Problem Sheet 4b: $\mathbf{2 ~}^{\text {nd }}$ Law (from van Wylen and Sonntag, 6 $^{\text {th }}$ Ed.)

7.54 A temperature of about 0.01 K can be achieved by magnetic cooling. In this process a strong magnetic field is imposed on a paramagnetic salt, maintained at 1 K by transfer of energy to liquid helium boiling at low pressure. The salt is then thermally isolated from the helium, the magnetic field is removed, and the salt temperature drops. Assume that 1 mJ is removed at an average temperature of 0.1 K to the helium by a Carnot-cycle heat pump. Find the work input to the heat pump and the coefficient of performance with an ambient at 300 K .
7.55 The lowest temperature that has been achieved is about $1 \times 10^{-6} \mathrm{~K}$. To achieve this an additional stage of cooling is required beyond that described in the previous problem, namely, nuclear cooling. This

- process is similar to magnetic cooling, but it involves the magnetic moment associated with the nucleus rather than that associated with certain ions in the paramagnetic salt. Suppose that $10 \mu \mathrm{~J}$ is to be removed from a specimen at an average temperature of $10^{-5} \mathrm{~K}$ (10 microjoules is about the potential energy loss of a pin dropping 3 mm). Find the work input to a Carnot heat pump and its coefficient of performance to do this assuming the ambient is at 300 K .
7.61 A thermal storage device is made with a rock (granite) bed of $2 \mathrm{~m}^{3}$ that is heated to 400 K using solar energy. A heat engine receives a Q_{H} from the bed and rejects heat to the ambient surroundings at 290 K . The rock bed therefore cools down, and as it reaches 290 K the process stops. Find the energy the rock bed can give out. What is the heat engine efficiency at the beginning of the process, and what is it at the end of the process?

$$
\text { Consider } \rho=2750 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{c}=0.89 \mathrm{~kJ} / \mathrm{kgK}
$$

FIGURE P7. 61
7.64 A heat pump is driven by the work output of a heat engine as shown in Figure P7.64. If we assume ideal devices, find the ratio of the total power $\dot{Q}_{L 1}+\dot{Q}_{H 2}$ that heats the house to the power from the hot energy source $\dot{Q}_{H 1}$ in terms of the temperatures.

FIGURE P7.64
7.68 A refrigerator uses a power input of 2.5 kW to cool a $5^{\circ} \mathrm{C}$ space with the high temperature in the cycle as $50^{\circ} \mathrm{C}$. The Q_{H} is pushed to the ambient air at $35^{\circ} \mathrm{C}$ in a heat exchanger where the transfer coefficient is $50 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Find the required minimum heat transfer area.
7.73 A house is cooled by an electric heat pump using the outside as the high-temperature reservoir. For several different summer outdoor temperatures, estimate the percent savings in electricity if the house is kept at $25^{\circ} \mathrm{C}$ instead of $20^{\circ} \mathrm{C}$. Assume that the house is gaining energy from the outside in direct proportion to the temperature difference, as in Eq. 7.17.

FIGURE P7.73
7.75 An air conditioner cools a house at $T_{L}=20^{\circ} \mathrm{C}$ with a maximum of 1.2 kW power input. The house gains energy as $\dot{Q}=0.6\left(T_{H}-T_{L}\right)[\mathrm{kW}]$ and the refrigeration COP is $\beta=0.6 \beta_{\text {CARNOT. }}$. Find the maximum outside temperature, T_{H}, for which the air conditioner unit provides sufficient cooling.
7.76 A Camot heat engine, shown in Fig. P7.76 receives energy from a reservoir at $T_{\text {res }}$ through a heat exchanger where the heat transferred is proportional to the temperature difference as $\dot{Q}_{H}=K\left(T_{\text {res }}-T_{H}\right)$. It rejects heat at a given low temperature T_{L}. To design the heat engine for maximum work output, show that the high temperature, T_{H}, in the cycle should be selected as $T_{H}=\left(T_{L} T_{\text {res }}\right)^{1 / 2}$.

7.78 An ideal-gas Camot cycle with air in a piston cylinder has a high temperature of 1200 K and a heat rejection at 400 K . During the heat addition, the volume triples. Find the two specific heat transfers (q) in the cycle and the overall cycle efficiency.
7.86 A combination of a heat engine driving a heat pump (see Fig. P7.86) takes waste energy at $50^{\circ} \mathrm{C}$ as a source $Q_{w l}$, to the heat engine rejecting heat at $30^{\circ} \mathrm{C}$. The remainder, $Q_{\mathrm{m} 2}$, goes into the heat pump that delivers a Q_{H} at $150^{\circ} \mathrm{C}$. If the total waste energy is 5 MW , find the rate of energy delivered at the high temperature.

FIGURE P7.86

