Change a few old habits

Change of a few old habits

Quantity	Earlier we used	Now we will use
Energy (Heat, Work, stored energ	e) 1cu = 4·186 J	kJ, kCol 1 kCol = 4.186 kCol
Sp Heat (mass basis)	Cd/g°C J/g°C	kCd/kg.K KJ/KJ-K
Sp. Heat (mole basis)	Cal/ganul.oc J/g mul.oc	kJ/kmol.K kCal/kmol.K
Molecular at. Molecular mass	9/ms1	kg/kmol
Ru	8.315 J/gmole°C	8.315 KJ/kms/K
No of molecules	gram mole (= 6°023×10 ^{2°3} moleculus)	kilo mole « k male (6.023×10 ²⁶ mole cules)

* Do not write °K. It's simply K for Kelvin

* 1 kmole of an ideal gas occupies 22.4 m³ volume at STP (equivalent to 1 gan mol. of the ideal gas occupying 22.4 lit at STP)

We will also use a species specific gas constant.

$$R = \frac{Ru}{M_{\omega}} = \frac{8.315 \text{ kg/kmol K}}{M_{\omega} \text{ kg/kmol}} = \left(\frac{8.315}{M_{\omega}}\right) \frac{\text{kJ}}{\text{kK}}$$

Thus
$$R_{02} = \frac{8.315}{32} = 0.26 \frac{kJ}{lg.k}$$
 (No need to remember these $R_{H2} = \frac{8.315}{2} = 4.1575 \, kJ/g.k$ Values $R_{N2} = \frac{8.315}{28} = 0.297 \, kJ.kg.k$

Q. What is the Rair?

Air is not a molecule, but a mixture. Despite we arign a molecular wt. of air, and a molecular weight

A) Air composition: 102+3.76 N2 < REMEMBER (molar basis)

$$M_{Air} = \frac{1 \times 32 + 3.76 \times 28}{(total no 4 kmolus)} \frac{kg}{kmal}$$

$$= \frac{137.28}{4.76} = \frac{28.84}{k9/kmal}$$

No need to remember as long as you can do this algobra

$$R_{\text{oir}} = \frac{R_{\text{u}}}{M_{\text{oir}}} = \frac{8.315}{28.84} = 0.288 \quad (a4) \text{ prox}$$

Not mande torn