

4 18.137 18.196 18.338 18.352 18.816 18.855 0.182 0.216 0.9896 0.9914 

18 

2 11.203 11.213 11.215 11.215 11.148 11.197 0.014 0.0051 0.9887 0.9906 

3 14.935 14.976 14.987 14.987 14.762 14.949 0.067 0.0105 0.9877 0.9882 

4 18.054 17.985 18.178 18.202 17.770 17.824 0.138 0.134 0.9899 0.9922 

 

Table 4: Comparison of mean entropy, maximum entropy, minimum entropy, standard deviation 

of entropy and uniformity between BA and MHBA for 30 runs each with n=50, N_gen=1000. 

(The better values are written in bold.) 

 



Page | 62  
 

Table 3 shows the different threshold values in both the cases of BA and MHBA. Table 4 shows 

the comparative performance of BA and proposed MHBA algorithms for threshold k = 2, 3 and 4. 

The comparison is carried on the basis of maximization of the mean objective function i.e, mean 

entropy of the solution, standard deviation between the entropies of 30 sets of solutions for each 

image and each threshold and, most importantly, the uniformity measure of each image obtained 

at the end of the segmentation process. It is observed that in majority of the images our proposed 

MHBA algorithm outweighs the performance of basic BA. Table 5 shows this quantitatively as 

K Name of parameter % of images where MHBA performs better 

2 Mean entropy 7/10 = 70% 

Std. Deviation of entropy 6/10 = 60% 

Uniformity 10/10 = 100% 

3 Mean entropy 9/10 = 90% 

Std. Deviation of entropy 10/10 = 100% 

Uniformity 10/10 = 100% 

4 Mean entropy 9/10 = 90% 

Std. Deviation of entropy 5/10 = 50% 

Uniformity 10/10 = 100% 

 

Table 5: Performance of MHBA over 10 MRI slices. 

 

Thus, it is seen that our proposed MHBA algorithm delivers better uniformity factor for all the 

images over all the thresholds 2, 3 and 4. Moreover, as the number of thresholds increases, the 

mean entropy increases and our proposed method has higher mean entropy in comparison to basic 

BA for each threshold.  

Some representative MRI slices, along with their thresholding-based segmented versions (with 

k=2, k=3 and k=4) are displayed in Fig 3.2-3.4 for both BA and MHBA. These figures reveal that 

the proposed MHBA algorithm produces much smoother and more uniform segmentation for each 

threshold. Moreover, as the number of thresholds increases the proposed MHBA produces 

segmented images that resemble the original image more closely. The visual representation is in 
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conformation with the quantitative result shown in Table 4 with an exception to slice #18 where 

the MHBA uniformity reduces from 0.9906 for k=2 to 0.9882 for k=3 and again rises to 0.9922 

for k=4, but the values are still higher than the respective uniformity values in the case of BA. 

 

(a) 

 

(b) 
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(c) 

Fig 3.5 (a) Uniformity comparison for k=2, (b) Uniformity comparison for k=3 

    (c) Uniformity comparison for k=4 

 

For ease of visualization, Fig 3.5 graphically depicts the variation of the uniformity factor Vu 

over the 10 MRI slices, in both the cases of basic BA and the proposed MHBA, for k=2, k=3 and 

k=4. Thus, one can easily conclude that the proposed MHBA algorithm has resulted in a more 

optimal thresholding of the said MR images in comparison to basic BA, and this is evident from 

the higher values of uniformity factor that have been obtained with MHBA for each of the 10 

MRI slices under study. 

 

3.6 Conclusions 

In this chapter, a comparatively recent metaheuristic algorithm, called the Bat Algorithm (BA) 

has been studied for optimal multilevel thresholding-based segmentation of brain MR images, 

taking fuzzy entropy of image histogram as the objective function. It has been observed that the 

bat algorithm, in its basic version fails to give satisfactory segmentation results because of its 

tendency to get trapped in local optimum due to a lesser scope of exploration. Hence, in the present 

work, an attempt has been made to overcome these drawbacks by modifying the basic BA to form 

a Modified Hybridized Bat Algorithm (MHBA). MHBA has been developed by incorporating the 

concepts of mutation and crossover from Differential Evolution algorithm, which add to the 
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exploration capability of the bats and also by incorporating the concept of Doppler Effect in 

echoes, which aims to mimic the bat’s echolocation behaviour more realistically. After application 

of both basic BA and proposed MHBA for multilevel thresholding of brain MRI, it has been 

observed that MHBA results in higher value of objective function for majority of the images. 

Moreover, MHBA produces smoother segmented images having higher uniformity factor in 

comparison to basic BA. All these facts lead to the conclusion that MHBA could achieve quite a 

substantial improvement over the basic BA in terms of maximizing an objective function 

(designed on the basis of an entropy based performance criterion) and also in terms of obtaining 

higher uniformity measure (used to quantitatively denote the quality of image segmentation). 
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CHAPTER 4 

 

MICROCONTROLLER BASED COMMUNICATION SYSTEM 

FOR APPLICATIONS IN TELEHEALTH 

 

4.1 Introduction 

Telehealth is the use of telecommunication and information technologies for the delivery of 

health-related services and information. Telehealth encompasses preventative, promotive and 

curative aspects. In the context of the present work, after successfully obtaining the brain MRI 

segments, they are forwarded to a medical practitioner who may not be present at the site, for the 

purpose of proper diagnosis or prognosis of the concerned patient. Hence in this chapter, a 

dedicated microcontroller based communication system has been developed which will cater to 

the above needs and thus can be used for telehealth purposes. The benefits of this system over 

conventional emailing are manifold. Firstly, in this system stored data as well as real time data 

can be transferred within a distributed environment like a hospital or a diagnostic center making 

use of the already existing LAN infrastructure without depending on the main server, thus 

enhancing the reliability. Secondly, the LAN when connected to the internet may enable the data 

to be available even beyond the domain of LAN and from anywhere across the globe. Thirdly, 

availability of the data and the extent of security is defined by the sole discretion of the system 

designer and working personnel. And finally, the developed system also provides the user with 

the flexibility to send only those portions of the huge segmented MRI data which are of interest 

to the medical practitioner, thus making optimum use of the communication resources. 
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4.2 Overview of the present scheme 

      

Fig 4.1 Schematic block diagram of proposed scheme 

The present scheme, as shown in Fig-4.1, consists of two microcontrollers each of which is 

connected to an Ethernet shield. One microcontroller in conjunction with its Ethernet shield acts 

as a server to transmit data into the LAN. The server microcontroller, apart from its mere role as 

a server can collect data through anyone or combination of the following methods: 

(i)  Collecting real-time data through analog ports coupled with in-built ADCs. 

(ii) Collecting real-time data through Digitals ports. 

(ii) Storing data within in-built memories first and then collecting them when necessary. 

The server microcontroller first configures the Ethernet shield as a server and assigns a particular 

IP to it. Then the microcontroller sends data to the server Ethernet shield for transmitting the same 

into LAN. 

On the other side of the LAN, there is another microcontroller coupled with a separate Ethernet 

shield. This setup is called client. The Ethernet shield is configured by its associated 

microcontroller as client and another IP address is specified for this. The client shield makes a call 

to the server by floating the appropriate IP address of the server, get accesses over data and the 

received data is sent to the client microcontroller. The client microcontroller, upon receiving the 

data, can do anyone of the following things: 

(i)  Sends data through its digital ports. 
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(ii) Stores data into in-built memories. 

 

4.3 Hardware and its overview 

Each of the two microcontrollers, stated here as server microcontroller and client microcontroller, 

is basically mounted within a Mega2560 board R3 ™ with ATmega2560 processor as its heart. 

This is shown in Fig-4.2. Its technical specification is given in Table-4.1. 

 

 

 

 

 

 

Microcontroller ATmega2560 

Operating Voltage 5V 

Input Voltage 

(recommended) 
7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 54 (of which 15 provide PWM output) 

Analog Input Pins 16 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 
256 KB of which 8 KB used by 

bootloader 

  
Fig: 4.2 Fig: 4.3 

http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
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SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 

Table-4.1: Technical specification of ATmega 2560. 

The Mega 2560 can be powered via the USB connection or with an external power supply. The 

power source is selected automatically. In present case, the USB cable connected to the computer 

is used to power up the board and at the same time is utilized to program the board from PC as 

well. 

Each of the two Ethernet shields of model W5100, specified here as server shield and client shield, 

acts as an attachment of the corresponding microcontroller. This is shown in Fig-4.3. Its technical 

specification is given in Table-4.2.   

 

 

 

 

 

 

 

 

 

 

 

Table-4.2: Technical specification of W5100 Ethernet shield. 

Micro SD interface 

5V/3.3V double operational voltage level 

10Mb/100Mb Ethernet socket with POE 

All electronic brick interfaces are broken out 

Operation temperature: -40℃ ~ +85℃ 

The shield contains a number of informational LEDs: 

 PWR: indicates that the board and shield are powered 
 LINK: indicates the presence of a network link and flashes when 

the shield transmits or receives data 
 FULLD: indicates that the network connection is full duplex 
 100M: indicates the presence of a 100 Mb/s network connection 

(as opposed to 10 Mb/s) 
 RX: flashes when the shield receives data 

 TX: flashes when the shield sends data 
 COLL: flashes when network collisions are detected 
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The shield is attached with the microcontroller board with pin-to-pin plugging connection. This 

Ethernet module is connected to the network via one RJ45 cable through which actual data transfer 

takes place between the shield module and the network. 

 

4.4 Software Implementation 

A program is written in ARDUINO software environment installed on PC. This program has two 

working parts: 

(i) A part that is used to configure the Ethernet shield via the microcontroller. 

(ii) Another part that takes care of online transmission of data between microcontroller and shield 

as well as between network and shield. 

Any program in ARDUINO environment is called a sketch and structurally contains two parts: 

(i) A setup() part of sketch that defines  

  (a) The mac address of the Ethernet device. 

 (b) The IP Address, Gateway, subnet and port address that the shield has to use for  

       network access.  

      For client shield, IP Address of server is specified so that the client can search that 

      particular server. 

(ii) A loop() part of sketch that is used 

 (a) At the server end to check if any client is connected and available.  

1. If the client is available and connected, character stream is received from client. 
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2. If a newline character followed by a blank line is received, a standard http  

    request is sent to the client. 

3. A stream of data is sent to the client followed by a particular terminating 

    character (‘%’ is used in present case). 

4. The client is disconnected. 

5. A small delay (1 ms in present case) is introduced at the end to offer a tolerance 

    in time for accessing the data from the client end.  

 The loop will be repeated. 

 (b) At the client end to check if the particular server is connected. 

  1. If the particular server is available, the client reads the data from server. 

  2. The data with particular terminating character (‘%’ in present case) is received 

                            and displayed through serial monitor of the PC connected to the client. 

 The loop will be repeated. 

 

4.5 Experimental Results 

The work has been conducted in the store-and-forward mode in three stages. First the linear 

indices of the segmented binary images have been extracted and compiled as a text file. This text 

file is then transmitted by the proposed communication scheme and finally the original image has 

been reconstructed. The extraction and reconstruction has been done with the help of simple 

MATLAB® programs. 

The server containing microcontroller and Ethernet shield under actual working condition is 

shown in Fig-4.4. 
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The client containing microcontroller and Ethernet shield under actual working condition and 

connected to PC is shown in Fig-4.5. An exaggerated view of the microcontroller and the Ethernet 

shield with PC-USB cable terminal and RJ45 cable terminal is shown in Fig-4.6. The arrangement 

collects data from LAN and transmits them serially to the PC. Finally, the data is displayed in the 

monitor of the PC. The entire arrangement at the client end with real time display of data is shown 

in Fig-4.7 and 4.8.  

. 

    

 

After receiving the data points, the images have been reconstructed. The reconstruction results 

have been shown in Fig 4.9. 

 

 

Fig: 4.4 Fig: 4.5 Fig: 4.6 

Fig: 4.7 Fig: 4.8 
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Fig 4.9 1st column: Sent segmented images 

 2nd column: Received segmented images   

 

4.6 Conclusions 

In this chapter a microcontroller based communication system has been devised which is capable 

of online transmission of the segmented binary images for applications in telehealth. The 

advantage of the present work using LAN as the medium of transmission of data is manifold and 

has far-reaching consequences. The data, once collected from patient at test center, is fed to a 

server microcontroller that transmits it eventually through the existing infrastructure of network 

anywhere within the premises of a particular hospital or diagnostic center. The doctor or an 

appropriate person having expertise in the related field with a capability of supervising the 

condition of the patient can have an access over the test data of the patient at any point of time 
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from any position within the domain of the network without being present physically at the site of 

investigation. The client apparatus being portable may be carried easily across the premises and 

consequently be connected to a PC or laptop for accessing the data. This also reduces the delay in 

propagation of information by any other means which otherwise may be detrimental to the 

condition of the patient. The online availability of the data from managerial or administrative level 

may enable them to process the data from other angles suitable for arranging and running the 

system appropriately. Moreover, the data prevailing in the network may be uploaded beyond the 

domain of the intra-network of the organization by the main server as a result of which, the data 

could be accessed outside the network, anywhere across the globe via internet. However, this 

method of launching data beyond the existing network of the organization has not been 

implemented although the promise of such possibility is evident from the experience on outcome 

of the experiment. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

In this thesis, some image processing techniques have been studied for the purpose of obtaining 

satisfactory segmentation of MR images of the human brain. The image processing techniques 

under study encompasses two distinct methods. The first method is a mathematical morphology 

aided image enhancement technique, followed by fuzzy clustering as discussed in Chapter 2. The 

second method is a comparatively recent metaheuristic algorithm i.e., the Bat Algorithm (BA) 

utilized for optimal multilevel thresholding, as discussed in Chapter 3. Moreover, in Chapter 4, a 

microcontroller based communication system has been developed which enables the user to 

transfer the required segmented images to an offsite medical practitioner according to his/her 

needs.  

In Chapter 2, the proposed image enhancement technique based on the concepts of mathematical 

morphology, coupled with Fuzzy C-means (FCM) clustering have resulted in a better 

segmentation of the brain MR images in comparison to the case where FCM is directly applied to 

the raw, unprocessed MR images. This is evident from the better values of partition coefficient 

and partition entropy which have been selected as the cluster validity functions.  

In Chapter 3, the bat algorithm in its basic form has been applied to obtain multilevel optimal 

thresholding-based segmentation of the brain MR images. Fuzzy entropy of the image histogram 

has been chosen as the objective function. Due to unsatisfactory performance of this basic BA, a 

venture has been made in order to develop a Modified Hybridized Bat Algorithm (MHBA) which 

has increased the exploration capability of the solutions in the multi-dimensional search space and 

resulted in more optimally thresholded MR images. Thus, better values have been obtained for 

both the objective function as well as the uniformity measure, on application of MHBA.  

Finally, in Chapter 4, the binary image segments obtained from the methods discussed in Chapter 

2 and 3, have been transmitted from the source computer to a destination computer with the help 
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of a microcontroller based communication system, utilizing the existing LAN. This has been done 

for potential applications in the domain of telehealth.  

 

5.2 Future scope of work  

The future scopes of work are many and spans a variety of applications. The proposed image 

segmentation methods can be studied and adopted for a wide range of medical images apart from 

brain MRI, as well as for various other types of images. A different combination of the 

morphological operators involving a variety of structuring elements, differing in size and shape 

can also be brought under the scope of further study for the purpose of image enhancement. Other 

recent metaheuristics algorithms like the Firefly Algorithm (FA), Cuckoo Search (CS) algorithms 

etc. may also be studied as a means of achieving optimal multilevel thresholding-based 

segmentation of the images. Additionally, the entire concept of these segmentation techniques can 

be applied to 1-D signals as well. Moreover, in case of the proposed communication system, an 

attempt can be made to practically implement the concept of data transmission beyond the domain 

of LAN. There is also a scope of real time data transfer which can be further investigated 

employing the proposed microcontroller based communication method. 

 

 


