

Occurs due to $\triangle T$

$W=\int_{1}^{2} p d V \quad$ (Only for Reversible processes
The piston/cylinder arrangement shown in Fig. P4.51 contains carbon dioxide at 300 KPa and $100^{\circ} \mathrm{C}$ with a volume of $0.2 \mathrm{~m}^{3}$. Weights are added to the piston such that the gas compresses according to the relation $P V \underline{1.2}=$ constant to a final temperature of $200^{\circ} \mathrm{C}$. Determine the work done during the process.


$P V^{n}=c \Rightarrow p=C V^{-n} \quad$ canst. $\left.\quad 8.315=0.189 \mathrm{~kJ} \quad \mathbf{c m}\right)$
Polytropic process:

$$
W_{2}=\int_{1}^{2} p d v=\int_{1}^{2} C V^{-n} d V \quad\left\{\begin{array}{l}
R_{c o l} \\
R_{n}=8.315 \mathrm{~kJ} \mathrm{kmi/k}
\end{array}\right.
$$

$$
=\left.\frac{C V^{-n+1}!}{-n+1}\right|_{1} ^{2}=\left.\frac{p V}{-n+1}\right|_{1} ^{2}=\frac{p_{2} V_{2}-p_{1} V_{1}}{-n+1}
$$

$$
\begin{aligned}
& R_{c o s_{2}}=\frac{8.315}{44}=0.189 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{k}} \\
& R_{n}=8.315 \underbrace{\mathrm{kmol} / \mathrm{kJ}} \text { Ideal Gas } \\
& \underbrace{p V=n R_{u} T}
\end{aligned}
$$

or $P V=M R T$
$R=$ Specific Gas Constant

$$
R_{\text {air }}=\frac{8.315}{M_{\text {air }}}=\frac{8.315}{28.8}=0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
R_{1}=\frac{R_{u}}{M}
$$

$1 m^{3} \mathrm{f}$ Air at 10 bar $\& 600 \mathrm{~K}$,

$$
m=\frac{10 \times 1 \phi \varphi \times 1}{0.287 \times 69 \phi} \quad \mathrm{kj}=
$$

$$
W_{1}=\frac{0.851 \times 0.189(373-473)}{1.2-1}
$$

$$
=-80 \cdot 42
$$

Find $p_{2}, v_{2}$

$$
P V=m R T
$$

$$
p V^{1.2}=c
$$

For polytropic processes

$$
p V=m R T \text { - ideal gas equ. }
$$

$$
p V^{n}=C \quad \text { - Process description }
$$

(A)

$$
V_{1}^{n-1} T_{1}=V_{2}^{n-1} T_{2}
$$

$$
\begin{equation*}
\therefore\left(p_{1} V_{1}^{n}=P_{2} V_{2}^{n}\right) \tag{B}
\end{equation*}
$$

$$
\text { or } \frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n-1}
$$

Also $\left(\frac{V_{1}}{V_{2}}\right)^{n}=\left(\frac{p_{2}}{p_{1}}\right) \quad\left(\because p V^{n}=c\right)$

$$
\begin{gathered}
\left(\frac{V_{1}}{V_{2}}\right)^{\frac{n-1}{}}=\left(\frac{p_{2}}{p_{1}}\right)^{n-} \\
p v^{n}=C \\
b^{\frac{1}{n}} V=D
\end{gathered}
$$




A balloon behaves so that the pressure is $P=$ $C_{2} V^{1 / 3}$ and $C_{2}=100 \mathrm{kPa} / \mathrm{m}$. The balloon is blown up with air from a starting volume of $1 \mathrm{~m}^{3}$ to a volume of $3 \mathrm{~m}^{3}$. Find the final mass of air, assuming it is at $25^{\circ} \mathrm{C}$, and the work done by the air.

## $W=F \times$ displ.

Here, we should be careful to interpret what we mean by "work done by air." If we simply calculate $W=\int p d V$, we get an answer of +250 kJ But then the question is work done by which air? Since there is mass of air entering into the balloon, we need to clearly delineate what our system is. After you have done the calculations you will realize that initially, the balloon has 1.17 kg of air, and the final mass of air inside the balloon is 5.05 kg , meaning that 3.88 kg the baloon is.05 kg, emaning that 3.8 kgg
has entered the balloon in the erocess. so our Final condr. $T_{2}=298 \mathrm{~K}$.
1.17 kg of air, and the final mass of air inside the balloon is 5.05 kg , meaning that 3.88 kg has entered the balloon in the process. So our system here is a given mass of air ( 5.05 kg ), which initially occupies $1 \mathrm{~m}^{3}$ (the balloon) + $3.31 \mathrm{~m}^{3}$ (the air outside the balloon, identified by a hypothetical system boundary). The task here is to compress this entire volume into 3 $\mathrm{m}^{3}$. The system boundary therefore shrinks from $4.31 \mathrm{~m}^{3}$ to $3 \mathrm{~m}^{3}$. The boundary pressure is 100 kPa (since it remains outside the balloon). Hence the work done is $W=100 \times(3-4.31)$ $\mathrm{kJ}=-131 \mathrm{~kJ}$. This negative work means the work you need to push the air insidgthe balloon.

$$
p_{1}=100 \times 1=100 \mathrm{kPn}
$$

$$
\text { F Final comdr. } \quad T_{2}=298 \mathrm{~K}
$$



$$
\begin{aligned}
V_{\text {outbid }} & =\frac{3.88 \times 0.287 \times 298}{100} \\
& =3.31 \mathrm{~m}^{3} \\
W & =p_{0} \times \Delta V \\
& =100 \times(3-4.31) \\
& =-131 \mathrm{~kJ}
\end{aligned}
$$


Boundary work

$\int p d V$


Find $T_{1}, T_{2}, T_{3} \leftarrow$

A 400-L Lank. A (see Fig. P4. 3 2). contains argon gas at 250 kPa and 30 C . Cylinder $B$, hawing a frictionless piston of such mass that a pressure of 150 KPa will flat it. is is initially empty. The value is opened and argon flows into $B$ and eventually reaches uni. form state of 150 kPa and $30^{\circ} \mathrm{C}$ throughout. What is the work done by the argon?



