Properties of Steam

Heating of water at constant pressure

The p-v diagram

The Dryness Factor

$$
x=\frac{m_{\mathrm{vapor}}}{m_{\mathrm{liquid}}+m_{\mathrm{vapor}}}
$$

- Sp. Volume change:

$$
v=(1-x) v_{\mathrm{f}}+x v_{\mathrm{g}}=v_{\mathrm{f}}+x\left(v_{\mathrm{g}}-v_{\mathrm{f}}\right)
$$

- Sp. Internal Energy and Enthalpy changes

$$
\begin{aligned}
& u=(1-x) u_{\mathrm{f}}+x u_{\mathrm{g}}=u_{\mathrm{f}}+x\left(u_{\mathrm{g}}-u_{\mathrm{f}}\right) \\
& h=(1-x) h_{\mathrm{f}}+x h_{\mathrm{g}}=h_{\mathrm{f}}+x\left(h_{\mathrm{g}}-h_{\mathrm{f}}\right)
\end{aligned}
$$

Any specific property: $y=y_{f}+x y_{f g}$

The T-v and p-v diagrams

Subcooled liquid is also called the "Compressed Liquid"

Steam Table

$$
\begin{aligned}
& f=\text { saturated liquid }(x=0) \\
& g=\text { saturated vapor }(x=1)
\end{aligned}
$$

- Saturation Table: Temperature Table

TABLE A-2 Properties of Saturated Water (Liquid-Vapor): Temperature Table

Temp. ${ }^{\circ} \mathrm{C}$	Press. bar	Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy $\mathrm{kJ} / \mathrm{kg}$		Enthalpy $\mathrm{kJ} / \mathrm{kg}$			Entropy $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		Temp. ${ }^{\circ} \mathrm{C}$
		Sat. Liquid $v_{\mathrm{f}} \times 10^{3}$	Sat. Vapor v_{g}	Sat. Liquid u_{f}	Sat. Vapor u_{g}	Sat. Liquid h_{f}	Evap. h_{fg}	Sat. Vapor h_{8}	Sat. Liquid s_{f}	Sat. Vapor s_{g}	
. 01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	. 01
4	0.00813	1.0001	157.232	16.77	2380.9	16.78	2491.9	2508.7	0.0610	9.0514	4
5	0.00872	1.0001	147.120	20.97	2382.3	20.98	2489.6	2510.6	0.0761	9.0257	5
6	0.00935	1.0001	137.734	25.19	2383.6	25.20	2487.2	2512.4	0.0912	9.0003	6
8	0.01072	1.0002	120.917	33.59	2386.4	33.60	2482.5	2516.1	0.1212	8.9501	8
90	. 7014	1.0360	2.361	376.85	2494.5	376.92	2283.2	2660.1	1.1925	7.4791	90
95	. 8455	1.0397	1.982	397.88	2500.6	397.96	2270.2	2668.1	1.2500	7.4159	95
100	1.014	1.0435	1.673	418.94	2506.5	419.04	2257.0	2676.1	1.3069	7.3549	100
110	1.433	1.0516	1.210	461.14	2518.1	461.30	2230.2	2691.5	1.4185	7.2387	110
360	186.5	1.8925	0.006945	1725.2	2351.5	1760.5	720.5	2481.0	3.9147	5.0526	360
374.14	220.9	3.155	0.003155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298	374.14

Properties of saturated liquid at $0.01^{\circ} \mathrm{C}$ are taken as reference

Steam Table

$$
\begin{aligned}
& f=\text { saturated liquid }(x=0) \\
& g=\text { saturated vapor }(x=1)
\end{aligned}
$$

- Saturation Table: Pressure Table

TABLE A-3 Properties of Saturated Water (Liquid-Vapor): Pressure Table

Press. bar	Temp. ${ }^{\circ} \mathrm{C}$	Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy $\mathrm{kJ} / \mathrm{kg}$		Enthalpy $\mathrm{kJ} / \mathrm{kg}$			Entropy $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		Press. bar
		Sat. Liquid $v_{\mathrm{f}} \times 10^{3}$	Sat. Vapor v_{8}	Sat. Liquid u_{f}	Sat. Vapor u_{g}	Sat. Liquid h_{f}	Evap. h_{fg}	Sat. Vapor h_{8}	Sat. Liquid s_{f}	Sat. Vapor S_{8}	
0.04	28.96	1.0040	34.800	121.45	2415.2	121.46	2432.9	2554.4	0.4226	8.4746	0.04
0.06	36.16	1.0064	23.739	151.53	2425.0	151.53	2415.9	2567.4	0.5210	8.3304	0.06
0.08	41.51	1.0084	18.103	173.87	2432.2	173.88	2403.1	2577.0	0.5926	8.2287	0.08
0.10	45.81	1.0102	14.674	191.82	2437.9	191.83	2392.8	2584.7	0.6493	8.1502	0.10
0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7	0.8320	7.9085	0.20
0.90	96.71	1.0410	1.869	405.06	2502.6	405.15	2265.7	2670.9	1.2695	7.3949	0.90
1.00	99.63	1.0432	1.694	417.36	2506.1	417.46	2258.0	2675.5	1.3026	7.3594	1.00
1.50	111.4	1.0528	1.159	466.94	2519.7	467.11	2226.5	2693.6	1.4336	7.2233	1.50
200.	365.8	2.036	0.005834	1785.6	2293.0	1826.3	583.4	2409.7	4.0139	4.9269	200.
220.9	374.1	3.155	0.003155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298	220.9

Superheated Steam

Table C-3 (Continued)

$\begin{aligned} & P, \mathrm{MPa} \\ & \left(T_{\text {sat }}{ }^{\circ} \mathrm{C}\right) \end{aligned}$							Temperature ${ }^{\circ} \mathrm{C}$						
		150	200	250	300	350	400	450	500	550	600	700	800
1	$v, m^{3} / k_{k}$		0.2060	0.2327	0.2579	0.2825	0.3066	0.3304	0.3541	0.3776	0.4011	0.4478	0.4943
(179.9)	$u, \mathrm{~kJ} / \mathrm{kg}$		2621.9	2709.9	2793.2	2875.2	2957.3	3040.2	3124.3	3209.8	3296.8	3475.4	3660.5
	$h, \mathrm{~kJ} / \mathrm{kg}$		2827.9	2942.6	3051.2	3157.7	3263.9	3370.7	3478.4	3587.5	3697.9	3923.1	4154.8
	$s, \mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}$		6.6948	6.9255	7.1237	7.3019	7.4658	7.6188	7.7630	7.8996	8.0298	8.2740	8.5005
1.5	$\mathrm{v}, \mathrm{m}^{3} / \mathrm{kg}$		0.1325	0.1520	0.1697	0.1866	0.2030	0.2192	0.2352	0.2510	0.2668	0.2981	0.3292
(198.3)	$u \mathrm{~kJ} / \mathrm{kg}$		2598.1	2695.3	2783.1	2867.6	2951.3	3035.3	3120.3	3206.4	3293.9	3473.2	3658.7
	$h, \mathrm{~kJ} / \mathrm{kg}$		2796.8	2923.2	3037.6	3147.4	3255.8	3364.1	3473.0	3582.9	3694.0	3920.3	4152.6
	$s, \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$		6.4554	6.7098	6.9187	7.1025	7.2697	7.4249	7.5706	7.7083	7.8393	8.0846	8.3118
							$\mathrm{h}(\mathrm{p}$	$=1 \mathrm{MF}$	$t, T=$	50°	$=31$	7.7	J / kg
$\mathrm{h}\left(\mathrm{p}=1.5 \mathrm{MPa}, \mathrm{T}=350^{\circ} \mathrm{C}\right)=3147.4 \mathrm{~kJ} / \mathrm{kg}$													
$\mathrm{h}\left(\mathrm{p}=1.4 \mathrm{MPa}, \mathrm{T}=350^{\circ} \mathrm{C}\right)=3157.7+(3147.7-3157.7)^{*}(0.4 / 0.5)$													
$=3149.7(\mathrm{~kJ} / \mathrm{kg})$													

Compressed Liquid

Table C-4 Compressed Liquid

T	$P=5 \mathrm{MPa}$ (263.99)				$P=10 \mathrm{MPa}$ (311.06)			
	v	u	h	s	v	u	h	s
0	0.0009977	0.04	5.04	0.0001	0.0009952	0.09	10.04	0.0002
20	0.0009995	83.65	88.65	0.2956	0.0009972	83.36	93.33	0.2945
40	0.0010056	166.95	171.97	0.5705	0.0010034	166.35	176.38	0.5686
60	0.0010149	250.23	255.30	0.8285	0.0010127	249.36	259.49	0.8258
80	0.0010268	333.72	338.85	1.0720	0.0010245	332.59	342.83	1.0688
100	0.0010410	417.52	422.72	1.3030	0.0010385	416.12	426.50	1.2992
120	0.0010576	501.80	507.09	1.5233	0.0010549	500.08	510.64	1.5189

- Similar to the format of the superheated vapor table
- In general, properties are not sensitive to pressure, therefore, can treat the compressed liquid as saturated liquid at the given TEMPERATURE.
- Given: P and T: $v \cong v_{f @ T}, u \cong u_{f @ T}, S \cong S_{f @ T}$
- But not h, since $h=u+p v$, and it depends more strongly on p. It can be approximated as $\quad h \cong h_{f @ T}+v_{f}\left(p-p_{s a t}\right)$

Is Steam an Ideal Gas?

Only if the degree of superheat exceeds a certain value, or when the pressure is very low

Percentage of error
($\left[\mid v_{\text {table }}-v_{\text {ideal }} / / V_{\text {table }}\right] \times 100$)
involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.

Steam Chart: Mollier Diagram

- Plots h (kJ/kg) along the y axis and $s(\mathrm{~kJ} / \mathrm{kgK})$ along the x axis
- Difference of y in a process directly provides the work done in a turbine or work consumed in a compressor/ pump

engineeringtoolboxcom

Sample problems

4. 4 kg of steam at $x=0.5$ and $p=6$ bar is heated so that it becomes a (a) 0.95 dry at constant pressure; (b) dry saturated at constant pressure; (c) superheated to 300 ${ }^{\circ} \mathrm{C}$ at 6 bar , (d) Superheated to 250 degree of superheat at 6 bar. Find the heat added in each case.
