
Worked out problems on conduction 

Problem 1: The temperature distribution across a copper plate 0.65 m thick experiencing Ohmic heating is 

given by T(x) = 70 + 30x - 20x2 where T is in K and x is in meters. Calculate the heat flux at x = 0, x = 0.5 

m, x = 0.75 m, and x = 1m. Thermal conductivity of the material is 386 W/m K. Find the location of 

maximum temperature. Also calculate the volumetric heat generation, if any. 

Solution : 

T = 70 + 30x - 20x2 

dT

dx
 = 30 − 40 x  

Heat flux q = −k dT

dx
 = −386 (30 - 40x)     (i)  

q x=0 =  −386 (−0) = −11.580 kW/m2 

q x=0.5 = −386 (30−40 (0.5)) = −3.86 kW/m2  

q x=0.75 = −386 ( 0−40 (0.75)) = 0 kW/m2
 

q x=1 = −386 ( 0−40 (1)) = 3.86 kW/m2
 

T=Tmax where 𝑑𝑇

𝑑𝑥
= 0 and 

𝑑2𝑇

𝑑𝑥2 is negative. This 

happens at x=0.75 m
 

To calculate volumetric heat generation, we use the generalized conduction equation under steady state in 1-D 

𝑘
𝑑2𝑇

𝑑𝑥2
+ 𝑞̇𝑔𝑒𝑛 = 0

 

From Eq. (i), 𝑑2𝑇

𝑑𝑥2 = − 40, hence, −38640+𝑞̇𝑔𝑒𝑛 = 0, 𝑞̇𝑔𝑒𝑛 = 14720 W/m3
 

 

Problem 2: A plate is exposed to an environment containing fluid at 100 
o
C. The temperature profile of the 

fluid is given as T = 60 + 40y + 0.1 y2.  Assume  kfluid = 40 W/m K. Determine convective heat transfer 

coefficient. 

Solution : 

Given data Tf = 100 
o
C ; k = 40 W/m K;  T = 60 + 40 y + 0.1 y2 

To calculate wall temperature Tw  put y = 0 in the expression T = 60 + 40 y + 0.1 y2, we get Tw = 60 oC  

Now convective heat transfer coefficient wall
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  = 40 W/m2 K 

 
Problem 3: A 25 m long un-insulated steam pipe (10 cm diameter) is routed through a building whose walls 

and air are at 25
0
C. Pressurised steam maintains a pipe surface temperature of 150

0
C, and the coefficient 

associated with natural convection is h=10 W/m
2
K. The surface emissivity is 0.8.What is the rate of heat 

loss from steam line? 

Solution :  

Given data: L = 25m;  D=0.1 m;  h=10 W/m
2
K;  

Tw=150 
0
C = 423 K; 

Ts = Tf = 25
0
C = 298 K;    =0.8 

Total heat loss is due to convection and radiation 

q = qconv + qrad   

q= h (Tw − Tf) +    (T
4

w − T
4

s)    

Heat transfer area=A= D L=   x (0.1x 25) = 7.85m
2
  

Q = q  A    = [10 (423-298)+ 0.8 x 5.67 10
-8

(423
4
-298

4
)]  7.85  = 18405 W=18.4 kW 

𝑞" = ℎ(𝑇𝑤 − 𝑇𝑓)

= −𝑘 {
𝑑𝑇
𝑑𝑥

| 𝑦=0} 



Problem 4: Find the radiation heat transfer coefficient for a polished aluminium whose temperature 

exceeds that of surrounding(Tsur=25
0
C) by 10

0
C. Emissivity value for the surface may be taken as 0.05. 

Solution : 

Given data : Ts=25+273=298 K ;   =0.05 

hr =   (Tw+ Ts) (T
2

w+ T
2

s) 

Tw=298+10=308 K 

h
r
 =5.67 x 10-8 x 0.05(308+ 298) (3082+ 2982) 

   =0.3155 W/m2K 

 
Problem 5: A long cylinder of inner radius 50 mm and outer radius 100 mm has uniform heat generation 

given by q = 2104 W/m2. Inside the hollow cylinder ice is kept. What is the rate of melting ice? k = 4 W/mK. 

The outer surface is insulated. Lcylinder = 1m. ri= 50 mm; ro = 100mm. Latent heat of fusion for ice is 336 

kJ/kg. Also find the outer wall temperature. 

 

Solution: Assuming (i) steady-state and (ii) 1-dimensional heat conduction with (iii) constant k, 

GDE:    
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) +

𝑞

𝑘
= 0,  

The general solution is: 𝑇 = −
𝑞𝑟2

4𝑘
+ 𝑐1 𝑙𝑛 𝑟 + 𝑐2 (1) 

Boundary conditions:  

(i) Inner wall: T(r = ri) = Ti=273 K (since it is in touch with melting ice) 

(ii) Outer wall: 
𝑑𝑇

𝑑𝑟
|

𝑟=𝑟𝑜

= 0 ⇒
𝑐1

𝑟𝑜
=

𝑞𝑟𝑜

2𝑘
 ,  𝑐1 =

𝑞𝑟𝑜
2

2𝑘
=

2×104×0.12

2×4
= 25 

Substituting in Eq. (1),  𝑇(𝑟 = 𝑟𝑖) = −
𝑞

4𝑘
𝑟𝑖

2 + 25 𝑙𝑛 𝑟𝑖 + 𝑐2 = 273  

Hence, 𝑐2 = 273 − 25 𝑙𝑛( 50 × 10−3) +
2×104×(50×10−3)2

4×4
 = 351  

Outer wall temperature 𝑇(𝑟 = 𝑟o) = −
𝑞

4𝑘
𝑟0

2 + 25 𝑙𝑛 𝑟o + 𝑐2 = 280 K 

Heat flux at the inner wall −𝑘
𝑑𝑇

𝑑𝑟
|

𝑟=𝑟𝑖

= 𝑘 (
25

𝑟𝑖
−

𝑞𝑟𝑖

2𝑘
) = 4(500 − 125) =  1500 𝑊/𝑚2  

Hence the total heat 𝑚𝑖𝑐𝑒(𝐿𝑓)𝑖𝑐𝑒=𝑚𝑖𝑐𝑒(336000)  

𝑚𝑖𝑐𝑒 = 1.40210-3 𝑘𝑔/s = 5.04 kg/h 

 

[Alternate method: Since the outer wall is insulated, under steady state, the entire heat generated in the 

cylinder will be conducted inside to melt the ice.  

 Q̇ = 𝜋(𝑟𝑜
2 − 𝑟𝑖

2) × 𝐿𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟  × 𝑞 = 471 𝑊, Therefore, 𝑚𝑖𝑐𝑒 = 471/336000 𝑘𝑔/𝑠 = 5.04 𝑘𝑔/ℎ 
This method will not give you the outer wall temperature and the temperature distribution, but it simply 

does the steady-state energy balance of the cylinder.] 
 

 
Problem 6: Two co-axial hollow cylinders are as shown in the diagram below.  The temperature on the 

cylindrical surface at a distance a from the axis is T1 and at a distance c from the axis is T2. Find the 

temperature at the junction of temperature of the two cylinders. k1, k2 are the thermal conductivities of the 

two cylinder materials. 

 

Solution :   

The heat flow by conduction in one dimension in a steady state is given by Q=− kA 
𝑑𝑇

𝑑𝑟
, which is same through the 

two insulators.  

equating the heat flow through the two cylindrical shells of insulator 
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Problem 7: A cylinder with heat generation given by q has been exposed to surroundings at 25 oC. The 

convective heat transfer coefficient outside is h=15 W/m2K. Outer surface emissivity is 0.8. Find q so that 

the temperature of outer surface is kept within 200 oC. Also find temperature distribution inside the 

cylinder and T (r = 0). Given that k = 25W/mK, ro = 25 mm 

 

Solution : 

From heat equation  

GDE: 
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) +

𝑞

𝑘
= 0            (1)   

Integrating (1)  𝑟
𝑑𝑇

𝑑𝑟
= −

𝑞

2𝑘
𝑟2 = 𝑐1         (2) 

And further integrating, 𝑇(𝑟) = −
𝑞

4𝑘
𝑟2 + 𝑐1 𝒍𝒏 𝑟 + 𝑐2   (3) 

Boundary conditions  
𝑑𝑇

𝑑𝑟
|

𝑟=0
= 0    (4) 

And 𝑇(𝑟𝑜) = 𝑇𝑠       (5) 

(From BC 4 and Eq 2)   
1

0c =  

(Hence from BC 5)  𝑐2 = 𝑇𝑠 +
𝑞

4𝑘
𝑟𝑜

2 

Thus 𝑇(𝑟) =
𝑞𝑟0

2

4𝑘
(1 −

𝑟2

𝑟0
2) + 𝑇𝑠    (3) 

Also, at the outer surface,  −𝑘
𝑑𝑇

𝑑𝑟
|

𝑟=𝑟𝑜

= ℎ(𝑇𝑠 − 𝑇∞) + 𝝐𝜎(𝑇𝑠
4 − 𝑇∞

4) 

𝑞𝑟0

2
= ℎ(𝑇𝑠 − 𝑇∞)+∈ 𝜎(𝑇𝑠

4 − 𝑇∞
4) 

𝑞×25×10−3

2
= 2625 + 1912.76 ⇒ 𝑞 = 18.15 × 104𝑊/𝑚3 

T(r=0) = 201.15o C. 

Note: Here Radiation loss & Convective loss are comparable since Ts is large and h is small. 

 

  







Heat Transfer Across a slab with variable thermal conductivity 
For several materials, it may be generalized that the thermal conductivity varies linearly with temperature.  This 

variation is often approximated as   

𝑘(𝑇) = 𝑘0(1 + 𝛽𝑇)    (1) 

 

where ko and   are constants. 

Using equation 𝛁. (𝑘 ∇𝑇) = 0 without heat generation term we arrive at equation for variable thermal conductivity 

as 

  
𝑑

𝑑𝑥
[𝑘(𝑇)

𝑑𝑇

𝑑𝑥
] = 0    (2) 

 

k(T) can be replaced from equation (3.28) to give 

 
𝑑

𝑑𝑥
 [𝑘𝑜(1 + β𝑇) 

𝑑𝑇

𝑑𝑥
] = 0   (3) 

 

Integrating this we get 𝑘𝑜(1 + β𝑇) 
𝑑𝑇

𝑑𝑥
= 𝐶1   (4) 

 

If the prescribed temperature boundary condition is used (T = T1 at x = 0 and T = T2 at x = l), we can integrate it 

further to have  

𝑘𝑜  ∫ (1 + β𝑇)𝑑𝑇
𝑇2

𝑇1

= 𝐶1 ∫ 𝑑𝑥
𝑙

𝑜

 

 Giving    𝐶1 =
𝑘0

𝑙
[(𝑇2 − 𝑇1)   +  

β

2
 (𝑇2

2   −   𝑇1
2)] 

 

From Fourier’s law, the heat transfer from the slab is  

𝑄 = −𝑘𝐴 
𝑑𝑇

𝑑𝑥
  =   −𝐶1𝐴 

𝑄 =
𝐴𝑘𝑜

𝑙
[(𝑇1 − 𝑇2)   + 

β

2
 (𝑇1

2 − 𝑇2
2)] 

 

 


