Worked out problems on conduction

Problem 1: The temperature distribution across a copper plate 0.65 m thick experiencing Ohmic heating is
given by T(x) = 70 + 30x - 20x?> where T is in K and x is in meters. Calculate the heat flux at x =0, x = 0.5
m, X = 0.75 m, and x = 1m. Thermal conductivity of the material is 386 W/m K. Find the location of
maximum temperature. Also calculate the volumetric heat generation, if any.

Solution :

T =70+ 30x - 20x2

™ =30-40x q,= 3.86
X
. |80 q =10
Heat flux q = -k 9T =386 (30-40x) (i) o A’;\ x |
dx /
g xc0 = —386 (3-0) = —11.580 kKW/m? ~ |
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q x=0.75 = —386 (3 0-40 (0.75)) = 0 KW/m? o T e~ ] 1
qxe1= —386 (3 0-40 (1)) = 3.86 kW/m? — L w075
X X
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T=Tmax Where a7 _ 4 ang d—z is negative. This
dx dx

happens at x=0.75 m
To calculate volumetric heat generation, we use the generalized conduction equation under steady state in 1-D
2
k ﬁ + qgen =0

H 2
From Eq. (i), 47 = 40, hence, ~386x40+(gen = 0, > gen, = 14720 Wim?

Problem 2: A plate is exposed to an environment containing fluid at 100 °C. The temperature profile of the
fluid is given as T = 60 + 40y + 0.1 y2 Assume Kgq,,q = 40 W/m K. Determine convective heat transfer

coefficient.

Solution :
Given data T,=100°C; k=40W/mK; T=60+40y+0.1y?

To calculate wall temperature T, puty = 0 in the expression T =60 + 40y + 0.1 y?, we get T,, = 60 °C

s
Now convective heat transfer coefficient p = _ Yl T(y)
TW _Tf
Temperature gradient ﬂ =40aty=0 j
y wall qa = h(TW - Tf)
h=—40x40 =40 w/m2K - (dT )
60-100

Problem 3: A 25 m long un-insulated steam pipe (10 cm diameter) is routed through a building whose walls
and air are at 25°C. Pressurised steam maintains a pipe surface temperature of 150°C, and the coefficient

associated with natural convection is h=10 W/m?K. The surface emissivity is 0.8.What is the rate of heat
loss from steam line?

Solution :
Given data: L =25m; D=0.1 m; h=10 W/m’K;
T,=150 °C = 423 K;
T,=T;=25°C=298K; &=0.8
Total heat loss is due to convection and radiation
4= deony ¥ Arag
g=h(T,-Tp+ eo (T, -T%)
Heat transfer area=A=n D L= x (0.1x 25) = 7.85m?
Q=qxA =[10(423-298)+ 0.8 x 5.67x 10°(423*-298%] x 7.85 = 18405 W=18.4 kW




Problem 4: Find the radiation heat transfer coefficient for a polished aluminium whose temperature
exceeds that of surrounding(T :25°C) by 10°C. Emissivity value for the surface may be taken as 0.05.

Solution :
Given data : T,=25+273=298 K ; ¢ =0.05
h =oe(T+T) T+ T2)
T,=298+10=308 K
h, =5.67 x 10 x 0.05(308+ 298) (308%+ 298?)
=0.3155 W/m2K

sur

Problem 5: A long cylinder of inner radius 50 mm and outer radius 100 mm has uniform heat generation
given by q = 2x10* W/m?. Inside the hollow cylinder ice is kept. What is the rate of melting ice? k = 4 W/mK.
The outer surface is insulated. Leyiinder = 1M. ri= 50 mm; ro = 100mm. Latent heat of fusion for ice is 336
kJ/kg. Also find the outer wall temperature.

Solution: Assuming (i) steady-state and (ii) 1-dimensional heat conduction with (iii) constant k,
GDE: Ly +i=0,

rdr
2
The general solution is: T = — % +ognr+c, (1)

Boundary conditions:
(i) Inner wall: T(r = r;) = Ti=273 K (since it is in touch with melting ice)
2 4 2
(ii) Outer wall: & =02 =00 T _2AVXOF _ o5
arly=r, o 2k 2k 2%4

Substituting in Eq. (1), T(r =1n;) = _:;kriz +25Inm +c, = 273

Hence, ¢, = 273 — 251n(50 x 1073) + o =351

Outer wall temperature T(r = 1,) = —=-1> + 25 In7, + ¢, = 280 K

Heat flux at the inner wall —k 5| =k (2= 21) = 4(500 — 125) = 1500 W /m?
i

Tlr=r;
Hence the total heat m;c, (L) ce=m;c. (336000)
Mice = 1.402x10° kg/s = 5.04 kg/h

[Alternate method: Since the outer wall is insulated, under steady state, the entire heat generated in the
cylinder will be conducted inside to melt the ice.

Q = (17 — 1) X Leyiinaer X q = 471 W, Therefore, my,, = 471/336000 kg/s = 5.04 kg /h

This method will_not give you the outer wall temperature and the temperature distribution, but it simply
does the steady-state energy balance of the cylinder.]

Problem 6: Two co-axial hollow cylinders are as shown in the diagram below. The temperature on the
cylindrical surface at a distance a from the axis is T: and at a distance ¢ from the axis is T2. Find the
temperature at the junction of temperature of the two cylinders. ki, k2 are the thermal conductivities of the
two cylinder materials.

Solution :
The heat flow by conduction in one dimension in a steady state is given by Q=— kA %, which is same through the

two insulators.
equating the heat flow through the two cylindrical shells of insulator

Ty-T T-T,
L 2nk, = —2 27k,
In— Ins

a b

b
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Problem 7: A cylinder with heat generation given by g has been exposed to surroundings at 25 °C. The
convective heat transfer coefficient outside is h=15 W/m?K. Outer surface emissivity is 0.8. Find q so that
the temperature of outer surface is kept within 200 °C. Also find temperature distribution inside the
cylinder and T (r = 0). Given that k = 25W/mK, ry =25 mm

Solution :
From heat equation
.1d dar q _
Integrating (1) rd—: = —%rz =c (2)
And further integrating, T(r) = — =1 + ¢; Inr +¢, (3)
Boundary conditions ar =0 4)
dr r=0
And T(r,) =Ty (5)

(FromBC4andEq2) = ¢, =0
(Hence fromBC5) = ¢, = T, + f—kToz

qro® r?
Thus T(T‘) = ? (1 - TO_Z) + Ts (3)

Also, at the outer surface, —kE =h(T, —T,) + ea(T,* = T,*)

arly=r,
T
T = (T, - T.)+e o(1," - T,

-3
25107 — 2625 + 1912.76 = q = 18.15 X 10*W /m3

T(r=0) = 201.15° C.
Note: Here Radiation loss & Convective loss are comparable since T is large and h is small.



Heat Transfer Across a slab with variable thermal conductivity
For several materials, it may be generalized that the thermal conductivity varies linearly with temperature. This
variation is often approximated as

k(T) = ko(1+ BT) 1)

where kg and 3 are constants.

Using equation V. (k VT) = 0 without heat generation term we arrive at equation for variable thermal conductivity
as

d daT
e %] = )
k(T) can be replaced from equation (3.28) to give
= [kt +pm) £ =0 (3)
Integrating this we get k,(1 + ST) Z—i =( 4

If the prescribed temperature boundary condition is used (T = Tq atx=0and T = T at x = I), we can integrate it
further to have

T, l
k, | (1+pmdT =c¢, f dx
o

T,

. k
Giving C, =TO[(T2 -T) + é (T — Tf)]
From Fourier’s law, the heat transfer from the slab is
daT
=—-kA — = —CA
Q “ . ,
Q= lo [(T1 - Tz) + E (T12 - Tzz)]



