$$
\text { For a Cycle: } \oint \delta \varphi=\oint \delta W
$$

$$
\text { or } \sum Q=\sum w
$$

For a nonfloa process: $\quad \delta \varphi-\delta W=d E=d\left(U+\frac{1}{2} m c^{2}+m g h\right)$
(per unit mas)) or $\delta q-\delta w=d e=d\left(u+\frac{1}{2} c^{2}+\underline{g h}\right) \quad[k J]$

$$
\delta q-\delta \omega=d u \quad(i f K E, P E \approx O)
$$

or

$$
\begin{aligned}
Q-W & =E_{2}-E_{1} \\
\text { or } \quad Q-W & =U_{2}-U_{1} \quad(\text { if } K E \& P \approx 0) \quad[K J]
\end{aligned}
$$

porunitmass $q-z=u_{2}-u_{1}$
or

$$
\frac{d}{d t}\left(c^{2}\right)=2 c \frac{d c}{\frac{d t}{=}}=2 c a
$$

$$
\dot{Q}-\dot{W}=\frac{d E}{d t}=\frac{d}{d t}\left[U+\frac{1}{2} m C^{2}+\frac{m g z}{\underline{ }}\right] \quad[k W]
$$

$$
\text { or } \quad \dot{Q}-\dot{W}=\frac{d u}{d t}+\frac{1}{2} m \frac{d}{d t}\left(c^{2}\right)+m g \frac{d z}{d t}
$$

$$
=\frac{d U}{d t}+\frac{d}{d t}\left(\frac{1}{2} m c^{2}\right)+\frac{d}{d t}(m g z)
$$

$$
\begin{gathered}
\text { rated } \\
\text { chary } \\
\text { internal } \\
\text { entry }
\end{gathered}
$$

Conser ration 1 energy statement

A vertical piston-cylinder has a linear spring mounted so that at zero cylinder volume, the balancing pressure inside the cylinder is zero. The cylinder is charged with 0.25 kg of air at 500 kPa and 300 K . Heat is now added so that the volume doubles. Show the process on the p-V diagram. Also find (i) the final pressure and temperature, and (ii) the work done and heat transfer.

$$
\begin{aligned}
V_{1} & =\frac{m R_{\text {air }} T}{P_{1}} \\
& =\frac{0.25 \times 0.287 \times 300}{500} \\
& =0.043 \mathrm{~m}^{3}
\end{aligned}
$$

$$
W=\frac{1}{2}(500+1000) \times\left(2 V_{1}-V_{1}\right)=750 \times 0.043=32.25 \mathrm{~kJ}
$$

$$
Q-W=\Delta U \Rightarrow Q=\Delta U+W
$$

 the other side contains He gas at different states as shown in the figure. The two chambers are separated by a conducting Copper wall that is held in its position by a pin. Find the

$$
\begin{aligned}
\Delta U & =M C_{v} \times \Delta T \\
& =0.25 \times 0.718 \times(1200-900) \\
& =161.43 \mathrm{~kJ} \\
C_{v} & =\frac{R}{k-1}=\frac{0.287}{1.4-1}=0.718 \frac{\mathrm{~kJ}}{\operatorname{lgK}}
\end{aligned}
$$

$$
\begin{aligned}
& T_{0} \text { find } T_{2} \Rightarrow \quad \frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \\
& \Rightarrow T_{2}=4 T_{1}=1200 \mathrm{~K} \\
& \therefore Q=(161.43+32.25)=193.7 \mathrm{~kJ} \\
& \begin{array}{l}
=0.25 \times 0.718 \times(1200-900) \\
=161.43 \mathrm{~kJ}
\end{array} \\
& C_{0}=\frac{R}{k-1}=\frac{0.287}{1.4-1}=0.718 \frac{\mathrm{~kJ}}{\mathrm{~kg} k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Rake } 1 \text { Heat transfer) - (Rad of Work done) }=\begin{array}{l}
\text { Rate } 1 \text { chang } 1+\text { Rate } 1 \text { change }+ \text { Rate } y \text { Chnnp } \\
\text { Indernd Energy }
\end{array} \\
& \text { Internal Energy I Kinetic potential } \\
& \text { Energy Every }
\end{aligned}
$$

1
An insulated cylinder is divided into two parts. One side of the cylinder contains N_{2} gas and the other side contains He gas at different states as shown in the figure. The two chambers are separated by a conducting Copper wall that is held in its position by a pin. Find the final temperature and pressure of each chamber if (a) the copper wall is held in position by the pin, and if (b) the pin is removed.

$$
n_{A}=\frac{P_{I A} V_{1 A}}{R_{U} T_{I A}} \times
$$

(B)

$$
=\frac{500 \times 1}{8.315 \times 353}
$$

$$
\begin{align*}
& V_{1 B}=1 \mathrm{m3} \tag{A}\\
& P_{1 B}=500 \mathrm{kP} P_{G} \\
& T_{1 B}=298 \mathrm{~K} \\
& M_{B}=4 \\
& M_{B}=\frac{P_{1 B} V_{I B}}{R_{H C} T_{I B}}=0.807
\end{align*}
$$ system, let us apply the first low

$$
\begin{aligned}
& Q-W=\Delta U \quad(k f \approx P f \\
& Q=O(\text { insulated }) \\
& W=O \quad[\text { Rigid cylinder }] \\
& \Delta U=O \\
& \Delta U U_{A}+\Delta U_{B}=0
\end{aligned}
$$

$V_{1-\bar{A}} 1 \mathrm{~m}^{3}$

$$
=0.17 \mathrm{kmol} .
$$

$P_{\text {IE }}=500 \mathrm{kPa}$
$T_{1 A}=353 \mathrm{~K}$
$M_{\bar{A}}=28$

$R_{N_{2}}=\frac{8.315}{28}=0.297 \frac{\mathrm{~kJ}}{\mathrm{~kJ}}$

$$
C_{V_{N_{2}}}=\frac{R_{N_{2}}}{\gamma-1}=0.742
$$

$m_{A} C_{V_{A}}\left(T_{A 2}^{T}-T_{A 1}\right)+m_{B} C_{B}\left(T_{B_{2}}-T_{B 1}\right)=0$

$$
T_{A 2}=T_{B 2}=T_{f}
$$

$$
\Rightarrow \quad M_{A} C_{U A} T_{f}+m_{B} C_{U B} T_{f}=m_{A} C_{U A} T_{A 1}+m_{B} C_{U B} T_{B 1}
$$

$\begin{aligned}\left(N_{2}\right) & P_{A f}=\frac{m_{A} R_{A} T_{f}}{V_{A}}=\frac{4.77 \times 0.297 \times 330.2}{1}=\frac{467 \mathrm{kPh}}{} \\ = & \end{aligned}$
nan not changed
(He) $P_{B F}=\frac{m_{B} R_{B} T_{f}}{V_{B}}=\frac{0.807 \times 2.078 \times 330.2}{1}=553.7 \mathrm{kPa}$
*

$$
\Delta U_{A} \neq \Delta U_{B}=0
$$

Part 2

$$
\begin{aligned}
& n=n_{A}+n_{B}=0.371 \\
& \rightarrow p V=n R T \\
& P_{f}\left(v_{A}+v_{b}\right)=0.371 \times 8.315 \times 330.211 \\
& p_{f}=\frac{0.371 \times 8.315 \times 330.2}{2}=\underline{\underline{509.3} \mathrm{kPa}} \\
& p_{2 A^{2}}{ }^{2}=P_{3}\left(N_{3}\right)^{2} \\
& v_{2}
\end{aligned}
$$

$$
\frac{\left.P_{2 A}\right)\left(V_{2 A}\right)}{T_{2 \pi}}=\frac{P_{3 \pi} \frac{V_{3 A}}{y_{3 A}}}{1 / 3}
$$

Repeat the problem with this condition:
The intervening Copper plate is suddenly ruptured

Find T_{f}, P_{f}
9. A tank has a volume of $1 \mathrm{~m}^{3}$ with oxygen at $15^{\circ} \mathrm{C}, 300 \mathrm{kPa}$. Another tank contains 4 kg oxygen at $60^{\circ} \mathrm{C}, 500$ kPa . The two tanks are connected by a pipe and valve that is opened, allowing the whole system to come to a single equilibrium state with the ambient at $20^{\circ} \mathrm{C}$. Find the final pressure and the heat transfer.

$$
\begin{aligned}
& R_{O_{2}}=0.26 \mathrm{~kJ} / \mathrm{kK} \\
& m_{A}=\frac{P_{A} V_{A}}{R T_{A}}=\frac{300 \times 1}{0.26 \times 288}=4 \mathrm{k}
\end{aligned}
$$

Considering $A+B+$ valve + pipe as out system

$$
\begin{aligned}
& Q-W=\Delta U \\
& W=0 ; \quad Q \neq 0 \\
& Q=\Delta U \\
& \Delta U=m_{A} C_{U A}\left(T_{f}-T_{A}\right)+m_{B} C_{U B}\left(T_{f}-T_{B}\right) \\
& =\frac{\gamma R_{O_{2}}}{\gamma-1}\left[m_{A}\left(T_{F}-T_{A}\right)+m_{B}\left(T_{f}-T_{B}\right)\right] \\
& Q=m \frac{\mathbb{R}_{02}}{\gamma-1}\left[\begin{array}{cc}
2 T_{f}-T_{A}-T_{B} \\
\gamma & \lambda
\end{array}\right] \\
& m_{\text {total }}=4 k \\
& V_{\text {tot }}=V_{A}+V_{B} \\
& T_{f}=293 k \quad P_{f}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{2 A} V_{2 A}}{I_{2 A}}=\frac{\left.P_{3 N_{2}} N_{3}\right)^{F}}{T_{3} A} \\
& p_{2 A} V_{2 A}=\phi_{3 A} V_{3 A} \\
& 467 \times \mathrm{Im}^{n}=509.3 \times V_{3 A} \\
& V_{3} A=\frac{467}{509.3}=0.92 \mathrm{~m}^{3} \\
& V_{3 B}=1.08 \mathrm{~m}^{3} \\
& \frac{P_{1 A} V_{1 A}}{T_{1 A}}=\frac{\bar{P}_{2 A} V_{2 A}}{T_{2 A}}=\frac{\bar{P}_{3 A} V_{3 A}}{T_{3 A}}
\end{aligned}
$$

$$
\begin{aligned}
& \oint \delta \varphi=\oint \delta W \\
& Q-W=\Delta E \\
& Q_{c m}-W_{c m}=\frac{d E_{c m}}{d t}
\end{aligned}
$$

Allure applicable for control mass (close dsystem)
Control Mass /Closed system

1. Conservation of Mass:

$$
\begin{aligned}
& M_{c M}=\text { const } \\
& \frac{d M_{c M}}{d t}=0
\end{aligned}
$$

2. Conservation of momentum:

$$
\frac{d \vec{P}}{d t}=\vec{F}
$$

3. Conservation I energy:

$$
\begin{gathered}
\dot{\varphi}-\dot{W}=\frac{d E}{d t} \\
\frac{d \vec{E}}{d t}=\dot{\rho}-\dot{W}
\end{gathered}
$$

For open systems we need special treatments
Conservation of Mass

$$
\begin{aligned}
& \dot{m}_{i}=5 \mathrm{~g} / \mathrm{s} \\
& \dot{m}_{e}=7 \mathrm{~g} / \mathrm{s} \\
& \frac{d\left(M_{c v}\right)}{d t}=
\end{aligned}
$$

